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Unobserved radiation in NNLO
k1

k2

observed outgoing state

with invariant mass P2.

incoming particles

Two particle phase space (d = 4− 2ε):

∫

dPS2,P =

∫

dd−1k1

(2π)d−12k01

∫

dd−1k2

(2π)d−12k02
(2π)dδd (P − k1 − k2)
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Unobserved radiation in NNLO
k1

k2

observed outgoing state

with invariant mass P2.

incoming particles

Two particle phase space (d = 4− 2ε):

∫

dPS2,P =
Γ(1− ε)

(4π)2−ε Γ(1− 2ε)

(

P2
)−ε

∫

dΩk1k2
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What integrals are we talking about?

Two particle phase space (d = 4− 2ε):
∫

dPS2,P =
Γ(1− ε)

(4π)2−ε Γ(1− 2ε)

(

P2
)−ε

∫

dΩk1k2

Angular integration measure:

dΩk1k2 ≡ dθ1 sin
1−2ε θ1dθ2 sin

−2ε θ2
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What integrals are we talking about?

Two particle phase space (d = 4− 2ε):
∫

dPS2,P =
Γ(1− ε)

(4π)2−ε Γ(1− 2ε)

(

P2
)−ε

∫

dΩk1k2

Angular integration measure:

dΩk1k2 ≡ dθ1 sin
1−2ε θ1dθ2 sin

−2ε θ2

Typical integral:

∫

dΩk1k2

1

(a + b cos θ1)j (A+ B cos θ1 + C sin θ1 cos θ2)l
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The Van Neerven integral

j , l integers; a, b,A,B ,C real (or complex) parameters:

∫

dΩk1k2

1

(a + b cos θ1)j (A+ B cos θ1 + C sin θ1 cos θ2)l

Divided into classes:
a2 = b2 a2 6= b2

A2 = B2 + C 2 massless single massive
A2 6= B2 + C 2 single massive double massive
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A look at the literature: What is (not) known?

W.Beenakker, H.Kuijf, W.L. van Neerven, J.Smith, QCD corrections to

heavy quark production in pp̄ collisions, Phys.Rev.D 40 (1989)
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Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

What integrals are we talking about?
A look at the literature: What is (not) known?
Is it relevant?

A look at the literature: What is (not) known?

1980 1990 2000 2010 2020

Di
m
en
sio
na
l r
eg
.
(t
’H
oo
ft
&
Ve
ltm
an
/
Gi
am
bi
ag
i &

Bo
llin
i)

M
as
sle
ss
in
te
gr
al
fo
r j
=
l =

1
(E
llis
)

Do
ub
le
m
as
siv
e
in
te
gr
al
in
d
=
4
(S
ch
ell
ek
en
s)

M
as
sle
ss
in
te
gr
al
in
d
di
m
. (
Va
n
Ne
er
ve
n)

Va
n
Ne
er
ve
n’
s
lis
t o
f ε
-e
xp
an
sio
ns

Us
e
of
Va
n
Ne
er
ve
n’
s
lis
t i
n
a
pl
et
ho
ra
of
pQ
CD

ca
lcu
lat
io
ns

Re
ve
rse
d
un
ita
rit
y
(A
na
st
as
io
u
&
M
eln
iko
v)

Si
ng
le
m
as
siv
e
in
t.
in
d
di
m
. a
nd
M
B
re
p.
(S
om
og
yi)

Do
ub
le
m
as
siv
e
in
te
gr
al
in
d
di
m
en
sio
ns
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Are angular integrals relevant?
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No...

Thanks to reversed unitarity PSIs are related to loop
integrals

for loop integrals there are a lot of powerful techniques,
such as integration-by-part relations, reduction to Master
integrals, differential equations etc.

From this analytic results can be obtained order by order
in ε

Rather little interest to improve on old methods for direct
PS integration
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Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

What integrals are we talking about?
A look at the literature: What is (not) known?
Is it relevant?

But maybe sometimes...

direct integration simpler in particular cases

old Van Neerven list still in use

analytic solution for general d possible

ε-expansion is possible explicitly to all orders in ε (in
terms of multiple polylogarithms)

ideas used for angular integals might be useful for more
general settings

Specific and explicit – complementary to loop based
methods.
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Example: Drell-Yan double real corrections
Partial Fractioning

Kinematics in CMS

In the CMS it holds

~p1 + ~p2 − ~q = 0

The propagators have the general form

1

(k1,2 − p)2
=

1

p2 − 2k1,2 · p
with external momentum p; “linear” in k1,2
scale all momenta by their corresponding energy
component:

k1 = Ek (1, k) , k2 = Ek (1,−k) , pi = Ei (1, vi) .
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Propagators

Define scaled linear propagators (~k is a unit 3-vector)

∆k (~vi) =
1

1− ~vi · ~k

We can express phys. propagators

1

(k1,2 − pi)2 −m2
=

1

p2
i −m2 +m2

k − 2EiEk

∆k

(

±~̄vi
)

introducing the scaled vector

~̄vi =
~vi

p2
i
−m2+m2

k

2EiEk
− 1

.
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Example: Drell-Yan double real corrections
Partial Fractioning

Propagators

In NNLO-DY the scaled momenta are

v1 =
p1

E1
= (1, ~v1) , v2 =

p2

E2
= (1, ~v2) ,

vq =
q

Eq

= (1, ~vq) , v̄q = (1, ~̄vq) ,

where

~̄vq =
~vq

1 + Q2

2EkEq

= ~vq
t + u

t + u − 2Q2
.

The squared amplitude depends on

∆k (~v1)
n1 ∆k (−~v1)n2 ∆k (~v2)

n3 ∆k (−~v2)n4 ∆k

(

~̄vq
)n5

∆k

(

−~̄vq
)n6

.
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Partial Fractioning

If vectors are linearly dependent, i.e.
∑

λi~vi = 0, the

number of prop. can be reduced by partial fractioning.

two-point partial fractioning

∆k (~v1, ~v2) =
1

λ1 + λ2
[λ2∆k (~v1) + λ1∆k (~v2)]

three-point partial fractioning

∆k (~v1, ~v2, ~v3) =
λ3 ∆k (~v1, ~v2) + λ2∆k (~v1, ~v3) + λ1 ∆k (~v2, ~v3)

λ1 + λ2 + λ3
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v2

v1

xD

xD−1

−v2

−v1

−v̄q

v̄q
Three vectors are linearly
dependent if they lie on a
straight line.
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Example: Drell-Yan double real corrections
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Resulting integrals

I
(0)
j ,l (u

±

12; ε) =

∫

dΩk1,k2∆
j
k (~v1)∆

l
k (∓~v2)

=

∫

dΩk1,k2∆
j
k (−~v1)∆l

k (±~v2) ,

I
(1)
j ,l (u

±

i q̄, vq̄q̄; ε) =

∫

dΩk1,k2 ∆
j
k

(

~̄vq
)

∆l
k (∓~vi)

=

∫

dΩk1,k2 ∆
j
k

(

−~̄vq
)

∆l
k (±~vi) ,

with u±

12 = 1± (1− v12) , u±

i q̄ = 1± (1− vi q̄), vij = vi · vj .
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Angular integral

I
(n)
j ,l (v12, v11, v22; ε) =

∫

dΩk1k2

1

(v1 · k)j(v2 · k)l

n is the number of non-zero masses

integral depends on scalar product v12 = v1 · v2 and
masses v11 = v1 · v1, v22 = v2 · v2
analytic function in ε, vanishing masses induce (collinear)
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No denominators

I (0)(ε) =

∫

dΩk1k2 =

∫ π

0
dθ1 sin

1−2ε θ1

∫ π

0
dθ2 sin

−2ε θ2

Substitution: cos θi = 1− 2ti

I (0)(ε) = 21−4ε

∫ 1

0
dt1 t

−ε
1 (1− t1)

−ε

∫ 1

0
dt2 t

−
1
2
−ε

2 (1− t2)
−

1
2
−ε ,

Beta function: B(x , y) =
Γ(x)Γ(y)

Γ(x + y)
=

∫ 1

0

dt tx−1(1− t)y−1 .

I (0)(ε) =
2π

1− 2ε
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No denominators

I (0)(ε) =

∫

dΩk1k2 =

∫ π

0
dθ1 sin

1−2ε θ1

∫ π

0
dθ2 sin

−2ε θ2

Substitution: cos θi = 1− 2ti

I (0)(ε) = 21−4ε

∫ 1

0
dt1 t

−ε
1 (1− t1)

−ε

∫ 1

0
dt2 t

−
1
2
−ε

2 (1− t2)
−

1
2
−ε ,

Beta function: B(x , y) =
Γ(x)Γ(y)

Γ(x + y)
=

∫ 1

0

dt tx−1(1− t)y−1 .

I (0)(ε) =
2π

1− 2ε
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One denominator, massless

Rotate s.t. v1 = (1,~0d−3, 0, 1), k = (1, . . . , sin θ1 cos θ2, cos θ1):

I
(0)
j (ε) =

∫

dΩk1k2

1

(v1 · k)j
=

∫ π

0
dθ1

sin1−2ε θ1
(1− cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Pochhammer symbol:

(x)n =
Γ(x + n)

Γ(x)
= (x + n − 1) · · · · · (x + 1) · x

I
(0)
j (ε) =

2π

1− 2ε

(2− j − 2ε)j
2j(1− j − ε)j
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Rotate s.t. v1 = (1,~0d−3, 0, 1), k = (1, . . . , sin θ1 cos θ2, cos θ1):

I
(0)
j (ε) =

∫

dΩk1k2

1

(v1 · k)j
=

∫ π

0
dθ1

sin1−2ε θ1
(1− cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Pochhammer symbol:

(x)n =
Γ(x + n)

Γ(x)
= (x + n − 1) · · · · · (x + 1) · x

I
(0)
j (ε) =

2π

1− 2ε
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2j(1− j − ε)j
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One denominator, massless

Rotate s.t. v1 = (1,~0d−3, 0, 1), k = (1, . . . , sin θ1 cos θ2, cos θ1):

I
(0)
j (ε) =

∫

dΩk1k2

1

(v1 · k)j
=

∫ π

0
dθ1

sin1−2ε θ1
(1− cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Pochhammer symbol:

(x)n =
Γ(x + n)

Γ(x)
= (x + n − 1) · · · · · (x + 1) · x
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(0)
j (ε) =

2π

1− 2ε
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One denominator, massive

Now v1 = (1,~0d−3, 0, β), hence v11 = 1− β2 6= 0:

I
(1)
j (v11, ε) =

∫ π

0
dθ1

sin1−2ε θ1
(1− β cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Gauss hypergeometric fct.:

2F1 (a, b, c , z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a

I
(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
2F1

(

j , 1− ε, 2 − 2ε,− 2β

1− β

)
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Now v1 = (1,~0d−3, 0, β), hence v11 = 1− β2 6= 0:

I
(1)
j (v11, ε) =

∫ π

0
dθ1

sin1−2ε θ1
(1− β cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Gauss hypergeometric fct.:

2F1 (a, b, c , z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a

I
(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
2F1

(

j , 1− ε, 2 − 2ε,− 2β

1− β

)
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Now v1 = (1,~0d−3, 0, β), hence v11 = 1− β2 6= 0:

I
(1)
j (v11, ε) =

∫ π

0
dθ1

sin1−2ε θ1
(1− β cos θ1)j

∫ π

0
dθ2 sin

−2ε θ2

Gauss hypergeometric fct.:

2F1 (a, b, c , z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a
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(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
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(
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1− β

)
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One denominator, massive

I
(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
2F1

(

j , 1− ε, 2 − 2ε,− 2β

1− β

)

Quadratic trafo:

2F1(a, b, 2b, x) =
(

1− x

2

)−a

2F1

(

a

2
,
a + 1

2
, b +

1

2
,

(

x

2− x

)2
)

Alternative form:

I
(1)
j (v11; ε) = I (0)(ε) 2F1

(

j

2
,
j + 1

2
,
3

2
− ε, 1 − v11

)
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One denominator, massive

I
(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
2F1

(

j , 1− ε, 2 − 2ε,− 2β

1− β

)

Quadratic trafo:

2F1(a, b, 2b, x) =
(

1− x

2

)−a

2F1

(

a

2
,
a + 1

2
, b +

1

2
,

(

x

2− x

)2
)

Alternative form:

I
(1)
j (v11; ε) = I (0)(ε) 2F1

(

j

2
,
j + 1

2
,
3

2
− ε, 1 − v11

)
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One denominator, massive

I
(1)
j (v11, ε) =

I (0)(ε)

(1 − β)j
2F1

(

j , 1− ε, 2 − 2ε,− 2β

1− β

)

Quadratic trafo:

2F1(a, b, 2b, x) =
(

1− x

2

)−a

2F1

(

a

2
,
a + 1

2
, b +

1

2
,

(

x

2− x

)2
)

Alternative form:

I
(1)
j (v11; ε) = I (0)(ε) 2F1

(

j

2
,
j + 1

2
,
3
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)
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Interlude: Mellin-Barnes representation

Mellin-Trafo: F (z) =

∫

∞

0

dx

x
xz f (z)

Mellin inverse: f (x) =

∫

i∞+c

−i∞+c

dz

2πi
x−z F (z)

for Gauss hypergeometric function:

2F1(a, b, c , x) =
Γ(c)

Γ(a)Γ(b)Γ(c − a)Γ(c − b)

×
∫ i∞

−i∞

dz

2πi
Γ(a + z)Γ(b + z)Γ(c − a − b − z)Γ(−z)(1− x)z
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Interlude: Mellin-Barnes representation
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∫

∞

0

dx

x
xz f (z)

Mellin inverse: f (x) =

∫

i∞+c

−i∞+c

dz

2πi
x−z F (z)

for Gauss hypergeometric function:

2F1(a, b, c , x) =
Γ(c)

Γ(a)Γ(b)Γ(c − a)Γ(c − b)

×
∫ i∞

−i∞

dz

2πi
Γ(a + z)Γ(b + z)Γ(c − a − b − z)Γ(−z)(1− x)z
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Interlude: Mellin-Barnes representation

Mellin-Trafo: F (z) =

∫

∞

0

dx

x
xz f (z)

Mellin inverse: f (x) =

∫

i∞+c

−i∞+c

dz

2πi
x−z F (z)

for Gauss hypergeometric function:

2F1(a, b, c , x) =
Γ(c)

Γ(a)Γ(b)Γ(c − a)Γ(c − b)

×
∫ i∞

−i∞

dz

2πi
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Mellin-Barnes representation

Robert
Hjalmar Mellin
(1854-1933)

Γ(b + z)

Γ(a + z)

Γ(−z)

Γ(c − a − b − z)

Im(z)

Re(z)

γ Ernest William
Barnes
(1874-1953)
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MB representation of one denominator integral

I
(1)
j (v11; ε) =

I (0)(ε)

Γ(1− ε)

(2− j − 2ε)j
2jΓ(j)

×
∫ i∞

−i∞

dz

2πi
Γ(j + 2z)Γ(1− j − ε− z)Γ(−z)

(v11

4

)z

Note the simple dependence on v11, which is nice for further
integrations.

Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

No denominators
One denominator, massless
One denominator, massive
Two denominators, massless
Two denominators, single massive
Two denominators, double massive
Two denominators, double massive: The sneaky way

Two denominators, massless

I
(0)
j ,l (v12; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
Trick: Feynman

←− parametrization

=
1

B(j , l)

∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫

dΩk1k2

1

((x1v1 + x2v2) · k)j+l
.

Introduce new vector v ≡ x1v1 + x2v2 with mass v2 = 2x1x2v12.

Remaining angular integral is I
(1)
j+l(2x1x2v12; ε) for which we can

use its MB representation.
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Two denominators, massless

I
(0)
j ,l (v12; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
Trick: Feynman

←− parametrization

=
1

B(j , l)

∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫

dΩk1k2

1

((x1v1 + x2v2) · k)j+l
.

Introduce new vector v ≡ x1v1 + x2v2 with mass v2 = 2x1x2v12.

Remaining angular integral is I
(1)
j+l(2x1x2v12; ε) for which we can

use its MB representation.
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Two denominators, massless

I
(0)
j ,l (v12; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
Trick: Feynman

←− parametrization

=
1

B(j , l)

∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫

dΩk1k2

1

((x1v1 + x2v2) · k)j+l
.

Introduce new vector v ≡ x1v1 + x2v2 with mass v2 = 2x1x2v12.

Remaining angular integral is I
(1)
j+l(2x1x2v12; ε) for which we can

use its MB representation.
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Two denominators, massless

I
(0)
j ,l (v12; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
Trick: Feynman

←− parametrization

=
1

B(j , l)

∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫

dΩk1k2

1

((x1v1 + x2v2) · k)j+l
.

Introduce new vector v ≡ x1v1 + x2v2 with mass v2 = 2x1x2v12.

Remaining angular integral is I
(1)
j+l(2x1x2v12; ε) for which we can

use its MB representation.
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Two denominators, massless

MB representation:

I
(0)
j ,l (v12; ε) =

I (0)(ε)

Γ(1 − ε)

(2− j − l − 2ε)j+l

2j+lΓ(j)Γ(l)

×
∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫ i∞

−i∞

dz

2πi
Γ(j + l + 2z)Γ(1− j − l − ε− z)Γ(−z)

(x1x2v12

2

)z

Feynman integrals factorize

Remaining MB representation is a 2F1
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Two denominators, massless

MB representation:

I
(0)
j ,l (v12; ε) =

I (0)(ε)

Γ(1 − ε)

(2− j − l − 2ε)j+l

2j+lΓ(j)Γ(l)

×
∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫ i∞

−i∞

dz

2πi
Γ(j + l + 2z)Γ(1− j − l − ε− z)Γ(−z)

(x1x2v12

2

)z

Feynman integrals factorize

Remaining MB representation is a 2F1
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Two denominators, massless

MB representation:

I
(0)
j ,l (v12; ε) =

I (0)(ε)

Γ(1 − ε)

(2− j − l − 2ε)j+l

2j+lΓ(j)Γ(l)

×
∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1 − x1 − x2)

×
∫ i∞

−i∞

dz

2πi
Γ(j + l + 2z)Γ(1− j − l − ε− z)Γ(−z)

(x1x2v12

2

)z

Feynman integrals factorize

Remaining MB representation is a 2F1
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Two denominators, massless

I
(0)
j ,l (v12; ε) = I

(0)
j+l (ε)

(1− j − l − ε)j
(1 − j − ε)j

2F1

(

j , l , 1− ε, 1 − v12

2

)

First calculated by Willy van
Neerven (1947-2007) in 1984.

photograph courtesy DESY
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Two denominators, single massive

I
(1)
j ,l (v12, v11; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
, v11 6= 0, v22 = 0

Feynman parametrization and MB representaion again, now with
v2 = x21v11 + 2x1x2v12.

I
(1)
j ,l (v12, v11; ε) =

I (0)(ε)

Γ(1− ε)

(2− j − l − 2ε)j+l

2j+lΓ(j)Γ(l)

×
∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1− x1 − x2)

∫ i∞

−i∞

dz

2πi

× Γ(j + l + 2z)Γ(1− j − l − ε− z)Γ(−z)

(

x21 v11

4
+

x1x2v12

2

)z

.
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Two denominators, single massive

I
(1)
j ,l (v12, v11; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l
, v11 6= 0, v22 = 0

Feynman parametrization and MB representaion again, now with
v2 = x21v11 + 2x1x2v12.

I
(1)
j ,l (v12, v11; ε) =

I (0)(ε)

Γ(1− ε)

(2− j − l − 2ε)j+l

2j+lΓ(j)Γ(l)

×
∫ 1

0
dx1 x

j−1
1

∫ 1

0
dx2 x

l−1
2 δ(1− x1 − x2)

∫ i∞

−i∞

dz

2πi

× Γ(j + l + 2z)Γ(1− j − l − ε− z)Γ(−z)

(

x21 v11

4
+

x1x2v12

2

)z

.
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Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

No denominators
One denominator, massless
One denominator, massive
Two denominators, massless
Two denominators, single massive
Two denominators, double massive
Two denominators, double massive: The sneaky way

Interlude: Binomi-Mellin-Newton integral

Question: How to “multiply out” (a + b)z1 as a sum of
products aibj like we can do for z1 ∈ N?
Answer: Use MB-representation:

(a + b)z1 =
1

Γ(−z1)

∫ i∞

−i∞

dz2

2πi
az1−z2bz2Γ(−z2)Γ(−z1 + z2) ,

Remark: Collecting the residues one recovers for |a| > |b|

Newton’s Binomial theorem (a + b)z =

∞
∑

n=0

(

z

n

)

az−nbn .
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Factorize

(

x2
1v11

4
+

x1x2v12

2

)z

using BMN integral

Evaluate factorized Feynman integral

Play around with double MB-integral

Obtain a one-dimensional real integral representation
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I
(1)
j ,l (v12, v11; ε) =

I (0)(ε)

2lv j12

(2 − j − l − 2ε)j+l

(1− l − ε)lΓ(j)

×
∫ 1

0
dt t j−1(1− t)1−j−l−2ε(1− τ+t)

l−1+ε(1− τ−t)
l−1+ε

with τ± = 1− (1±
√
1− v11)/v12.

Appell function: F1(a, b, c , d , x , y) =
1

B(a, d − a)

∫ 1

0
dt ta−1(1− t)d−a−1(1− xt)−b(1 − yt)−c
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Two denominators, single massive

I
(1)
j,l (v12, v11; ε) =

I
(0)
l (ε)

v
j
12

F1(j , 1− l − ε, 1− l − ε, 2− l − 2ε, τ+, τ−)

with τ± = 1− (1 ±
√
1− v11)/v12.

First calculated by Gábor Somogyi (2011).

Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

No denominators
One denominator, massless
One denominator, massive
Two denominators, massless
Two denominators, single massive
Two denominators, double massive
Two denominators, double massive: The sneaky way

Two denominators, double massive

Ij ,l(v12, v11, v22; ε) =

∫

dΩk1k2

1

(v1 · k)j (v2 · k)l

After Feynman parametrzation:

Ij,l (v12, v11, v22; ε) = B(j , l)

∫ 1

0

dx1 x
j−1
1

∫ 1

0

dx2 x
l−1
2 δ(1− x1 − x2) I

(1)
j+l (w12; ε)

with mass w12 = (x1v1 + x2v2)
2 = x21 v11 + 2x1x2v12 + x22v22.

Idea: Write as w12 = v12− x2
1 (v12− v11)− x2

2 (v12− v22).
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Use BNM integral to “multiply out”
(−(1 − v12)− x2

1 (v12 − v11)− x2
2 (v12 − v22))

z

Find triple MB integral representation for I
(1)
j+l(w12)

Evaluate factorized Feynman integrals

Play around with remaining MB integrals and identify a
3-variable hypergeometric function
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Ij,l (v12, v11, v22; ε) = I (0)(ε)v1−j−l−ε
12

F
(3)
B

(

j

2
,
l

2
,
3− j − l

2
− ε,

j + 1

2
,
l + 1

2
,
1− j − l

2
− ε,

3

2
− ε; x1, x2, x3

)

with x1 = 1− v11

v12
, x2 = 1− v22

v12
, x3 = 1− v12.

Lauricella function:

F
(3)
B (a1, a2, a3, b1, b2, b3, c ; x1, x2, x3)

=

∞
∑

m,n,p=0

(a1)m (a2)n (a3)p (b1)m (b2)n (b3)p
(c)m+n+p

xm1
m!

xn2
n!

x
p
3

p!
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Interlude: Hypergeometric functions

Gauss function: 2F1(a1, b1, c ; x1) =

∞
∑

m=0

(a1)m (b1)m
(c)m

xm1
m!

Appell function:

F1(a1, b1, b2, c ; x1, x2) =
∞
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m,n=0

(a1)m+n (b1)m (b2)n
(c)m+n

xm1
m!

xn2
n!
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F
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Two denominators, double massive: The sneaky

way

Idea: Use partial fractioning to reduce double massive to
single massive integral!

Remember: Three vectors on a line in the x0 = 1 plane are
always linearly dependent and thus admit partial fractioning.
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Two-point splitting

v2

v3

v1

x

y

(1��)v1+�v2

∆k (~v1, ~v2) = λ∆k (~v1, ~v3) + (1− λ)∆k (~v2, ~v3) , where
~v3 = (1− λ)~v1 + λ~v2.
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Two-mass splitting

v2

v−3
v1

x

y

(1−λ)v1+λv2

v+3

~v±3 =
v12 − v22 ±

√

v212 − v11v22

2v12 − v11 − v22
~v1+

v12 − v11 ∓
√

v212 − v11v22

2v12 − v11 − v22
~v2
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Two-mass splitting

Using this idea we can split the product of two massive vectors
~v1 and ~v2 into single-massive products.

∆j
k (~v1)∆

l
k (~v2) =

j−1
∑

n=0

(

l − 1 + n

l − 1

)

λl
±(1− λ±)

n∆j−n
k (v1)∆

l+n
k

(

~v±3
)

+

l−1
∑

n=0

(

j − 1 + n

j − 1

)

λn
±(1− λ±)

j∆l−n
k (~v2)∆

j+n
k

(

~v±3
)
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I
(2)
j,l (v12, v11, v22; ε) =

j−1
∑

n=0

(

l − 1 + n

l − 1

)

λl
±(1 − λ±)

nI
(1)
j−n,l+n(v

±

13, v11; ε)

+

l−1
∑

n=0

(

j − 1 + n

j − 1

)

λn
±(1 − λ±)

j I
(1)
l−n,j+n(v

±

23, v22; ε) ,

where λ± =
v12 − v11 ±

√

v2
12 − v11v22

2v12 − v11 − v22
, v±

13 = (1− λ±)v11 + λ±v12,

v±

23 = (1− λ±)v12 + λ±v22.
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Partial differential equations
Dimensional shift identities
Recursion relations
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Partial differential equations

Introducing “light-cone coordinates” v± =
1

2
(v11 ± v22):

(

∂2

∂v 2
+

− ∂2

∂v 2
−

− ∂2

∂v 2
12

)

Ij ,l = 0

two dimensional homogenous wave equation with “time”
v+ and “speed of light” c = 1

“light-cone” at vanishing Gram determinant
0 = v11v22 − v 2

12.

independent of ε, i.e. satisfied by all orders of ε-expansion
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Dimensional shift identities

Recall integration measure: dθ1 sin
1−2ε θ1θ2 sin

−2ε θ2.
Additional factors of sin2 θ1 sin

2 θ2 corresponding to a
dimensional shift ε → ε− 1 can be expressed in terms of
propagators.

Ij,l (ε− 1) =

∫

dΩk1k2 sin
2 θ1 sin

2 θ2 ∆
j
k (~v1)∆

l
k (~v2)

=
1

∆12

[

(v11v22 − v2
12)Ij,l (ε)− (1− v11)Ij,l−2(ε)− (1 − v22)Ij−2,l (ε)

+ 2(v12 − v11)Ij,l−1(ε) + 2(v12 − v22)Ij−1,l (ε) + 2(1− v12)Ij−1,l−1(ε)
]
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Dimensional shift identities

There is also a second dimensional shift identity with
ε → ε+ 1:

Ij,l (ε+ 1) =
j + l − 1 + 2ε

1 + 2ε
Ij,l (ε)−

j

1 + 2ε
Ij+1,l (ε)−

l

1 + 2ε
Ij,l+1(ε)
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Recursion relations

relating integrals with different j and l

derived by integrating by parts w.r.t. θ1 and θ2 and
expressing everything in terms of propagators again

reduction to only 3 master integrals I0,0, I1,0 and I1,1
possible

highly useful for ε-expansion
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Recursion relations

Using integration-by-parts w.r.t. θ1 and θ2 we obtain the
relations (ii) and (iii) in addition to (i) derived from
differentiation w.r.t. v12:

(i): 0 = (j − l) (1− v12) Ij,l − j (1 − v11) Ij+1,l−1 + l (1 − v22) Ij−1,l+1

+ j (v12 − v11) Ij+1,l − l (v12 − v22) Ij,l+1

(ii): 0 = (j + l − 1 + 2ε) Ij,l − (2j + l + 2ε) Ij+1,l + v11 (j + 1) Ij+2,l

− l Ij,l+1 + l v12 Ij+1,l+1

(iii): 0 = (j + l − 1 + 2ε) Ij,l − (2l + j + 2ε) Ij,l+1 + v22 (l + 1) Ij,l+2

− j Ij+1,l + j v12 Ij+1,l+1
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Recursion relations

(1) Solve the recursion
relations in 5
different regions on
j-l grid

(2) Reduce everything to
master integrals I0,0,
I1,0, I0,1, I1,1

j

l
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All order ε-expansion

Due to recursion relations ε-expansion is only necessary for
non-trivial master integrals:

(1) Massive integral with one denominator I
(1)
1 (v11; ε)

(2) Massless integral with two denominators I
(0)
1,1 (v12; ε)

(3) Single massive integral with two denominators

I
(1)
1,1 (v12, v11; ε)

(4) Double massive integral with two denominators

I
(2)
1,1 (v12, v11, v22; ε) (follows directly from (3))
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Massive integral with one denominator

All-order ε-expansion of

I
(1)
1 (v11; ε) =

2π

1− 2ε

1

1−
√
1− v11

2F1

(

1, 1− ε, 2− 2ε, 1− 1 +
√
1− v11

1−
√
1− v11

)

involves Nielsen polylogarithms:

Sn,p(x) ≡
(−1)n+p−1

(n − 1)!p!

∫ 1

0

dt

t
logn−1 t logp(1− xt)
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Massive integral with one denominator

Start with integral representation

2F1(1, 1 − ε, 2− 2ε, x) = (1− x)−ε
2F1(1− ε, 1 − 2ε, 2 − 2ε, x)

= (1− x)−ε(1− 2ε)

∫ 1

0
dt t−2ε(1− xt)−1+ε .

After partial integration:

∫ 1

0
dt t−2ε(1− xt)−1+ε =

− (1− x)ε

xε
−
∫ 1

0

dt

t
t−2ε(1− xt)ε
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Massive integral with one denominator

Start with integral representation

2F1(1, 1 − ε, 2− 2ε, x) = (1− x)−ε
2F1(1− ε, 1 − 2ε, 2 − 2ε, x)

= (1− x)−ε(1− 2ε)

∫ 1

0
dt t−2ε(1− xt)−1+ε .

Add and subtract 1 in the integral:

∫ 1

0
dt t−2ε(1− xt)−1+ε =

− (1− x)ε

xε
− 2

x

∫ 1

0

dt

t
t−2ε

[(

(1− xt)ε − 1
)

+ 1
]
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Massive integral with one denominator

Start with integral representation

2F1(1, 1 − ε, 2− 2ε, x) = (1− x)−ε
2F1(1− ε, 1 − 2ε, 2 − 2ε, x)

= (1− x)−ε(1− 2ε)

∫ 1

0
dt t−2ε(1− xt)−1+ε .

Split off singularity at t = 0:

∫ 1

0
dt t−2ε(1− xt)−1+ε =

− (1− x)ε

xε
− 2

x

∫ 1

0

dt

t
t−2ε

(

(1− xt)ε − 1
)

− 2

x

∫ 1

0

dt

t
t−2ε
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Massive integral with one denominator

Start with integral representation

2F1(1, 1 − ε, 2− 2ε, x) = (1− x)−ε
2F1(1− ε, 1 − 2ε, 2 − 2ε, x)

= (1− x)−ε(1− 2ε)

∫ 1

0
dt t−2ε(1− xt)−1+ε .

Expand in ε:

∫ 1

0
dt t−2ε(1− xt)−1+ε = −(1− x)ε

xε
− 2

x

∫ 1

0

dt

t
t−2ε

− 2

x

∞
∑

n=0

(−2ε)n

n!

∞
∑

m=1

εm

m!

∫ 1

0

dt

t
logn t logm(1− xt)
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Massive integral with one denominator

Start with integral representation

2F1(1, 1 − ε, 2− 2ε, x) = (1− x)−ε
2F1(1− ε, 1 − 2ε, 2 − 2ε, x)

= (1− x)−ε(1− 2ε)

∫ 1

0
dt t−2ε(1− xt)−1+ε .

Identify integrals as Nielsen polylogarithms:

∫ 1

0
dt t−2ε(1− xt)−1+ε = −(1− x)ε

xε
+

1

xε

− 2

x

∞
∑

n=0

∞
∑

m=1

(−1)m2nεn+mSn+1,m(x)
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Massive integral with one denominator

I
(1)
1 (v11; ε) =

π√
1− v11

(

1 +
√
1− v11

1−
√
1− v11

)−ε

×
∞
∑

N=0

N
∑

m=0

2N−m(−1)m+1SN−m,m+1

(

1− 1 +
√
1− v11

1−
√
1− v11

)

εN

Up to order ε:

I
(1)
1 (v11; ε) =

π√
1− v11

(

1 +
√
1− v11

1−
√
1− v11

)−ε [

log

(

1 +
√
1− v11

1−
√
1− v11

)

+
ε

2
log2

(

1 +
√
1− v11

1−
√
1− v11

)

− 2εLi2

(

1− 1 +
√
1− v11

1−
√
1− v11

)

+O(ε2)

]
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Massive integral with one denominator

I
(1)
1 (v11; ε) =

π√
1− v11

(

1 +
√
1− v11

1−
√
1− v11

)−ε

×
∞
∑

N=0

N
∑

m=0

2N−m(−1)m+1SN−m,m+1

(

1− 1 +
√
1− v11

1−
√
1− v11

)

εN

Up to order ε:

I
(1)
1 (v11; ε) =

π√
1− v11

(

1 +
√
1− v11

1−
√
1− v11

)−ε [

log

(

1 +
√
1− v11

1−
√
1− v11

)

+
ε

2
log2

(

1 +
√
1− v11

1−
√
1− v11

)

− 2εLi2

(

1− 1 +
√
1− v11

1−
√
1− v11

)

+O(ε2)

]
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Massless integral with two denominators

Start again with hypergeometric representation

I
(0)
1,1 (v12, v11; ε) = −π

ε
2F1

(

1, 1, 1− ε, 1− v12

2

)

.

For all-order ε-expansion use again integral representation and
Nielsen polylogarithms.
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Massless integral with two denominators

I
(0)
1,1 (v12, ε) = π

(v12

2

)−1−ε

×
[

−1

ε
+

∞
∑

N=1

N
∑

m=1

(−1)mSN−m+1,m

(

1− v12

2

)

εN

]

Up to order ε:

I
(0)
1,1 (v12, ε) = π

(v12

2

)−1−ε
[

−1

ε
− εLi2

(

1− v12

2

)

+O(ε2)

]
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Single-massive integral with two denominators

Start with hypergeometric representation

I
(1)
1,1 (v12, v11; ε) = − π

εv12

(

v11

v212

)ε

F1 (−2ε,−ε,−ε, 1 − 2ε, ω+, ω−) ,

ω± =
τ±

1− τ±
= 1− v12

1±
√
1− v11

Appell function has integral representation

F1(−2ε,−ε,−ε, 1− 2ε, x , y) = −2ε

∫ 1

0
dt t−1−2ε(1− xt)ε(1− yt)ε

Admits same strategy for ε-expansion as previously.
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Single-massive integral with two denominators

We arrive at

F1(. . . ) = 1− 2ε

∞
∑

n=0

∞
∑

m=1

(−2)n

n!m!
εm+n

∫ 1

0

dt

t
logn t logm ((1− xt)(1 − yt)) .

Introduce Double Nielsen Polylogarithms

Sn,p1,p2(x , y) ≡
(−1)n+p1+p2−1

(n − 1)!p1!p2!

∫ 1

0

dt

t
logn−1 t logp1(1− xt) logp2(1− yt)
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Single-massive integral with two denominators

I
(1)
1,1 (v12, v11, ε) =

π

v12

(

v11

v212

)ε

×
[

−1

ε
+

∞
∑

N=1

N
∑

m=1

(−1)m2N−m+1
m
∑

k=0

SN−m+1,m−k,k(τ+, τ−) ε
N

]

Up to order ε

I
(1)
1,1 (v12, v11, ε) =

π

v12

(

v11

v212

)ε [

−1

ε
− 2ε

(

Li2

(

1− v12

1 +
√
1− v11

)

+ Li2

(

1− v12

1−
√
1− v11

))

+ O(ε2)

]
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Double-massive integral with two denominators

We use two-mass splitting

I
(2)
1,1 (v12, v11, v22; ε) =

1√
X

[

v13I
(1)
1,1 (v13, v11; ε)− v23I

(1)
1,1 (v23, v22; ε)

]

with

X = v212 − v11v22

v13 =
v11

(

v22 +
√
X
)

− v12

(

v12 +
√
X
)

v11 + v22 − 2v12
,

v23 =
v22

(

v11 −
√
X
)

− v12

(

v12 −
√
X
)

v11 + v22 − 2v12
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Double-massive integral with two denominators

I
(2)
1,1 (v12, v11, v22; ε) =

π√
X

[

log

(

v12 +
√
X

v12 −
√
X

)

−ε

(

1

2
log2

v11

v213
− 1

2
log2

v22

v223

+2Li2

(

1− v13

1−
√
1− v11

)

+ 2Li2

(

1− v13

1 +
√
1− v11

)

−2Li2

(

1− v23

1−
√
1− v22

)

− 2Li2

(

1− v23

1 +
√
1− v22

))]

+O(ε2)
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G.Isidori,

S.Nabeebaccus and

R.Zwicky, QED

corrections in

B̄ → K̄ ℓ+ℓ− at the

double-differential level,

JHEP 12 (2020)
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Outlook

Mathematics: Understanding of multivariable
hypergeometric functions, integral representations and
generalized logarithms

Physics: Where can we bring the results to good use?

Generalization: Three denominator angular integral and
beyond
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Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

Outlook

Mathematics: Understanding of multivariable
hypergeometric functions, integral representations and
generalized logarithms

Physics: Where can we bring the results to good use?

Generalization: Three denominator angular integral and
beyond
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Fabian Wunder, University of Tübingen Angular Integrals in d dimensions



Introduction and literature review
Appearance in perturbative calculations

Analytic calculation of Van Neerven integrals
Properties of angular integrals

All order ε-expansion
Outlook

Thank You for Your Attention!
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Partial differential equations

Ij ,l(v12, v11, v22; ε) =

∫

dΩk1k2∆
j
k (v1)∆

l
k (v2) .

It is convenient to choose coordinates such that

∆k (~v1) =
1

1− ~v1 · ~k
=

1

1− β1 cos θ1
,

∆k (~v2) =
1

1− ~v2 · ~k
=

1

1− β2 cos ϑ cos θ1 − β2 sinϑ sin θ1 cos θ2
,

Take derivatives of ∆k (~v1) and ∆k (~v1) w.r.t. to β1, β2 and ϑ and

express the result in terms of propagators.
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Partial differential equations

We obtain e.g.:

∂

∂β1
Ij ,l =

∫

dΩk1k2

∂

∂β1
∆j

k (~v1)∆
l
k (~v2)

=
j

β1

∫

dΩk1k2 (1−∆−1
k (~v1))∆

j−1
k (v1)∆

l
k (v2)∆

2
k (v1)

=
j

β1

(

Ij+1,l − Ij ,l

)

.

Analogous for
∂

∂β2
and

∂

∂ϑ
. Translate to coordinate independent

variables v12, v11, v22, e.g.
∂

∂v11
= − 1

2β1

∂

∂β1
− cotϑ

2β2
1

∂

∂ϑ
.
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Partial differential equations

Set of resulting equations, ∆12 = (1− v11)(1− v22)− (1− v12)
2:

∂

∂v12
Ij ,l =

l

∆12

[

(v22 − v12)Ij ,l+1 − (1− v12)Ij ,l + (1− v22)Ij−1,l+1

]

=
j

∆12

[

(v11 − v12)Ij+1,l − (1− v12)Ij ,l + (1− v11)Ij+1,l−1

]

,

∂

∂v11
Ij ,l =

j

2∆12

[

(v22 − v12)Ij+1,l + (1− v22)Ij ,l − (1− v12)Ij+1,l−1

]

,

∂

∂v22
Ij ,l =

l

2∆12

[

(v11 − v12)Ij ,l+1 + (1− v11)Ij ,l − (1− v12)Ij−1,l+1

]

.
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Partial differential equations

Combine to system of 1st order PDEs:

2l
∂

∂v11
Ij ,l+1 = j

∂

∂v12
Ij+1,l ,

2j
∂

∂v22
Ij+1,l = l

∂

∂v12
Ij ,l+1 .

Corresponding 2nd order PDE:

(

∂2

∂v212
− 4

∂2

∂v11∂v22

)

Ij ,l(v12, v11, v22; ε) = 0
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Interlude: Binomi-Mellin-Newton integral

Question: How to “multiply out” (a + b)z1 as a sum of
products aibj like we can do for z1 ∈ N?
Answer: Use MB-representation:

(a + b)z1 =
1

Γ(−z1)

∫ i∞

−i∞

dz2

2πi
az1−z2bz2Γ(−z2)Γ(−z1 + z2) ,

Compare: Cahen-Mellin integral

e
−z1 =

∫ i∞

−i∞

dz2

2πi
zz21 Γ(−z2) .
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Double Nielsen Polylogarithms

Lim1,...,mk
=

∑

0<n1<···<nk

zn11 zn22 . . . znkk
nm1
1 nm2

2 . . . nmk

k

Sn,p1,p2(x , y) =
∑

~z∈~xp1⊔⊔~yp2

Li1,1,...,1,n+1

(

zp1+p2

zp1+p2−1
, . . . ,

z2

z1
, z1

)

Sn,1,1(x , y) =
∑

~z∈x⊔⊔y

Li1,n+1

(

z2

z1
, z1

)

= Li1,n+1

(y

x
, x
)

+ Li1,n+1

(

x

y
, y

)
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