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TAU : brief overview
• Tuning and Analysis Utilities (28+ year project)
• Integrated performance toolkit:
– Multi-level performance instrumentation
– Highly configurable
– Widely ported performance profiling / tracing system
– Portable (java, python) visualization / exploration / analysis 

tools

• Supports all major HPC programming models
– MPI/SHMEM, OpenMP/ACC, CUDA, HIP, OneAPI, Kokkos...
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TAU : brief overview
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ParaProf Profile Browser

% paraprof

Each line is a 
different 
process/thread of 
execution, each color 
is a different function
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ParaProf 3D Profile Browser
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TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; mpirun … tau_exec ./a.out
% paraprof ;     Windows -> 3D Communication Matrix
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TAU and Vampir [TU Dresden]: Intel oneAPI OpenCL

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% mpirun –np 4  tau_exec –T level_zero –opencl ./a.out
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Tracing: Jumpshot (ships with TAU)
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Tracing: Chrome Browser
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% export TAU_TRACE=1
% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

Chrome browser: chrome://tracing   (Load -> app.json)

Or visit https://ui.perfetto.dev/ to use Perfetto
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Performance Measurement
• Timers

– Requires instrumentation of some kind
• Manual, automated
• Source, compiler provided, binary
• Library callbacks, API wrappers, weak symbol replacement

– Simple to implement
• Sampling

– Requires specialized system libraries / support
• Periodic signals, signal handler

– No modification to executable/library needed
– Potential to interfere with system support (signal handlers)
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Profiling and Tracing
• Profiling: how much time was spent in each measured 

function on each thread in each process?
– Collapses the time axis
– No ordering or causal event information
– Small summary per thread/process, regardless of execution 

time – only grows with number of timers & threads/processes
• Tracing: record all function entry & exit events on a 

timeline
– Detailed view of what happened
– The longer the program runs, the bigger the trace
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Profiling and Tracing
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Tracing shows you when the events take 
place on a timeline

Profiling shows you how much (total) time was 
spent in each routine
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Integrating TAU

Compile Time
• Compile with TAU compiler 

wrappers (see next slides)
• Link with TAU libraries

Runtime
• Execute with tau_exec
• Preloads the TAU shared 

object library and 
instantiates measurement 
support for different models

• More later…
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Instrumentation Approaches
• Manual

– Add TAU API calls to the code by hand: 
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk05rn01
.html

• Automated:
– PDT – optional TAU configuration
– Compiler based instrumentation – comes with TAU
– LLVM plugin – comes with TAU
– Binary instrumentation - using Dyninst, PIN, or MAQAO

• Optional TAU configuration, not covered in this tutorial

• PerfStubs API: https://github.com/UO-OACISS/perfstubs
TAU Performance System – BNL - July 13, 2022 14

https://www.cs.uoregon.edu/research/tau/docs/newguide/bk05rn01.html
https://github.com/UO-OACISS/perfstubs


TAU compiler wrappers with PDT
• tau_cc.sh, tau_cxx.sh, tau_f90.sh
• Usually does 3 passes to compile:

– PDT parses the source file, writes a .pdb file
– tau_instrumentor reads the source file, the pdb file, writes an 

instrumented source file
– The instrumented source file is passed to the regular compiler
– The instrumented source file is deleted

• Selective instrumentation by file, function (include/exclude)
• At link time, tau_*.sh will add the TAU libraries to the link
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PDT Example
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1

2

3

link
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PDT Instrumentation Example
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tau_cc.sh -optKeepFiles -g -O2  -c simple.c -o simple.o
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TAU compiler wrappers without PDT
• Same tau_cc.sh, tau_cxx.sh, tau_f90.sh
• Usually does 1 pass to compile:
– Extra flags are added to the compiler:

• Compiler based instrumentation (-finstrument-functions)
– Tool has to implement two special functions:

» void __cyg_profile_func_enter (void *this_fn, void *call_site);
» void __cyg_profile_func_exit (void *this_fn, void *call_site);

• Call a compiler plugin (LLVM only)
– tau_instrumentor adds TAU API calls directly

• At link time, tau_*.sh will add the TAU libraries to the link
• Can be forced with -optCompInst flag
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Compiler Based Example
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Simple example
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PDT Instrumentation
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Timer names have full signatures, start & end lines/columns
- all information available from parsing original source file with PDT
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Compiler Instrumentation
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Timer names have name only, start line only
- function entry/exit callback only has address of function and return address
- all source information retrieved during program execution with binutils (libbfd)
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LLVM Plugin Instrumentation
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Different TAU configuration with clang++/clang/flang

Where are the other timers?...
TAU_COMPILER_MIN_INSTRUCTION_COUNT defaults to 50, so they were filtered out
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LLVM Plugin Instrumentation
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Different TAU configuration with clang++/clang/flang

TAU_COMPILER_MIN_INSTRUCTION_COUNT=0 disables filtering
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Instrumentation pros/cons

Pros
• Simple to implement
• Works universally
• Instruments everything – no 

blind spots
• Selective instrumentation 

available (by file or function 
name, or instruction count)

Cons
• Instruments everything
• Potentially high overhead –

especially with C++
• Changes program behavior
• Potentially interferes with 

optimizations
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Sampling
• Run the application with tau_exec -ebs
– Preloads the TAU library, instantiates a signal handler and 

periodic interrupt to process the signal
– The signal handler will record the current instruction pointer, all 

requested metrics, and optionally unwind the callstack
– At the end of execution, all addresses are resolved to symbols in 

the application using binutils/libdwarf
• Some things that help:
– For best support, build application with debug (-g) - all other 

optimizations are fine
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Using TAU’s Runtime Preloading Tool: tau_exec
• <mpirun> tau_exec -T <config> <options> <executable>
• tau-config --list-matching <mpi/serial> will show available  

configs
• Preload a wrapper that intercepts the runtime calls and substitutes with 

another (using dlsym() or weak symbol replacement)
– MPI
– OpenMP
– POSIX I/O
– Memory allocation/deallocation routines
– Wrapper library for an external package

• No modification to the binary executable
• Enable other TAU options (communication matrix, OTF2, event-based 

sampling)
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Sampled Measurement
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Both more and less information at the same time…

Previous instrumentation example:

Sampling example:
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Sampled Measurement
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14% spent here
85% spent here
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Simple Transformation – loop inversion
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Reduced from 1.73 seconds

30



Both together!
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Timers

Samples
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…with callpath profiling
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…easier to view in ParaProf
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Other measurement support
• Many programming models provide “hooks” for tools
• Often, instrumentation isn’t necessary!
– MPI, SHMEM, Charm++
– Pthreads, OpenMP, Kokkos
– CUDA, HIP/ROCm, OneAPI, OpenACC, OpenCL, OpenMP offload
– Python
– Wrappers: POSIX, Chapel, UPC, memory, ARMCI, GASNet…
– Java

TAU Performance System – BNL - July 13, 2022 34



Other TAU features
• Binary instrumentation
– Dyninst, MAQAO, PIN

• Hardware counter support
– PAPI, LIKWID

• Tracing support (native or converters)
– Vampir (OTF2), Perfetto (JSON), Jumpshot (SLOG2), …

• Plugins
– OS/HW monitoring, ADIOS2, SOS, Mochi, SQLite3, …
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OpenMP
• https://www.openmp.org
• Pragma-based language extension to facilitate threading
• OpenMP 5.0 standard includes OpenMP Tools 

(OMPT/OMPD) specification for providing callbacks from 
the runtime to performance/debugging tools

• Provided by Intel, LLVM, IBM compilers
• GCC can use drop-in replacement (LLVM 8.0 runtime)
• TAU provides OPARI legacy support (when using PDT)
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Adding OpenMP
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If OMP_NUM_THREADS=4, SIZE=1024, then iteration space 
will be split into 4 of chunk size 256 each – 4x speedup



Compiling, Running, Reporting
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Thread lifetime
Worker lifetime Region

Synchronization

Compiler flag to
Enable OpenMP
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MPI Support
• MPI standard includes tool support
– MPI_* functions are thin, weak wrappers around PMPI_* API
– Tools create their own wrappers to replace them and intercept 

MPI calls
– Tool library is preloaded or linked ahead of MPI library(ies)
– Example:
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MPI example – Lulesh
• Lulesh 2.0.3 https://asc.llnl.gov/codes/proxy-apps/lulesh
• “The Shock Hydrodynamics Challenge Problem was 

originally defined and implemented by LLNL as one of 
five challenge problems in the DARPA UHPC program and 
has since become a widely studied proxy application in 
DOE co-design efforts for exascale.”

• C++, Serial, OpenMP, MPI
• CUDA, OpenACC, OpenCL, other models
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Lulesh Profile - ParaProf
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Main window

Main Profile Window
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Treetable of callpath data

Profile of one timer

Mean profile



Lulesh Trace – Vampir
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Master timeline

Process timeline

Summary timeline

Counter data timeline

Profile
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Measuring HIP kernel performance

• Hip-stream – small 
program with 4+ kernels

TAU Performance System – BNL - July 13, 2022 

Program output

HIP kernels
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Measuring HIP kernel performance
• Just add tau_exec and 

arguments to the 
command (between 
srun/mpirun and 
application when 
applicable)

• tau-config shows 
available configs
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“use serial,rocprofiler configuration 
with HIP/ROCm support enabled”
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Pprof output, timers
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Main Thread

ROCm Thread

Device activity



Pprof output, counters
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Counters for measuring register pressure and occupancy
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ParaProf view of same data
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VERY helpful for 
understanding 
register pressure
and occupancy
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Tracing support uses Roctracer
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Each device has 2-3 virtual threads:
1) kernels,
2) memory transfers
3) synchronization
(prevents overlapping timers)
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tau_exec command reference
• Uninstrumented execution

– % mpirun -np 256  ./a.out
• Track GPU operations

– % mpirun –np 256  tau_exec –l0      ./a.out
– % mpirun –np 256 tau_exec –opencl ./a.out
– % mpirun –np 256 tau_exec –openacc ./a.out
– % mpirun –np 256 tau_exec –cupti ./a.out
– % mpirun –np 256 tau_exec –rocm ./a.out

• Track MPI performance
– % mpirun -np 256   tau_exec ./a.out

• Track I/O, and MPI performance (MPI enabled by default)
– % mpirun -np 256  tau_exec -io  ./a.out

• Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)
– % export TAU_OMPT_SUPPORT_LEVEL=full; 
– % mpirun –np 256  tau_exec –T ompt,mpi -ompt ./a.out

• Track memory operations
– % export TAU_TRACK_MEMORY_LEAKS=1
– % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

• Use event based sampling (compile with –g)
– % mpirun –np 256 tau_exec –ebs ./a.out
– Also  export TAU_METRICS=TIME,PAPI_L1_DCM…  -ebs_resolution=<file | function | line>

• Non-MPI execution: use –T serial 
– % tau_exec –T serial,level_zero –l0 –ebs ./a.out
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TAU Runtime Environment Variables
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Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of 
memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically. 

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile 
and context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of 
inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with 
tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g., 
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)
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TAU Runtime Environment Variables
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Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or 
TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively. 

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists 
specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, 
“lowoverhead” option is available. 

TAU_OMPT_RESOLVE_ADDRESS_EA
GERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting 
to 0 allows the user to do offline address translation. 
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TAU Runtime Environment Variables
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Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., 
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with 
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging. 

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations. 

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is 
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime. 

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max
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For more info…
• https://tau.uoregon.edu
• https://github.com/UO-OACISS/tau2
• https://github.com/UO-OACISS/tau2/wiki
• https://github.com/UO-OACISS/tau2/wiki/Frequently-

Asked-Questions-%28FAQ%29
• Email tau-bugs@cs.uoregon.edu
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