



#### Calculating the angle between jet axes

#### 11 Jan, 2022

### Jet-axis differences



- Standard: anti- $k_{\rm T}$  jet with E-scheme recombination
- Groomed: Apply Soft Drop grooming with different values of  $z_{cut}$ and  $\beta$ 
  - Winner-Take-All (WTA): Jet axis is given by its leading constituent
  - Calculate the angular separation:  $\Delta R_{axis} = \sqrt{\Delta y^2 + \Delta \phi^2}$
  - •IRC-safe observable sensitive to soft radiation, TMDs and PDFs[\*]

 Angles have different degrees of soft sensitivity: ST-WTA → Moderate dependence on soft radiation WTA-GR → Low dependence on soft radiation ST-GR →High dependence on soft radiation

[\*] Pedro Cal, Duff Neill, Felix Ringer & Wouter J. Waalewijn [ArXiv: 1911.06840] https://link.springer.com/article/10.1007/JHEP04(2020)211

### Event Selection

- PYTHIA8 event generator. 1M events. pp collision at  $\sqrt{s} = 200$ GeV
  - Used the Detroit Tune [arXiv:2110.09447v2]:

| TABLE I. PYTHIA 8 settings and tuning parameters. |  |  |
|---------------------------------------------------|--|--|
|                                                   |  |  |
|                                                   |  |  |
| 7                                                 |  |  |
|                                                   |  |  |
|                                                   |  |  |

TABLE III. PYTHIA 8 tuned parameters.

| Tuning Parameter                     | Default   | Detroit   |
|--------------------------------------|-----------|-----------|
| MultipartonInteractions:pT0Ref       | 2.28  GeV | 1.40  GeV |
| MultipartonInteractions:ecmPow       | 0.215     | 0.135     |
| MultipartonInteractions:coreRadius   | 0.4       | 0.56      |
| MultipartonInteractions:coreFraction | 0.5       | 0.78      |
| ColourReconnection:range             | 1.8       | 5.4       |

- Charged-particle jets were reconstructed at  $|\eta| < 3$  using the anti- $k_T$  algorithm with R = 0.4.
- Selection:  $p_{T}^{ch,jet} > 10$  GeV,  $|\eta_{iet}| < 0.6$ .
- Scan different Soft-Drop parameters;

• 
$$z_{cut} = 0.1, \beta = -1, 0, 1, 2, 3$$
  
•  $z_{cut} = 0.1, 0.2, 0.3, \beta = 1$   
•  $z_{cut} = 0.1, 0.2, 0.3, \beta = -1$   
 $z_g \equiv \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}} \ge z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$ 



**Top:** The distributions of the jet transverse momentum for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right). **Bottom:** The distributions of the jet mass for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right).



**Top:** The distributions of the jet transverse momentum for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right). **Bottom:** The distributions of the jet mass for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle)

and  $\beta = -1.0$  (right).











 $z_{cut}$  (middle/right). Bottom: The distribution of  $\rho \equiv log(m^2/\rho_T^2)$ , where *m* is groomed jet mass and  $p_T$  is ungroomed jet  $p_T$ .



 $z_{cut}$  (middle/right). **Bottom:** The distribution of  $\rho \equiv log(m^2/p_T^2)$ , where *m* is groomed jet mass and  $p_T$  is ungroomed jet  $p_T$ .

# $\Delta R_{axis}$

• Calculate the angular separation:  $\Delta R_{axis} = \sqrt{(y_g - y_j)^2 + (\phi_g - \phi_j)^2}$ 



Top: The angular separation between the standard and soft drop groomed jets for different values of  $\beta$  (left), and for different values of  $z_{cut}$  (middle/right).

Bottom: The angular separation between the WTA and standard/groomed jet axes for different values of  $\beta$  (left), and for different values of  $z_{cut}$  (middle/right)

# $\Delta R_{axis}$

#### • Calculate the angular separation: $\Delta R_{axis} = \sqrt{(y_g - y_j)^2 + (\phi_g - \phi_j)^2}$



Top: The angular separation between the standard and soft drop groomed jets for different values of  $\beta$  (left), and for different values of  $z_{cut}$  (middle/right).

Bottom: The angular separation between the WTA and standard/groomed jet axes for different values of  $\beta$  (left), and for different values of  $z_{cut}$  (middle/right)

# Backup



**Top:** The distributions of the jet transverse momentum for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right). **Bottom:** The distributions of the jet mass for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right).



**Top:** The distributions of the jet transverse momentum for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right). **Bottom:** The distributions of the jet mass for different  $\beta$  values with  $z_{cut} = 0.1$  (left), different  $z_{cut}$  values with  $\beta = 1.0$  (middle) and  $\beta = -1.0$  (right).



17/19



Left: The distributions of the jet  $\eta$  for different  $\beta$  values with  $z_{cut} = 0.1$ . Right: The distributions of the jet  $\eta$  for different  $z_{cut}$  values with  $\beta = 1.0$ .





#### arXiv:1912.09837v2



#### arXiv:1805.05145v2

