New precision jet measurements in DIS with H1@HERA

Miguel Arratia

Precision QCD predictions for ep Physics at the EIC 1-5 August 2022

Was the HERA jet program not already done?

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press

Open Access

Lepton-Jet Correlations in Deep Inelastic Scattering at the Electron-Ion Collider

Xiaohui Liu, Felix Ringer, Werner Vogelsang, and Feng Yuan Phys. Rev. Lett. **122**, 192003 – Published 15 May 2019

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections

Authors Referees Search

Press

Transverse-Momentum-Dependent Distributions with Jets

Daniel Gutierrez-Reyes, Ignazio Scimemi, Wouter J. Waalewijn, and Lorenzo Zoppi Phys. Rev. Lett. 121, 162001 - Published 16 October 2018

Regular Article - Theoretical Physics | Open Access | Published: 04 October 2019

Transverse momentum dependent distributions in e^+e^- and semi-inclusive deep-inelastic scattering using jets

Daniel Gutierrez-Reyes ☑, Ignazio Scimemi, Wouter J. Waalewijn & Lorenzo Zoppi

Journal of High Energy Physics 2019, Article number: 31 (2019) | Cite this article

2018-19

2020-22

Phys. Rev. D 105, 074025 - Published 25 April 2022

Progress for polarized DIS motivates new unpolarized reference measurements ...

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights

Recent

Accepted

Collections

Authors

Referees

Search

Open Access

Asymmetric jet clustering in deep-inelastic scattering

M. Arratia, Y. Makris, D. Neill, F. Ringer, and N. Sato Phys. Rev. D **104**, 034005 – Published 9 August 2021

Centauro jet algorithm

$$d_{ij} = (\bar{\eta}_i - \bar{\eta}_j)^2 + 2\bar{\eta}_i\bar{\eta}_j(1 - \cos(\phi_i - \phi_j))$$

$$ar{\eta}_i \equiv -rac{2Q}{ar{n}\cdot q} rac{p_i^{\perp}}{n\cdot p_i}$$

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights

Recent

Accepted

Collections

Authors Referees

Open Acces

Jet-based measurements of Sivers and Collins asymmetries at the future electron-ion collider

Miguel Arratia, Zhong-Bo Kang, Alexei Prokudin, and Felix Ringer Phys. Rev. D **102**, 074015 – Published 22 October 2020

"Hadron in jet measurements in DIS"

Regular Article - Theoretical Physics | Open Access | Published: 02 November 2021

Spin asymmetries in electron-jet production at the future electron ion collider

Zhong-Bo Kang, Kyle Lee ⊠, Ding Yu Shao & Fanyi Zhao

Journal of High Energy Physics 2021, Article number: 5 (2021) | Cite this article

Prediction for HERA

PHYSICAL REVIEW LETTERS

Highlights Accepted Recent Collections

Authors

Referees Search Press

About

Anisotropy in Dijet Production in Exclusive and Inclusive Processes

Yoshitaka Hatta, Bo-Wen Xiao, Feng Yuan, and Jian Zhou Phys. Rev. Lett. 126, 142001 - Published 6 April 2021

PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Accepted Collections Recent Authors Referees

Press

Azimuthal angular asymmetry of soft gluon radiation in jet production

Yoshitaka Hatta, Bo-Wen Xiao, Feng Yuan, and Jian Zhou Phys. Rev. D 104, 054037 - Published 27 September 2021

FIG. 4. Azimuthal asymmetries in lepton-jet production in ep collisions at $\sqrt{s} = 140 \text{ GeV}, P_{\perp} = 20 \text{ GeV}, y_{l} = 1.5, Q = 25 \text{ GeV},$ $g_{\Lambda} = 0.1$ GeV with different jet cone sizes R = 0.4 (top panel) 9 and R = 1.0 (bottom panel).

F. Zhao et al. DIS 2022: Jet azimuthal anisotropy in ep collisions

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About

Open Access

Jet Charge: A Flavor Prism for Spin Asymmetries at the Electron-Ion Collider

Zhong-Bo Kang, Xiaohui Liu, Sonny Mantry, and Ding Yu Shao Phys. Rev. Lett. **125**, 242003 – Published 8 December 2020

Fundamental Research

Available online 3 March 2022

In Press, Corrected Proof ?

Article

The time-reversal odd side of a jet

Xiaohui Liu a, b ⊠, Hongxi Xing c, d A ⊠

Unveiling Nucleon 3D Chiral-Odd Structure with Jet Axes

Wai Kin Lai (South China Normal U. and UCLA), Xiaohui Liu (Beijing Normal U. and Peking U., CHEP), Manman Wang (Beijing Normal U.), Hongxi Xing (South China Normal U.)
May 9, 2022

Was the HERA jet program not already <u>done?</u> NOT QUITE YET...

The H1 experiment at HERA

- Tracking system
 (silicon tracker, jet chambers, proportional chambers)
- LAr calorimeter (em/had)
- Scintillating fiber calorimeter

Both combined using an energy flow algorithm

1% Jet energy scale

0.5-1% lepton energy scale

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

Jet transverse momentum

Well described by NNLO calculation, and some MCs like Herwig and Djangoh

Jet pseudorapidity

Not well described at large pseudorapidity by NNLO, missing higher-order terms.

Well described by Rapgap

Lepton-jet momentum imbalance $q_T = |\vec{p}_T^e + \vec{p}_T^{\mathrm{jet}}|$

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks

Textbook example of "matching" between collinear and TMD frameworks

First time seen in DIS!

(not seen in fixed-target DIS)

Lepton-jet azimuthal correlations

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks 24 Omnifold allowed us to do a simultaneous, unbinned "unfolding"

First-ever measurement that uses machine-learning to correct for detector effects.

Jet pseudorapidity in slice of Q2.

Jet transverse momentum in slice of Q2.

Lepton-jet azimuthal correlation in slice of Q2.

Jet substructure observables with machine learning

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-034.long.html

Charged hadron Multiplicity

Jet charge

Dispersion

All of them unfolded simultaneously!!!

Jet Charge Differentially in Q2

All of them unfolded simultaneously!!! & differentially in Q2

All unfolded simultaneously!

Pythia + Dire

0.2 < y < 0.7

Pythia + Dire

Event shapes with grooming using Centauro metric

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-033.long.html

Charge-asymmetryjet substructure

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-032.long.html

The road towards EIC during this decade

Every jet-related observable in ep collisions can and will be measured with H1 data

The ultimate "reference" for future polarized ep and eA data at EIC

PHYSICAL REVIEW LETTERS Highlights Collections Authors Referees Search About Staff Open Access Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding V. Andreev et al. (H1 Collaboration) Phys. Rev. Lett. 128, 132002 - Published 31 March 2022 Supplemental Material HTML **Export Citation** Article References No Citing Articles H1prelim-22-034 Jet Substructure at high Q**2 using machine learning Figures: (1) (2a) (2b) (2c) (2d) (2e) (2f) (3a) (3b) (3c) (3d) (3e) (3f) (3g) (3h) (3i) (3j) (3k) (3l) (3m) (3n) (3o) (3p) (3q) (3r) (5k) (5l) (5m) (5n) (5p) (5p) (5q) (5r) (5s) (5t) (5u) (5v) (5w) (5x) (use mouse for preview) H1prelim-22-033 Groomed event shaps in high O**2 DIS Figures: (5a) (5b) (5c) (5d) (5e) (5f) (5g) (5h) (5j) (5j) (5k) (5l) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c) (7d) (7e) (7f) (7g) H1prelim-22-032 Charge asymmetry Jet substructure in DIS Figures: (1) (2) (3a) (3b) (3c) (4a) (4b) (5a) (5b) (6) (7) (9) (10) (11) (12) (13) (14) (use mouse for preview)

Stay tuned. Just the beginning of a new & rich jet program

https://www-h1.desy.de/publications/H1preliminary.short_list.html

H1prelim-21-032 Measurement of 1-jettiness in the Breit Frame at high Q^2

H1@HERA

EIC

Some speculative stuff

H1 Collaboration Phys. Rev. Lett. 128, 132002

was the first baby step towards unbinned cross-sections...

First-ever demonstration of unbinned unfolding, unbinned acceptance corr. unbinned efficiency correction

But we reported **Binned cross-sections...**

Journal of Instrumentation

Check out our white paper on the subject.

Perhaps in the future we will just exchange replicas ...

PAPER

Publishing unbinned differential cross section results

Miguel Arratia^{1,2}, Anja Butter³, Mario Campanelli⁴, Vincent Croft⁵, Dag Gillberg⁶, Aishik Ghosh^{7,8}, Kristin Lohwasser⁹, Bogdan Malaescu¹⁰, Vinicius Mikuni¹¹, Benjamin Nachman^{8,12}

+ Show full author list

Published 19 January 2022 • © 2022 IOP Publishing Ltd and Sissa Medialab

Journal of Instrumentation, Volume 17, January 2022

Citation Miguel Arratia et al 2022 JINST 17 P01024

8 Conclusions and Outlook

This report has presented a proposal for publishing unbinned differential cross section measurements and predictions. The methodology for unbinned measurements has been enhanced in part because of recent advances in machine learning. Unbinned measurements can always be rebinned and analyzed with traditional methods. In order to make best use of future measurements that use these tools, it is important to have some community standards and guidelines. We hope that this paper will serve the purpose of having a concrete proposal to discuss with all of the relevant experimental and theoretical communities. This is foreseen to be the start of an evolving community dialogue, in order to accommodate future developments in this field that is currently rapidly evolving.