

ChimbukoChimbuko
a workflow-level performance analysis

tool
Christopher Kelly

Computational Science Initiative, BNL
HPC Seminar 10/05/2022

The Workflow Challenge
● Many modern scientific applications form

workflows comprising multiple interacting
components.

● Components often compete for the same
hardware resources.

● Potential for significant performance issues
when run at-scale:
▻ Resource contention with other workflow components or

other users.
▻ Temporary bottlenecking due to complex interactions

with other components.
▻ Stochastic effects in coupled system, e.g. interference

from OS, power supply fluctuations, cosmic rays.
▻ Intermittent hardware faults.

● Both users and system admins need to be able
to identify and solve these issues.

Traditional diagnosis techniques
● Traditional tools fail:

▻ Benchmarking and profiling individual
components in isolation may not detect the
problem.

▻ Manual timing of critical code paths may miss
the problem or if they do capture it, are unlikely to
tell you why it happened.

▻ Root cause analysis by storing application traces
will quickly generate 100s of TB of data, and there
are no practical ways to analyze it.

● What we need is a way to combine the
detail of trace capture with the ease and
small data volume of simple profiles.

● Enter ChimbukoChimbuko............

Chimbuko

● Chimbuko is a tool developed under the Codesign Center
for Online Data Analysis and Reduction (CODAR) project.

● Sponsored by the Exascale Computing Project (ECP).
● It succeeds in the aforementioned goals by performing

real-time in situ analysis of trace data.
● The tool dynamically builds a model of the application

profile of each component of the workflow.
● The model is used to isolate anomalous behavior,

utilizing streaming anomaly detection algorithms.
● Only detailed information on the anomalies are captured

and stored.
● By focusing only on anomalies we achieve very high

reduction in data volume while retaining key information
required for causal analysis.

[https://github.com/CODARcode/Chimbuko]

(“Provenance / origin” in Swahili)

rank / workflow
element

Chimbuko
OAD

trace
data

anomaly
provenance

data

node

Chimbuko design overview
▻ TAU Performance System:

● Generates real-time traces and sends to
OAD.

▻ Online AD:
● Trains anomaly detection algorithm on

incoming trace data.
● Applies algorithm to filter out anomalies
● Gathers detailed provenance

information on each anomaly.
▻ Provenance database:

● Acts as a centralized database
provenance information.

▻ Parameter server:
● Aggregates / synchronizes parameters

of AD model between OAD instances.
● Exploit coexistence of many identical

instances of workflow components.
● Allows very rapid training that improves

with job scale.

● Aggregates global process information /
statistics and forwards to visualization.

▻ Visualization:
● Displays real-time information on captured

anomalies.
● GUI allows manual interaction with the

provenance database as the analysis is being
performed.

TAU tracing
● Application performance traces are provided by TAU.
● GPU kernel traces supported for all major platforms via vendor

APIs
● CPU traces require instrumentation of source code for compiled

languages:
▻ TAU PDT tool for Fortran, C, old C++
▻ TAU LLVM plugin for modern C++ (backup Python tool)
▻ TAU LLVM backend for auto-instrumenting source allows C++

instrumentation with other compilers (experimental)
▻ Compiler instrumentation for most languages and compilers is available

but often instruments everything ; larger overheads
● Python support available but also instruments everything
● (Use selective instrumentation to reduce overheads)
● Additional data:

▻ PAPI counters (TAU compilation option)
▻ Node state (memory/cpu utilization,etc) from /proc/pid

(monitoring plugin).
● TAU trace data output in batches (typically 1/s) using ADIOS2

library; either via memory (SST) or disk (BPFile/BP4/BP5).

https://github.com/UO-OACISS/tau2
https://github.com/ornladios/ADIOS2

Online Anomaly Detection
● 1 instance of OAD per application rank / workflow

component instance.
● Roles:

▻ Parse trace data into call stack, assigning counters and MPI events
to function executions.

▻ Train local AD model and synchronize with parameter server to
obtain global model.

▻ Apply global model to function execution times to identify
anomalies.

▻ Gather provenance data and send to provDB.
▻ Compute batch statistics and send to parameter server.

● Requirements:
▻ Support O(100k+) trace events per second.
▻ Complete all activities on batch within batch receive period.
▻ Low overheads to avoid interfering with application.

● Features:
▻ Highly configurable with numerous options for

customizing the analysis.
▻ Flexible launch: can be launched with or without MPI.

Anomaly Detection Algorithms
● Due to extreme data volume we cannot utilize many common anomaly

detection algorithms which act on the entire dataset.
● Instead we require streaming (batched) algorithms.
● Algorithms must be unsupervised with minimal hyperparameters.
● Currently provide 3 algorithms based on the function execution time.

● SSTD (Sample STandard Deviation):
▻ Compute moments (mean, variance) for each function execution.
▻ Synchronization combines across ranks to obtain global moments.
▻ Anomalies are assigned based on number of std. deviations from mean.

● HBOS (Histogram Based Outlier Selection): (Goldstein, Dengel 2012)
▻ Generate a local histogram for each function.
▻ Synchronization merges histogram across ranks.
▻ Scores are assigned based on bin probability of each event
▻ Dynamic threshold seeks to isolate only extreme outliers.

● COPOD (Copula Based Outlier Detection): (Li 2009)
▻ Use histograms in same way as HBOS but utilizes copula (generalization of CDF) to

assign event scores.

HBOS best choice
for multimodal
distributions

Parameter server
● Roles:

▻ Maintains and synchronizes the AD model with the clients.
▻ Aggregates profile information, and statistics on anomalies,

counters, etc.
● These are forwarded to the provDB at the end of the run.
● Also optionally forwarded in realtime to the visualization.

● Requirements:
▻ Must accept connections from remote clients across many

possible network types.
▻ Must be scalable to support 1000s of clients.
▻ Synchronization is blocking; require minimal latency (<<1s).

● Design:
▻ Custom RPC server implementation using ZeroMQ with

Cereal serialization. Supports many client workers.
▻ Workers update independent instances of AD model

maximizing parallelization.
▻ These instances are combined by a separate external thread

once per second to ensure the global model is current.
1s frequency

per-thread independent models

global
model

worker threads

dispatcherto client

https://zeromq.org/
https://uscilab.github.io/cereal/

Provenance database
● Role:

▻ Store and allow querying of anomaly provenance data from clients.
▻ Store and allow querying of global information (profiles, final AD model,

statistics) from parameter server.
▻ All records are stored as JSON documents.

● Requirements:
▻ Accept connections from remote clients across many possible network types.
▻ Scalable to support 1000s of clients.
▻ Convenient API for search and filtering by user and visualization.
▻ Support asynchronous sends from clients for latency independence.

● Design:
▻ Co-designed with the ECP Mochi team.
▻ Mochi stack implements a generalized RPC server/client built on top of

Mercury (RPC) and Argobots (threading).
▻ Mochi and Chimbuko teams codesigned a flexible JSON remote database

solution, Sonata
▻ Achieve arbitrary scalability through database sharding for thread scalability

and multiple servers if necessary.
▻ Offline query tools programmed through convenient Python and C++ APIs.

https://mercury-hpc.github.io/
https://github.com/pmodels/argobots
https://github.com/mochi-hpc/mochi-sonata

Provenance information
● The goal is to allow a user to identify

▻ How important the anomaly was:
● Anomaly metrics associated with likelihood and importance
● The algorithm parameters at the time of identification

▻ Where the anomaly occurred:
● Rank, device/thread, date/time
● Call-stack of function execution
● Window snapshot of executions before/after
● For GPU events, which CPU-side execution launched the kernel

▻ What happened during the anomalous execution:
● Execution inclusive/exclusive runtime.
● MPI events occurring during execution.
● Counters from PAPI or other sources if supported by TAU.
● Node state including CPU usage, memory usage, cache misses

(/proc/pid)
● A selection of non-anomalous events are also collected for

comparison.
● Hopefully together this enables the user to identify why

(cf. https://chimbuko-performance-analysis.readthedocs.io/en/ckelly_develop/io_schema/schema.html)

Chimbuko visualization

● Roles:
▻ Obtain and display real-time statistics information to monitor the application status.
▻ Allow user to focus in increasing detail on specific ranks / anomalies, querying the provDB where

appropriate.
● Design:

▻ Browser-based interactive frontend built using JavaScript/React with Python backend (+Redis/Celery).
▻ Dynamic access to provenance database via Sonata API.
▻ Connect to backend server running on job head node via ssh tunnel.

https://github.com/CODARcode/ChimbukoVisualizationII

Chimbuko current features
● Analyze arbitrary workflows at-scale with robust components tested to

scales of 100s of ranks on HPC installations (e.g. Summit).
● Supports workflow components written in most major languages (C/C++,

Python, Fortran) and vendor-specific GPU paradigms (Cuda, HIP, DPC++)
and common APIs (MPI, OpenMP).

● Launch of service components controlled by unified interface with a single
configuration script.

● Online AD component can be launched via MPI or by hand in a wrapper
script. Can also be integrated into workflow tools (e.g. Radical Cybertools).

● Supports multiple AD algorithms and offers flexible control for filtering
out uninteresting data (e.g. filter-out functions, choose minimum anomaly
time) and for tuning hyperparameters.

● Detailed anomaly provenance stored in a queryable database accessible
with command line tools and full Python API for user analysis scripts.

● Online monitoring tool allows real-time insights into workflow
performance.

● Offline analysis tools (currently rudimentary) offer at-a-glance analysis of
profile and anomalies for single runs and between multiple runs.

Chimbuko planned features
● Aim to expand on the capabilities of

Chimbuko into the future:
▻ Incorporate counter information into

anomaly detection rather than just
execution time.

▻ Expand on offline analysis tools with
command line and GUI-based tools for
exploring the database and performing
causal analysis.

▻ Explore closer integration with TAU to
simplify launch procedure.

▻ Explore options to remove the parameter
server as a bottleneck to arbitrary
scalability.

● And more!

Obtaining and running Chimbuko
● Recommended way to install Chimbuko is through the Spack package

manager.
● Spack repo available in source:

git clone https://github.com/CODARcode/PerformanceAnalysis.git

git clone https://github.com/mochi-hpc/mochi-spack-packages.git

spack repo add PerformanceAnalysis/spack/repo/chimbuko mochi-spack-packages

spack install chimbuko

● Provide Spack environment configurations for several HPC installations
(Summit, Crusher, Spock, HPC1) to utilize system libraries, MPI and GPU APIs.

● Docker images for experimentation are available:
docker pull chimbuko/run_examples:latest

● Detailed documentation available including instructions on basic running as
well as running on some major HPC installations:
▻ https://chimbuko-performance-analysis.readthedocs.io/en/ckelly_develop/index.html

● Numerous examples of run and configure scripts can be found in the
PerformanceAnalysis source code:
▻ PerformanceAnalysis/benchmark_suite/

If you are interested in trying out Chimbuko, feel free to contact me!
 <ckelly@bnl.gov>

https://chimbuko-performance-analysis.readthedocs.io/en/ckelly_develop/index.html

https://github.com/CODARcode/Chimbuko (ckelly_develop branch for bleeding edge)

	Title
	Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

