# NNLO jets in in polarized DIS

Ignacio Borsa, Daniel de Florian, Iván Pedron\*



Universidad Nacional de San Martín





Precision QCD predictions for ep Physics at the EIC, August 1-5, 2022

Factorization theorem

$$\sigma = \sum_{a} \int f_a(z, \mu_F^2) \hat{\sigma}_a \left( \alpha_s(\mu_R), \mu_F, \mu_R \right) dz + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)_{\text{Power corrections}}$$
PDFs Partonic cross section (perturbative)
$$\sigma_a = \sigma_a^{(0)} + \frac{\alpha_s}{2\pi} \sigma_a^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma_a^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma_a^{(3)} + \dots$$
LO NLO NNLO N3LO
• Accurate predictions require refinement of both perturbative

and non-perturbative pieces

• Perturbative convergence depends on scale, observable, phase space region, etc.



Inclusive observables!!



- Important corrections in differential observables as new regions of phase space become available
- At higher orders uncertainties can still be larger than experimental errors (HERA)

- Reduced scale dependence
- Residual dependence on μ<sub>R</sub> and μ<sub>F</sub> provides an estimate of the missing higher order corrections
- Reliable predictions in regions where there is good convergence

Currie, Gehrmann, Glover, Huss, Niehues, Vogt (2018)



- New channels may become available at higher orders (e.g, gluons in DIS)
- Parton luminosity can provide large correction (interplay with non-perturbative PDFs)
- QCD jet acquire structure at higher orders
- Better matching with experiments as more partons are considered



Currie, Gehrmann, Glover, Huss, Niehues, Vogt (2018)

### HIGH ORDER JET CALCULATIONS IN POLARIZED DIS

Theory status for **polarized** jet production in DIS:

- Not much interest in fixed-target experiments
- NLO single jet production (polarized N-jetiness)

Boughezal, Petriello, Xing (2018)

• NLO dijet production (polarized dipole subtraction)

Photon - Borsa, De Florian, IP (2020) NC and CC - Borsa, De Florian, IP (2021)

• NNLO single jet production (polarized dipoles + P2B)

Photon - Borsa, De Florian, IP (2020) NC and CC - Borsa, De Florian, IP (in preparation)

### SUBTRACTION METHODS

Beyond LO, IR singularities that arise in virtual contributions are cancelled against those from real emission diagrams (KNL Theorem)



#### This only gets worse beyond NLO due to overlapping singularities and mixed real-virtual contributions!

The main idea of **subtraction methods** is to extract the singularities without performing the full integration over the phase space of the real emission processes

### **DIPOLE SUBTRACTION (NLO)**

One of the **general** NLO subtraction methods. The goal is to use a counterterm A that both

- Reproduces IR divergent behaviour of the real emission
- Is simple enough to be analytically integrated to cancel the IR divergences of the virtual contribution

$$\sigma^{NLO} = \int_{m+1} \left[ \left( d\sigma^R \right)_{\epsilon=0} - \left( d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[ d\sigma^V + \int_1 d\sigma^A \right]_{\epsilon=0}$$

The counterms are **process independent**, and are based on the factorization formulae:

$$d\sigma^A = \sum_{\text{dipoles}} d\sigma^B \otimes dV_{\text{dipole}}$$

Catani, Seymour (1996)



### **POLARIZED** DIPOLE SUBTRACTION (NLO)

One of the **general** NLO subtraction methods. The goal is to use a counterterm A that both

- Reproduces IR divergent behaviour of the real emission
- Is simple enough to be analytically integrated to cancel the IR divergences of the virtual contribution

$$\sigma^{NLO} = \int_{m+1} \left[ \left( d\sigma^R \right)_{\epsilon=0} - \left( d\sigma^A \right)_{\epsilon=0} \right] + \int_m \left[ d\sigma^V + \int_{\Gamma} \frac{d\sigma^A}{d\sigma^A} \right]_{\epsilon=0}$$

The counterms are **process independent**, and are based on the factorization formulae: Differences only

$$d\Delta\sigma^A = \sum_{\text{dipoles}} d\Delta\sigma^B \otimes dV_{\text{dipole}}$$

Catani, Seymour (1996) - Borsa, De Florian, IP (2020)



### HIGH ORDER JET CALCULATIONS IN POLARIZED DIS

|              | Inclusive cross section                                                                                                                                                                                                                                                                                                                                                                                | Single-Jet<br>(Lab Frame)                                                                                                                                                                                                              | Di-jet<br>(Breit Frame)                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $lpha_S^0$   | $q\gamma^* 	o q$                                                                                                                                                                                                                                                                                                                                                                                       | $q\gamma^* \to q$                                                                                                                                                                                                                      |                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $lpha_S^1$   | $q\gamma^* \rightarrow q$ 1 loop<br>$q\gamma^* \rightarrow qg$<br>$g\gamma^* \rightarrow q\bar{q}$ NI                                                                                                                                                                                                                                                                                                  | $q\gamma^* \to q  1 \text{ loop} \\ q\gamma^* \to qg \\ g\gamma^* \to q\bar{q}$                                                                                                                                                        | $\begin{array}{c} q \gamma^*  ightarrow q g \\ g \gamma^*  ightarrow q ar q \end{array}$                                                                                                                              | Kanna Journee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\alpha_S^2$ | $\begin{array}{ccc} q\gamma^* \to q & 2 \operatorname{loops} \\ q\gamma^* \to qg & 1 \operatorname{loop} \\ g\gamma^* \to q\bar{q} & 1 \operatorname{loop} \\ q\gamma^* \to qgg \\ q\gamma^* \to qgg \\ q\gamma^* \to qq\bar{q} \\ g\gamma^* \to q\bar{q}g \end{array} \qquad $ | $q\gamma^* \rightarrow q  2 \text{ loops}$ $q\gamma^* \rightarrow qg  1 \text{ loop}$ $g\gamma^* \rightarrow q\bar{q}  1 \text{ loop}$ $q\gamma^* \rightarrow qgg$ $q\gamma^* \rightarrow qq\bar{q}$ $g\gamma^* \rightarrow qq\bar{q}$ | $\begin{array}{ccc} q\gamma^* \to qg & 1 \ \text{loop} \\ g\gamma^* \to q\bar{q} & 1 \ \text{loop} \\ q\gamma^* \to qgg \\ q\gamma^* \to qq\bar{q} \\ g\gamma^* \to q\bar{q}g \\ g\gamma^* \to q\bar{q}g \end{array}$ | Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conservation<br>Conse |

(From Borsa)

### HIGH ORDER JET CALCULATIONS IN POLARIZED DIS

|              | Inclusive cross section                                                                                                                                                                                                                                                             | Single-Jet<br>(Lab Frame)                                                                                                                                                                                                                                                             | Di-jet<br>(Breit Frame)                                                                                                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $lpha_S^0$   | $q\gamma^* 	o q$                                                                                                                                                                                                                                                                    | $q\gamma^* \to q$                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\alpha_S^1$ | $\begin{array}{ccc} q\gamma^* \to q & 1 \operatorname{loop} \\ q\gamma^* \to qg \\ g\gamma^* \to q\bar{q} \end{array}$                                                                                                                                                              | $q\gamma^* \to q  1 \text{ loop}$ $q\gamma^* \to qg$ $g\gamma^* \to q\bar{q}$                                                                                                                                                                                                         | $\begin{array}{c} q \gamma^* 	o q g \ g \gamma^* 	o q ar q \end{array} \ g \gamma^* 	o q ar q $ LO                                                                                                                    | Joseph Jo |
| $\alpha_S^2$ | $\begin{array}{ccc} q\gamma^* \to q & 2 \operatorname{loops} \\ \overline{q\gamma^* \to qg} & 1 \operatorname{loop} \\ g\gamma^* \to q\bar{q} & 1 \operatorname{loop} \\ q\gamma^* \to qgg \\ q\gamma^* \to qgg \\ q\gamma^* \to qq\bar{q} \\ g\gamma^* \to q\bar{q}g \end{array} $ | $\begin{array}{ccc} q\gamma^* \to q & 2 \operatorname{loops} \\ q\gamma^* \to qg & 1 \operatorname{loop} \\ g\gamma^* \to q\bar{q} & 1 \operatorname{loop} \\ q\gamma^* \to qgg \\ q\gamma^* \to qgg \\ q\gamma^* \to qq\bar{q} \\ \textbf{LO} & g\gamma^* \to q\bar{q}g \end{array}$ | $\begin{array}{ccc} q\gamma^* \to qg & 1 \ \text{loop} \\ g\gamma^* \to q\bar{q} & 1 \ \text{loop} \\ q\gamma^* \to qgg \\ q\gamma^* \to qq\bar{q} \\ g\gamma^* \to qq\bar{q} \\ g\gamma^* \to q\bar{q}g \end{array}$ | Leese and Leese Le |

(From Borsa)

### NNLO - PROJECTION TO BORN (P2B)

P2B provides the **fully differential** cross section of an observable given that we know

- The inclusive cross section at that order
- The exclusive cross section of that observable + 1 jet at one order below



#### Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)

### NNLO - PROJECTION TO BORN (P2B)



### NNLO - PROJECTION TO BORN (P2B)

#### IN OUR CASE:

We compute the polarized **NNLO cross section for 1-jet**, using our <u>NLO calculation for 2-jets</u> (<u>dipoles</u>) and the <u>NNLO inclusive</u> <u>cross sections</u> that are already available



$$d\sigma_{1jet}^{\text{NNLO}} = d\sigma_{2jet}^{\text{NLO}} - d\sigma_{2jet,\text{P2B}}^{\text{NLO}} + d\sigma_{1jet}^{\text{NNLO, incl}}$$
Dipoles van Neerven, Zijlstra (1994)

### NLO DIJETS IN POLARIZED DIS (BREIT FRAME)

 $xp = (\frac{Q}{2}, 0, 0, \frac{Q}{2})$ EIC KINEMATICS: Ep = 275 GeV q = (0, 0, 0, -Q)Fe = 18 GeV $(\frac{Q}{2}, 0, 0, -\frac{Q}{2})$ KINEMATICAL CUTS:  $p_{T,1}^B > 5 \text{ GeV},$ 0.2 < y < 0.6,  $p_{T,2}^B > 4 \text{ GeV},$  $25\,{\rm GeV}^2 < Q^2 < 2500\,{\rm GeV}^2$  $|\eta^L| < 3.5,$ DSSV14 MC (polarized) - PDF4LHC15 (unpolarized) NLO PDFs: SCALES:  $\mu_F^2 = \mu_R^2 = \frac{1}{2}(Q^2 + \langle p_T^B \rangle_2^2) \equiv \mu_0^2$ (dynamical) JET ALGORITHM: anti-Kt, R = 0.8

Asymmetrical Pt cuts to improve perturbative stability!

$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### UNPOLARIZED CASE

- Significant NLO corrections (K factors above 1.5)
- Strong scale dependence (7point variation)
- Perturbative instabilities due to regions of phase space forbidden at LO (M12 > 10 GeV)



$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
  
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **POLARIZED CASE**

- Significant NLO corrections
- Strong scale dependence (can be bigger than PDFs errors!)
- Perturbative instabilities due to forbidden regions at LO
- Different shape/size of corrections respect to the unpol case (see asymmetries)
- Shift in dijet momentum fraction



$$\begin{split} M_{12} &= \sqrt{(p_1 + p_2)^2} & \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B \\ \langle p_T \rangle_2 &= \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) & \xi_2 = x (1 + \frac{M_{12}^2}{Q^2}) \end{split}$$

#### **POLARIZED CASE**

- Cancellation between quark and gluon channels at low Q2
- Also, there is a shift in the quark contribution at low Q2
- Good perturbative convergence at high Q2



$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
  
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **ASYMMETRIES**

- Reduction in double spin asymmetries due to quark-gluon channel cancellation, particularly in pseudorapidity distribution
- Shift in dijet momentum fraction



• EW boson introduce vector and axial couplings

$$-ie \gamma^{\mu} \left( C_V + C_A \gamma^5 \right)$$

• In the case of neutral currents, we also have Z/photon interference

The presence of  $\gamma^5$  in the HVBM scheme of dimensional regularization adds further complications:

VERTEX SYMMETRIZATION IN D-DIMENSIONS

$$-ie\left(C_V + C_A \gamma^5\right) \rightarrow -ie\left(C_V \gamma^{\mu} + C_A \tilde{\gamma^{\mu}} \gamma^5\right)$$

FINITE SUBTRACTION DUE TO UV DIVERGENCES

$$(\Delta)C_T = \alpha_s \ 4C_F \ d(\Delta)\hat{\sigma}_{\text{axial}}^{\text{LO}}$$

The possible results of the differents fermion traces depend only on whether there is an odd or even number of  $~\gamma^5$ 

- Trivial in real emission diagrams (4-dimensional)
- Only valid in virtual diagrams after symmetrization and finite subtraction (d-dimensional)

Since spin projectors also add  $\gamma^5$ , we can reuse polarized matrix elements for unpolarized parity violating pieces (PV), and vice versa!





 $\hat{\sigma}_q = \hat{\sigma}_q^{PV} + \hat{\sigma}_q^{NPV}$ 

VALID FOR  $q+W/Z \rightarrow q, q+W/Z \rightarrow q+g \text{ and } q+W/Z \rightarrow q+g+g$  (up to NNLO)

#### AND THE GLUON CHANNELS?



No analogous relation for polarized NPV gluon channel. **However, PV terms with initial gluon cancel due to charge conjugation arguments** (antisymmetric in quark-antiquark crossing)

### SPECIAL CASE - TRIANGLE DIAGRAMS



Triangles only in Z exchange, but they cancel out if the two members of each weak isospin doublet are considered

Also, in the particular 4 quark channel we can use properties similar to those of the previous slides, depending on each particular case  $q + W/Z \rightarrow q + q' + \bar{q'}$ 

### NLO DIJETS IN DIS (NEUTRAL CURRENTS)

$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
  
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **UNPOLARIZED CASE**

- Contribution of the Z boson in very small, and comes mainly due to interference with photon
- 10% only at Q2 ~ 2000 GeV
- Q2 does not reach high enough values at EIC for Z



### NLO DIJETS IN DIS (NEUTRAL CURRENTS)

$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
  
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **POLARIZED CASE**

- Stronger contribution in polarized cross section due to channel cancellation
- Parity violating pieces only in quark channel
- This overall improves the asymmetries (~10%), but mainly at high Q2 and



### NLO DIJETS IN DIS (CHARGED CURRENTS)

$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
  
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **UNPOLARIZED CASE**

- Massive propagator suppression at low Q2
- Q2 and dijet momentum fraction are related
- Same perturbative instabilities as in photon exchange



### NLO DIJETS IN DIS (CHARGED CURRENTS)

$$M_{12} = \sqrt{(p_1 + p_2)^2} \qquad \eta^* = \frac{1}{2} |\eta_1^B - \eta_2^B|$$
$$\langle p_T \rangle_2 = \frac{1}{2} (p_{T,1}^B + p_{T,2}^B) \qquad \xi_2 = x(1 + \frac{M_{12}^2}{Q^2})$$

#### **POLARIZED CASE**

- Polarized x-sec not as suppressed compared to NC
- Parity-violating piece of x-sec is more relevant (due to couplings)



### NLO DIJETS IN DIS (CHARGED CURRENTS)



### NNLO SINGLE JET IN POLARIZED DIS (LAB FRAME)

EIC KINEMATICS: Ep

$$Ep = 275 \text{ GeV}$$

$$Ee = 18 \text{ GeV}$$

 $075 0 \cdot 1/$ 

Lab Frame needed for P2B!

#### KINEMATICAL CUTS:

 $\begin{array}{ll} 0.04 < y < 0.95, & 5 \, {\rm GeV} < p_T^L < 36 \, {\rm GeV}, \\ 25 \, {\rm GeV}^2 < Q^2 < 1000 \, {\rm GeV}^2 & |\eta^L| < 3, \end{array}$ 

NLO PDFs:

DSSV14 MC (polarized) - PDF4LHC15 (unpolarized)

SCALES:

JET ALGORITHM:

 $\mu_F^2 \;=\; \mu_R^2 \;=\; Q^2 \;\equiv\; \mu_0$ 

anti-Kt, R = 0.8

### NLO SINGLE JET IN DIS (PHOTON)

#### **POLARIZED CASE**

- Improved convergence at NNLO (K-factors)
- Shift towards larger rapidities and lower Pt, as the emission of extra partons populates those regions
- Strong scale dependence at low Q2 and x due to kinematical cuts in Pt and y
- This is further enhanced in the polarized case due to channel cancellations



### NLO SINGLE JET IN DIS (PHOTON)

#### **Asymmetries**

- Cancellations in the polarized cross section lead to small asymmetries (~ 2%)
- Significant corrections in the asymmetries, even at NNLO

$$A_{LL} = \frac{\Delta \sigma}{\sigma}$$



### PARITY VIOLATING STRUCTURE FUNCTION (P2B)

The  $F_3$  unpolarized structure functions is known to NNLO (van Neerven, Zijlstra (1992)), but the polarized equivalent  $g_4$ and  $g_5$  are not available

We get the NNLO  $g_4$  and  $g_5$  from  $F_2$ and  $F_1$  due to the previous arguments. Initial gluon contributions are not a problem since they cancel out, and we can safely ignore Z triangle terms

$$\begin{split} W^{i}_{\mu\nu} &= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}}\right) \left[F^{i}_{1}(x,Q^{2}) - \frac{h}{2} \ g^{i}_{5}(x,Q^{2})\right] \\ &+ \frac{\left(p_{\mu} - \frac{p \cdot q}{q^{2}}q_{\mu}\right) \left(p_{\nu} - \frac{p \cdot q}{q^{2}}q_{\nu}\right)}{p \cdot q} \left[F^{i}_{2}(x,Q^{2}) - \frac{h}{2} \ g^{i}_{4}(x,Q^{2})\right] \\ &- i\epsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}p^{\beta}}{2p \cdot q} \left[F^{i}_{3}(x,Q^{2}) + h \ g^{i}_{1}(x,Q^{2})\right], \end{split}$$

$$\begin{split} L_{\gamma}^{\mu\nu} &= 2 \left( -k \cdot k' g^{\mu\nu} + k^{\mu} k'^{\nu} + k'^{\mu} k^{\nu} - i \lambda \epsilon^{\mu\nu\alpha\beta} k_{\alpha} k'_{\beta} \right), \\ L_{z}^{\mu\nu} &= \left( g_{V}^{e} + e \lambda g_{A}^{e} \right)^{2} L_{\gamma}^{\mu\nu}, \\ L_{\gamma/z}^{\mu\nu} &= \left( g_{V}^{e} + e \lambda g_{A}^{e} \right) L_{\gamma}^{\mu\nu}, \\ L_{W}^{\mu\nu} &= \left( 1 + e \lambda \right)^{2} L_{\gamma}^{\mu\nu}, \end{split}$$

### NNLO SINGLE JET IN DIS (NEUTRAL CURRENTS)

#### **UNPOLARIZED CASE**

 Contribution of the Z boson in very small, and comes mainly due to interference with photon

 Overall good convergence of the perturbative series



### NNLO SINGLE JET IN DIS (NEUTRAL CURRENTS)

#### **POLARIZED CASE**

- Enhanced contribution at high Q2, x and pt
- This enhancement translated into spin asymmetries



### NNLO SINGLE JET IN DIS (CHARGED CURRENTS)

#### **UNPOLARIZED CASE**

- Massive propagator suppression at low Q2
- Pt^2 in proportional to Q2 at LO, leading to large corrections
- Shifted towards higher x and Q2



### NNLO SINGLE JET IN DIS (CHARGED CURRENTS)

#### **POLARIZED CASE**

- Massive propagator suppression at low Q2
- Pt<sup>2</sup> in proportional to Q2 at LO, leading to large corrections
- Shift towards higher values of Q2, x, pt and rapidity when compared to unpolarized case



### SUMMARY

• Higher order corrections are fundamental piece in the high precision description of observables, and they will be instrumental in the description of proton spin.

We presented:

- NNLO calculation of polarized single-jet production, in both Neutral and Charged Current DIS.
- As an ingredient of the P2B method, we also calculated the NLO dijet production in both processes.
- Increased perturbative convergence, but still showing sizable corrections and scale dependance.
- Sizable correction to asymmetries (no cancellation of higher order effects)

# YOU CAN NOW GO GRAB A COFFEE



### NLO DIJETS IN DIS (NEUTRAL CURRENTS)



41

### Asymmetries



### Asymmetries

