
The TAU Performance System®

Kevin Huck, Sameer Shende, Allen Malony
khuck@cs.uoregon.edu
http://tau.uoregon.edu

RESOURCE & APPL ICATION PRODUCTIVITY THROUGH
COMPUTAT ION , I NFORMAT ION , AND DATA SC I ENCE

SCIDAC4 INSTITUTE

RAPIDS

mailto:khuck@cs.uoregon.edu
http://tau.uoregon.edu/

TAU : brief overview
• Tuning and Analysis Utilities (28+ year project)
• Integrated performance toolkit:
– Multi-level performance instrumentation
– Highly configurable
– Widely ported performance profiling / tracing system
– Portable (java, python) visualization / exploration / analysis

tools

• Supports all major HPC programming models
– MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...

TAU Performance System – BNL - July 13, 2022 2

TAU : brief overview

TAU Performance System – BNL - July 13, 2022 3

ParaProf Profile Browser

% paraprof

Each line is a
different
process/thread of
execution, each color
is a different function

TAU Performance System – BNL - July 13, 2022 4

ParaProf 3D Profile Browser

TAU Performance System – BNL - July 13, 2022 5

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out
% paraprof ; Windows -> 3D Communication Matrix

TAU Performance System – BNL - July 13, 2022 6

TAU and Vampir [TU Dresden]: Intel oneAPI OpenCL

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% mpirun –np 4 tau_exec –T level_zero –opencl ./a.out

TAU Performance System – BNL - July 13, 2022 7

Tracing: Jumpshot (ships with TAU)

TAU Performance System – BNL - July 13, 2022 8

Tracing: Chrome Browser

TAU Performance System – BNL - July 13, 2022

% export TAU_TRACE=1
% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing (Load -> app.json)

Or visit https://ui.perfetto.dev/ to use Perfetto
9

https://ui.perfetto.dev/

Performance Measurement
• Timers

– Requires instrumentation of some kind
• Manual, automated
• Source, compiler provided, binary
• Library callbacks, API wrappers, weak symbol replacement

– Simple to implement
• Sampling

– Requires specialized system libraries / support
• Periodic signals, signal handler

– No modification to executable/library needed
– Potential to interfere with system support (signal handlers)

TAU Performance System – BNL - July 13, 2022 10

Profiling and Tracing
• Profiling: how much time was spent in each measured

function on each thread in each process?
– Collapses the time axis
– No ordering or causal event information
– Small summary per thread/process, regardless of execution

time – only grows with number of timers & threads/processes
• Tracing: record all function entry & exit events on a

timeline
– Detailed view of what happened
– The longer the program runs, the bigger the trace

TAU Performance System – BNL - July 13, 2022 11

Profiling and Tracing

TAU Performance System – BNL - July 13, 2022

Tracing shows you when the events take
place on a timeline

Profiling shows you how much (total) time was
spent in each routine

12

Integrating TAU

Compile Time
• Compile with TAU compiler

wrappers (see next slides)
• Link with TAU libraries

Runtime
• Execute with tau_exec
• Preloads the TAU shared

object library and
instantiates measurement
support for different models

• More later…

TAU Performance System – BNL - July 13, 2022 13

Instrumentation Approaches
• Manual

– Add TAU API calls to the code by hand:
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk05rn01
.html

• Automated:
– PDT – optional TAU configuration
– Compiler based instrumentation – comes with TAU
– LLVM plugin – comes with TAU
– Binary instrumentation - using Dyninst, PIN, or MAQAO

• Optional TAU configuration, not covered in this tutorial

• PerfStubs API: https://github.com/UO-OACISS/perfstubs
TAU Performance System – BNL - July 13, 2022 14

https://www.cs.uoregon.edu/research/tau/docs/newguide/bk05rn01.html
https://github.com/UO-OACISS/perfstubs

TAU compiler wrappers with PDT
• tau_cc.sh, tau_cxx.sh, tau_f90.sh
• Usually does 3 passes to compile:

– PDT parses the source file, writes a .pdb file
– tau_instrumentor reads the source file, the pdb file, writes an

instrumented source file
– The instrumented source file is passed to the regular compiler
– The instrumented source file is deleted

• Selective instrumentation by file, function (include/exclude)
• At link time, tau_*.sh will add the TAU libraries to the link

TAU Performance System – BNL - July 13, 2022 15

PDT Example

TAU Performance System – BNL - July 13, 2022

1

2

3

link

16

PDT Instrumentation Example

TAU Performance System – BNL - July 13, 2022

tau_cc.sh -optKeepFiles -g -O2 -c simple.c -o simple.o

17

TAU compiler wrappers without PDT
• Same tau_cc.sh, tau_cxx.sh, tau_f90.sh
• Usually does 1 pass to compile:
– Extra flags are added to the compiler:

• Compiler based instrumentation (-finstrument-functions)
– Tool has to implement two special functions:

» void __cyg_profile_func_enter (void *this_fn, void *call_site);
» void __cyg_profile_func_exit (void *this_fn, void *call_site);

• Call a compiler plugin (LLVM only)
– tau_instrumentor adds TAU API calls directly

• At link time, tau_*.sh will add the TAU libraries to the link
• Can be forced with -optCompInst flag

TAU Performance System – BNL - July 13, 2022 18

Compiler Based Example

TAU Performance System – BNL - July 13, 2022 19

Simple example

TAU Performance System – BNL - July 13, 2022 20

PDT Instrumentation

TAU Performance System – BNL - July 13, 2022

Timer names have full signatures, start & end lines/columns
- all information available from parsing original source file with PDT

21

Compiler Instrumentation

TAU Performance System – BNL - July 13, 2022

Timer names have name only, start line only
- function entry/exit callback only has address of function and return address
- all source information retrieved during program execution with binutils (libbfd)

22

LLVM Plugin Instrumentation

TAU Performance System – BNL - July 13, 2022

Different TAU configuration with clang++/clang/flang

Where are the other timers?...
TAU_COMPILER_MIN_INSTRUCTION_COUNT defaults to 50, so they were filtered out

23

LLVM Plugin Instrumentation

TAU Performance System – BNL - July 13, 2022

Different TAU configuration with clang++/clang/flang

TAU_COMPILER_MIN_INSTRUCTION_COUNT=0 disables filtering

24

Instrumentation pros/cons

Pros
• Simple to implement
• Works universally
• Instruments everything – no

blind spots
• Selective instrumentation

available (by file or function
name, or instruction count)

Cons
• Instruments everything
• Potentially high overhead –

especially with C++
• Changes program behavior
• Potentially interferes with

optimizations

TAU Performance System – BNL - July 13, 2022 25

Sampling
• Run the application with tau_exec -ebs
– Preloads the TAU library, instantiates a signal handler and

periodic interrupt to process the signal
– The signal handler will record the current instruction pointer, all

requested metrics, and optionally unwind the callstack
– At the end of execution, all addresses are resolved to symbols in

the application using binutils/libdwarf
• Some things that help:
– For best support, build application with debug (-g) - all other

optimizations are fine

TAU Performance System – BNL - July 13, 2022 26

Using TAU’s Runtime Preloading Tool: tau_exec
• <mpirun> tau_exec -T <config> <options> <executable>
• tau-config --list-matching <mpi/serial> will show available

configs
• Preload a wrapper that intercepts the runtime calls and substitutes with

another (using dlsym() or weak symbol replacement)
– MPI
– OpenMP
– POSIX I/O
– Memory allocation/deallocation routines
– Wrapper library for an external package

• No modification to the binary executable
• Enable other TAU options (communication matrix, OTF2, event-based

sampling)

TAU Performance System – BNL - July 13, 2022 27

Sampled Measurement

TAU Performance System – BNL - July 13, 2022

Both more and less information at the same time…

Previous instrumentation example:

Sampling example:

28

Sampled Measurement

TAU Performance System – BNL - July 13, 2022

14% spent here
85% spent here

29

Simple Transformation – loop inversion

TAU Performance System – BNL - July 13, 2022

Reduced from 1.73 seconds

30

Both together!

TAU Performance System – BNL - July 13, 2022

Timers

Samples

31

…with callpath profiling

TAU Performance System – BNL - July 13, 2022 32

…easier to view in ParaProf

TAU Performance System – BNL - July 13, 2022 33

Other measurement support
• Many programming models provide “hooks” for tools
• Often, instrumentation isn’t necessary!
– MPI, SHMEM, Charm++
– Pthreads, OpenMP, Kokkos
– CUDA, HIP/ROCm, OneAPI, OpenACC, OpenCL, OpenMP offload
– Python
– Wrappers: POSIX, Chapel, UPC, memory, ARMCI, GASNet…
– Java

TAU Performance System – BNL - July 13, 2022 34

Other TAU features
• Binary instrumentation
– Dyninst, MAQAO, PIN

• Hardware counter support
– PAPI, LIKWID

• Tracing support (native or converters)
– Vampir (OTF2), Perfetto (JSON), Jumpshot (SLOG2), …

• Plugins
– OS/HW monitoring, ADIOS2, SOS, Mochi, SQLite3, …

TAU Performance System – BNL - July 13, 2022 35

OpenMP
• https://www.openmp.org
• Pragma-based language extension to facilitate threading
• OpenMP 5.0 standard includes OpenMP Tools

(OMPT/OMPD) specification for providing callbacks from
the runtime to performance/debugging tools

• Provided by Intel, LLVM, IBM compilers
• GCC can use drop-in replacement (LLVM 8.0 runtime)
• TAU provides OPARI legacy support (when using PDT)

TAU Performance System – BNL - July 13, 2022 36

https://www.openmp.org/

Adding OpenMP

TAU Performance System – BNL - July 13, 2022 37

If OMP_NUM_THREADS=4, SIZE=1024, then iteration space
will be split into 4 of chunk size 256 each – 4x speedup

Compiling, Running, Reporting

TAU Performance System – BNL - July 13, 2022

Thread lifetime
Worker lifetime Region

Synchronization

Compiler flag to
Enable OpenMP

38

MPI Support
• MPI standard includes tool support
– MPI_* functions are thin, weak wrappers around PMPI_* API
– Tools create their own wrappers to replace them and intercept

MPI calls
– Tool library is preloaded or linked ahead of MPI library(ies)
– Example:

TAU Performance System – BNL - July 13, 2022 39

MPI example – Lulesh
• Lulesh 2.0.3 https://asc.llnl.gov/codes/proxy-apps/lulesh
• “The Shock Hydrodynamics Challenge Problem was

originally defined and implemented by LLNL as one of
five challenge problems in the DARPA UHPC program and
has since become a widely studied proxy application in
DOE co-design efforts for exascale.”

• C++, Serial, OpenMP, MPI
• CUDA, OpenACC, OpenCL, other models

TAU Performance System – BNL - July 13, 2022 40

https://asc.llnl.gov/codes/proxy-apps/lulesh

Lulesh Profile - ParaProf

TAU Performance System – BNL - July 13, 2022

Main window

Main Profile Window

41

Treetable of callpath data

Profile of one timer

Mean profile

Lulesh Trace – Vampir

TAU Performance System – BNL - July 13, 2022

Master timeline

Process timeline

Summary timeline

Counter data timeline

Profile

42

Measuring HIP kernel performance

• Hip-stream – small
program with 4+ kernels

TAU Performance System – BNL - July 13, 2022

Program output

HIP kernels

43

Measuring HIP kernel performance
• Just add tau_exec and

arguments to the
command (between
srun/mpirun and
application when
applicable)

• tau-config shows
available configs

TAU Performance System – BNL - July 13, 2022

“use serial,rocprofiler configuration
with HIP/ROCm support enabled”

44

Pprof output, timers

TAU Performance System – BNL - July 13, 2022 45

Main Thread

ROCm Thread

Device activity

Pprof output, counters

TAU Performance System – BNL - July 13, 2022

Counters for measuring register pressure and occupancy

46

ParaProf view of same data

TAU Performance System – BNL - July 13, 2022

VERY helpful for
understanding
register pressure
and occupancy

47

Tracing support uses Roctracer

TAU Performance System – BNL - July 13, 2022

Each device has 2-3 virtual threads:
1) kernels,
2) memory transfers
3) synchronization
(prevents overlapping timers)

48

tau_exec command reference
• Uninstrumented execution

– % mpirun -np 256 ./a.out
• Track GPU operations

– % mpirun –np 256 tau_exec –l0 ./a.out
– % mpirun –np 256 tau_exec –opencl ./a.out
– % mpirun –np 256 tau_exec –openacc ./a.out
– % mpirun –np 256 tau_exec –cupti ./a.out
– % mpirun –np 256 tau_exec –rocm ./a.out

• Track MPI performance
– % mpirun -np 256 tau_exec ./a.out

• Track I/O, and MPI performance (MPI enabled by default)
– % mpirun -np 256 tau_exec -io ./a.out

• Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)
– % export TAU_OMPT_SUPPORT_LEVEL=full;
– % mpirun –np 256 tau_exec –T ompt,mpi -ompt ./a.out

• Track memory operations
– % export TAU_TRACK_MEMORY_LEAKS=1
– % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

• Use event based sampling (compile with –g)
– % mpirun –np 256 tau_exec –ebs ./a.out
– Also export TAU_METRICS=TIME,PAPI_L1_DCM… -ebs_resolution=<file | function | line>

• Non-MPI execution: use –T serial
– % tau_exec –T serial,level_zero –l0 –ebs ./a.out

TAU Performance System – BNL - July 13, 2022 49

TAU Runtime Environment Variables

TAU Performance System – BNL - July 13, 2022

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of
memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile
and context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of
inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with
tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

50

TAU Runtime Environment Variables

TAU Performance System – BNL - July 13, 2022

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or
TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists
specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_EA
GERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting
to 0 allows the user to do offline address translation.

51

TAU Runtime Environment Variables

TAU Performance System – BNL - July 13, 2022

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging.

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

52

For more info…
• https://tau.uoregon.edu
• https://github.com/UO-OACISS/tau2
• https://github.com/UO-OACISS/tau2/wiki
• https://github.com/UO-OACISS/tau2/wiki/Frequently-

Asked-Questions-%28FAQ%29
• Email tau-bugs@cs.uoregon.edu

TAU Performance System – BNL - July 13, 2022 53

https://tau.uoregon.edu/
https://github.com/UO-OACISS/tau2
https://github.com/UO-OACISS/tau2/wiki
https://github.com/UO-OACISS/tau2/wiki/Frequently-Asked-Questions-%28FAQ%29
mailto:tau-bugs@cs.uoregon.edu

Acknowledgements
Parts of this research was supported by the Exascale Computing Project (17-SC-20-
SC), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware technology, to
support the nation’s exascale computing imperative.
This research used resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

TAU Performance System – BNL - July 13, 2022 54

Current/Previous Acknowledgements

TAU Performance System – BNL - July 13, 2022 55

