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1. Motivation

Leading-power, factorized cross sections . . . generic, leading-power, factorized form

p0 dσAB→β+X

d3p
=

∑
ab

∫
dxadxb φa/A(xa, µ

2)φb/B(xb, µ
2)

× ωab→β+X

(
xapA, xbpB, p, µ, αs(µ

2)
)

+ power corrections

Higher orders in ωab motivates estimates of powers. Higher twist parton distributions begin
at 1/Q to a power. Is it one or two? This has consequences in search for precision.

But there is another potential source of powers correction, from partonic threshold (Q
depends on pT and η):

ŝ = xaxbS → Q2

These arise from soft radiation (k), and can be isolated in terms of logarithms in moments
N :

(1− βr · k/Q)N ∼ exp[−Nβr · k/Q] (1 + O(1/N))

in terms of a process-dependent vector βr (see below).

Threshold resummation organizes such logarithms. Threshold-resummed series exhibits
renormalon power corrections (’t Hooft 1974).
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Finding renormalons:

• We will identify in resummed cross sections integrals over the running coupling:(
N

Q

)n ∫ κ

0

dµµn−1 Ai

(
αs(µ

2)
)

(1)

for some anomalous dimention A(αs). For this discussion, a renormalon is the Landau
pole, accompanied by a definite Q-dependence.

• Recent: Caola, Ravasio, Limatola, Melnikov, Nason, “On linear power corrections in
certain collider observables,” JHEP 01, 093 (2022) [2108.08897]).

– Cross sections: hadrons to color-singlet bosons at measured pT , η.

– Method – mass-depndence for gluon at NLO is a diagnostic. History: inspired by
Beneke, Braun 1998 for DY.

– The mass is a quick stand-in for a dispersive model of the running coupling, first
applied for event shapes (Dokshitzer, Marchesini, Webber).

– Result – the prefactor is 1/Q2, not 1/Q.

• Our work: For eikonal approximation, identify behavior (1) for same reactions to all
orders in QCD, with same qualitative result.
(See also Laenen, GS, Vogelsang, 2000 for DY).
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2. Double-moment cross sections

Based on GS, Vogelsang (2001) for direct photon production; extended to massive bosons

Factorized cross section at fixed rapidity:

p3
TdσAB→βX

dpTdη
=
∑
a,b

∫ 1

− U
S+T−m2

dxa φa/A
(
xa, µ

2
) ∫ 1

−xa(T−m2)−m2

xaS+U−m2

dxb φb/B
(
xb, µ

2
)

× ωab

(
x̂T , η̂, r,

µ2

ŝ

)

Kinematics for a massive produced boson: m, pT , η

T = m2 −
√
S
√
m2 + p2

T e−η ,

U = m2 −
√
S
√
m2 + p2

T eη

the “new” xT for a massive boson

xT ≡
pT +

√
m2 + p2

T√
S

≡
pT +mT√

S

And, partonic variables:

x̂T ≡
xT
√
xaxb

, η̂ ≡ η −
1

2
ln
xa

xb
, r ≡

pT

mT
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Mellin/Fourier transforms at fixed pT :

ΣAB→βX(N,M, pT ) ≡
∫ ∞
−∞

dη eiMη

∫ x2
T,max

0

dx2
T (x2

T )N−1 p
3
TdσAB→βX

dpTdη

Here x2
T,max is the kinematic upper limit on x2

T , given at fixed rapidity by

x2
T,max =

cosh2 η

(1− r)2

1−

√
1−

1− r2

cosh2 η

2

.

factorize nicely:

ΣAB→βX(N,M, pT ) =
∑
a,b

∫ 1

0

dxa x
N+iM/2
a φa/A

(
xa, µ

2
) ∫ 1

0

dxb x
N−iM/2
b φb/B

(
xb, µ

2
)

×
∫ ∞
−∞

dη̂ eiMη̂

∫ x̂2
T,max

0

dx̂2
T

(
x̂2
T

)N−1
ωab

(
x̂T , η̂, r,

µ2

ŝ

)
≡
∑
a,b

φ̃
N+1+iM

2
a/A (µ2) φ̃

N+1−iM2
b/B (µ2) ω̃ab

(
N,M, r,

µ2

p2
T

)
in terms of

φ̃ni/H
(
µ2
)
≡
∫ 1

0

dxxn−1 φi/H(x, µ2)

and a moment space perturbative function ω̃
(
N,M, r, µ

2

p2
T

)
. . .

5



What the partonic factor looks like:

ω̃ab

(
N,M, r,

µ2

p2
T

)
≡
∫ ∞
−∞

dη̂ eiMη̂

∫ x̂2
T,max

0

dx̂2
T

(
x̂2
T

)N−1
ωab

(
x̂T , η̂, r,

µ2

ŝ

)
with

x̂2
T,max =

cosh2 η̂

(1− r)2

1−

√
1−

1− r2

cosh2 η̂

2

r→1→ 1

Resummation logs will appear in the variable:

ζ ≡
s4

ŝ
≡
ŝ+ t̂+ û−m2

ŝ

where

t̂ = m2 + xa(T −m2) ,

û = m2 + xb(U −m2) .

The invariant s4 provides a natural measure of the distance from threshold. In terms of
x̂T , η̂ and r we have

ζ = 1 + x̂2
T

1− r
1 + r

−
2x̂T

1 + r
cosh η̂

which may be inverted to give

x̂T (ζ) =
cosh η̂

1− r

1 −

√
1−

(1− r2)(1− ζ)
cosh2 η̂


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The double moments now look like:

ω̃ab

(
N,M, r,

µ2

p2
T

)
=

∫ ∞
−∞

dη̂ eiMη̂ 1 + r

cosh η̂

 cosh η̂

(1− r)

1−

√
1−

1− r2

cosh2 η̂

2N−1

×
∫ 1

0

dζ√
1− (1−r2)(1−ζ)

cosh2 η̂

1−
√

1− (1−r2)(1−ζ)
cosh2 η̂

1−
√

1− 1−r2

cosh2 η̂


2N−1

ωab

(
x̂T , η̂, r,

µ2

ŝ

)

Sort of complex-looking, but the ζ integrand is exponentially suppressed away from ζ = 0

at large N .

ω̃ab

(
N,M, r,

µ2

p2
T

)
=

∫ ∞
−∞

dη̂ eiMη̂ 1 + r

cosh η̂

 cosh η̂

(1− r)

1−

√
1−

1− r2

cosh2 η̂

2N−1

×
∫ 1

0

dζ√
1− (1−r2)(1−ζ)

cosh2 η̂

exp

[
−(2N − 1)

ζ

2

(
1 +

cosh η̂√
r2 + sinh2 η̂

)]

× ωab

(
x̂T , η̂, r,

µ2

ŝ

)
+ . . . ,

a standard Laplace transform gives the large-N behavior – effective value of N is linked in
a mild way to η̂. The η̂ integrand still decreases rapidly for large η̂, in the same manner as
seen in the massless case.
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Discuss large-N behavior of ω̃ab below – main result here is inverse of the double transform,

p3
TdσAB→βX

dpTdη
=

1

2π

∫ ∞
−∞

dM e−iMη 1

2πi

∫
C
dN (x2

T )−N ΣAB→βX(N,M, pT )

contour C xtending into the left half-plane where the integrand is exponentially suppressed.

• when N ≥ Q/ΛQCD suppression as exp[lnxT (Q/ΛQCD)].

• Below: exponentiated nonperturbative corrections
proportional to (N/Q)2 for NΛQCD/Q ≤ 1

• As long as xT < 1− ΛQCD/Q, insensitive to very large N .

• very large N behavior of the resummed exponent does not influence the result. That is,
we only need to follow N to order Q/Λ.

• Summary: Can use the same technique for massive bosons as for direct photon
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3. Eikonal cross sections

Near partonic threshold, the limit ζ → 0 for

a + b→ β + r ,

where again, β = γ, γ∗,W,Z,H

Notation: 2N − 1→ N

• Eikonal approximmation for ω̃ab(N,M).

• for any radiation k, hard parton p: k2 � 2p · k.

• Gluon momentum βµk |k0|/Q, with k0 the energy of the radiation and βk the velocity
vector for k. Contributions to s4 suppressed by relative βk · βr/N .

• Radiation in the recoil direction: (βk = βr), factor into a partonic jet functions, Expect
exp[−Nm2

jet/Q
2]: nominal contributions like N/Q2, rather than N2/Q2.

• Summary: eikonal corrections are leading at least by a power of N .
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The large-N transform and threshold kinematics

At large values of N in Eq. (2), the integral will be restricted to a region where ζ = s4/ŝ

is of order 1/N . Relate integral over ζ to an integral over the momenta of final states.

• Near partonic threshold, Laplace transform in s4/ŝmin:∫
0

dζ e−Nζ →
∫

0

ds4

ŝmin

exp

(
−N

s4

ŝmin

)
,

where

ŝmin =
(
p2
T +m2

)
cosh2 η̂

1 +

√
1−

1− r2

cosh2 η̂

2

.

• What is s4 in terms of soft radiation?

s4 = (k + pr)
2 = (k + p0

rβr)
2 ∼ 2p0

r βr · k ,
where

p0
r =

√
p2
T cosh2 η̂ +m2 sinh2 η̂ ,

p3
r = −

√
p2
T +m2 sinh η̂ ,

pr,T = − pT .

• Conclusion: moments in terms of velocity of recoil parton, βr,
and η-dependent hard scale.

exp

(
−N

s4

ŝmin

)
= exp

(
−N

βr · k
Q

)
with Q ≡

ŝmin

2p0
r
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Eikonal cross sections and Wilson lines

• Basic factorization result:

ω̃
(eik)
abr (N,Q, η̂, µ) = Habr(pT , η̂, µ)×

σ̃
(eik)
abr (N/Q, η̂, µ, ε)

φ̃
(eik)
a/a (Na, µ, ε) φ̃

(eik)
b/b (Nb, µ, ε)

,

• For 1PI cross section:

Na = N
βb · βr
βa · βb

,

Nb = N
βa · βr
βa · βb

,

βa,b velocity four-vectors for incoming particles; βr for colored recoil particle.

• Simplification at large N , no parton mixing in evolution.

11



• Building blocks:

Φ
(R)
β (λ2, λ1;x) ≡ P exp

[
−ig

∫ λ2

λ1

dλβ ·A(R)(λβ + x)

]
• For example, the annihlation channel:

[Uqq̄g(x)]d;ji ≡ T

( [
Φ

(g)
βg

(∞, 0;x)
]
d,e

u
(qq̄)
e,ji (x)

)
,

where “T” denotes time ordering, and where

u
(qq̄)
e,ji (x) ≡

[
Φ

(q̄)
βq̄

(0,−∞;x)
]
jl

(
T (q)
e

)
lk

[
Φ

(q)
βq

(0,−∞;x)
]
ki
, (2)

T (q)
e the SU(3) in the fundamental representation.

• Giving the eikonal cross section

σ̃
(eik)
abr (N/Q, η̂, µ, ε) =

∑
X

e−N(βr·kX/Q)
〈
0|U †abr(0)|X

〉
〈X|Uabr(0)|0〉

=
∑
X

〈
0|U †abr(0)|X

〉 〈
X|e−N(iβr·∂x/Q) Uabr(x)|0

〉
x=0

=
〈
0|U †abr(0) e−N(iβr·∂x/Q) Uabr(x)|0

〉
x=0

.
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Cancellation of final-state interactions

• Special for color-singlet cross sections: outgoing Wilson changes exponential of the
derivative in weight functiok into exponential of covariant derivative:

e−
iNβr·∂x

Q Φ
(r)
βr

(∞, 0;x) = Φ
(r)
βr

(∞, 0;x) e−
iNβr·D(r)(A(x))

Q ,

• Then final state interactions all cancel, leaving series of local operators with all βr
dependence:

σ̃
(eik)
abr (N/Q, η̂, µ, ε) = 〈0|uab†(0) [ e−

iNβr·D(r)(A(0))
Q uab(0)]| 0〉

= 〈0|uab†(0)

[(
1 −

iNβr ·D(r)(A)

Q
+ . . .

)
uab(0)

]
| 0〉

= σ
(eik,0)
abr (1 +O(αs)) .

• Now all we need is a formula for σ(eik) that “knows about” this cancellation . . . here it’s
“webs” . . .
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4. Web exponentiation and resummation

• In terms of web functions, the cross sections exponentiates (phase space at fixed βr · k
is symmetric)

• Graphical exponentiation and web functions:

σ̃
(eik)
abr (N/Q, η̂, µ, ε) = σ̃

(eik,0)
abr eEabr(N/Q,η̂,µ,ε) ,

wwhere

Eabr(N/Q, η̂, µ, ε) =

∫
dDk

(2π)D

(
e−N

βr·k
Q − 1

)
θ

(
Q
√

2
− k+

)
θ

(
Q
√

2
− k−

)
× wabr

({
βi · k βj · k
βi · βj

}
, k2, µ2, αs(µ

2)

)
.

• Demand it vanishes at N = 0 (fully inclusive): virtual is all in “-1”

• To get the cross section, eikonal PDFs:

φ̃i/i(N,µ, ε) = exp

[∫ µ2

0

dk2
T

k
2(1+ε)
T

Ai

(
αs(k

2
T )
) ∫ 1

0

dz
zN − 1

1− z

]
,

Anomalous dimension Ai(αs) = Ci (αs/π) + . . . with Cq = CF = 4/3

and Cg = CA = 3.
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• The functions we’re after:

ω̃
(eik)
abr (N,Q, η̂, µ) = Habr(pT , η̂, µ)σ

(eik,0)
abr eÊabr(N/Q,η̂,µ) ,

where

Êabr(N/Q, η̂, µ) =

∫
dDk

(2π)D

(
e−N

βr·k
Q − 1

)
wabr

({
βi · k βj · k
βi · βj

}
, k2, µ2, αs(µ

2)

)

−
∑
i=a,b

∫ µ2

0

dk2
T

k
2(1+ε)
T

Ai

(
αs(k

2
T )
) ∫ 1

0

dz
zNi − 1

1− z

The cancellation of collinear singularities is in the exponent.

• wabr is the relevant “web function” for three Wilson lines. It is the exact logarithm of
the cross section. (Gatheral, 1983).
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• The web function wabr has the properties (Berger, 2003; Mitov, GS, Sung, 2010)

– 3-eikonal irreducible

– nonfactorizable color factors (e.g. like CACF , not C2
F for quark Wilson lines)

– see recent work by Gardi, Magnea, Laenen & collaborators.

– No collinear or soft SUB-divergences

– RG invariance (Polyakov (1974) Dotsenko & Vergeles (1980))

µ
d

dµ
wabr

({
βi · k βj · k
βi · βj

}
, k2, µ2, αs(µ

2)

)
= 0 .

– Arguments invariant under rescalings of the βs.

• Leading powers in Q come from the range of k where Nβr · k/Q > 1 and real-gluon
emission is exponentially suppressed. Webs general eikonal approximation to threshold
resummation.

• Nonleading powers in N/Q arise from the region Nβr · k/Q < 1.
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5. The lowest order web and renormalons

• Lowest-order web function for qq̄ → β + g, given by the interference terms between
gluon emission from each of the three Wilson lines.

• Useful normaliation

βµa =
√

2 δµ+ ,

βµb =
√

2 δµ− ,

giving βa · βb = 2 and

βa · k βb · k
βa · βb

=
k2 + k2

T

2
.

• Expand the recoil velocity

βµr =
βr · βb
βa · βb

βµa +
βr · βa
βa · βb

βµb + βr,T .

• Which gives

w
(1)
qq̄g = 4πg2 µ2ε δ(k2)

(
CF

βa · βb
βa · kβb · k

+
CA

2

βa · βb
βa · kβb · k

βr,T · kT
βr · k

)
≡ CF u

(1)
qq̄g + CA v

(1)
qq̄g .

See explicitly that only collinear singularities are from incoming lines

• All this gives . . .
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• The full exponent

Ê
(1)
abr(N/Q, η̂, µ) = CF

∫
d4k

(2π)4

(
e−N

βr·k
Q − 1

)
u

(1)
abr(k)

+

∫ µ2

0

dk2
T

k2
T

CF
αs(k

2
T )

π
ln

(
N̄βr,T

2

)
+ CA

∫
d4k

(2π)4

(
e−N

βr·k
Q − 1

)
v

(1)
abr(k)

≡ CF U
(1)
qq̄g(N/Q, η̂, µ) + CA V

(1)
qq̄g(N/Q, η̂, µ) ,

• Note the runnning coupling in the subtraction.

• Treat CF and CA parts separately
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• For the CF term, k+ integral:∫ Q/
√

2

k2
T /
√

2Q

dk+

2k+

(
e
−NQ

(
β−r k

++β+
r
k2
T

2k+

)
− 1

)
= K0

(
Nβr,TkT

Q

)
+ ln

(
kT

Q

)
+ O

(
e−N

)
.

• Any kT less than Q/N . For larger kT , K0(z) ∼ z−1/2e−z

→ leading power resummation for larger kT

• The subracted term in the exponent

U
(1)
qq̄g(N/Q, η̂, µ) = 2

∫ Q2

0

dk2
T

k2
T

αs(k
2
T )

π

[
I0

(
Nβr,TkT

Q

)
K0

(
Nβr,TkT

Q

)
+ ln

(
N̄βr,TkT

2Q

)]

• Two things to notice: (1) All even powers:

• Log term in the expansion of K0 cancels the subtraction log:

K(z) = ln

(
zeγ

2

)
+

(
z

2

)2

+ . . .

I0(z) = 1 +

(
z

2

)2

+ . . . (3)

• Argument of αs(kT ) follows from web RG invariance and lack of subdivergences – only
the overall collinear singularity gives logs. This is why there aren’t renormalons someplace
else we didn’t look.
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• For CA term, use derivative with respect to N , which cancels the βr · k denominator

d

dN
V

(1)
qq̄g(N/Q, η̂, µ) =

2βr,T

Q

∫ Q2

0

dk2
T

kT

αs(k
2
T )

π
I1

(
Nβr,TkT

Q

)
K0

(
Nβr,TkT

Q

)
.

• I1 is from the azimuthal integral of kT .

• Here, finite without a collinear subtraction.

• I1(z) ∼ z +O(z3) for small z, and replaces kT in denominator by Q.

• Because exponent vanishes at N = 0, we can integrate the expanded form.
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• Final result for the exponent:

Ê
(1)
abr(N/Q, η̂, µ) = CF U

(1)
qq̄g(N/Q, η̂, µ) + CA V

(1)
qq̄g(N/Q, η̂, µ) ,

• Is

U
(1)
qq̄g(N/Q, η̂, µ) =

1

2

(
Nβr,T

Q

)2 ∫
0

dk2
T

αs(k
2
T )

π

[
1− 2 ln

(
N̄βr,TkT

2Q

)]
+ O(N4/Q4) ,

V
(1)
qq̄g(N/Q, η̂, µ) = −

1

2

(
Nβr,T

Q

)2 ∫
0

dk2
T

αs(k
2
T )

π
ln

(
N̄βr,TkT

Q

)
+ O(N4/Q4) .

• We see explicitly the absence of linear powers.

• And the (lowest-order) renormalon when k2
T = Λ2 at N2/Q2. A “Borel” form is:

αs(k
2
T ) =

∫ ∞
0

dσ

(
k2
T

Λ2

)−σβ0/4π

∫
dk2

T αs(k
2
T ) =

∫ ∞
0

dσ
Λσβ0/2π

1− σβ0/4π

• But more generally, the k2
T integral is just undefined at this level.

• An alternate approach, at NLO and fixed coupling is a gluon mass in the web:

δ(k2) → δ(k2 − λ2)

Also gives only even powers of λ.
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6.Beyond lowest order i web

• In this case the web function has non-zero k2 as well as kT , but still no subdivergences.

• We expand the exponents in

Êabr(N/Q, η̂, µ) =

∫
dDk

(2π)D

(
e−N

βr·k
Q − 1

)
wabr

({
βi · k βj · k
βi · βj

}
, k2, µ2, αs(µ

2)

)

−
∑
i=a,b

∫ µ2

0

dk2
T

k
2(1+ε)
T

Ai

(
αs(k

2
T )
) ∫ 1

0

dz
zNi − 1

1− z

for an expansion in βr · k and lnx ∼ 1− x.

• Because webs have no subdivergences, even one power of βr · k makes the web collinear
finite for k in βr direction.

• This leaves dependence on only

βa · kβb · k
βa · βb

=
k2
T + k2

2

in a-b c.m. frame. We can do an energy integral to any order in αs !
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• For example, the first power in βr · k given terms where we can do the energy integrals

E [1]
a (N/Q, η̂, µ, ε) = −

N

Q

βa · βr
βa · βb

Ω1−ε

∫ κ2

0

dk2
T k
−2ε
T

2(2π)D

×
∫ Q2/(βa·βrN)2−k2

T

0

dk2 Ga

(
k2, k2

T

) √( Q

βa · βrN

)2

− k2 − k2
T

= −
Ω1−ε

2π

∫ κ2

0

dk2
T k
−2ε
T

∫ Q2/(βa·βrN)2−k2
T

0

dk2

4(2π)D−1
Ga

(
k2, k2

T

)
×
[
1−

(
k2 + k2

T

)
(βa · βr)2N2

2Q2
+ . . .

]
,

• The “1” term is cancelled by the collinear subtraction for the βa direction. We can’t do
the k2 integral, but factorization requires that∫ Q2/(βa·βrN)2−k2

T

0

dk2

4(2π)D−1
Ga

(
k2, k2

T

)
=

Aa

(
αs(k

2
T )
)

k2
T

+ Aa(k2
T , Q

2) ,

• The finite, collinear-singular terms cancels and the power correction is then from the
k2
T + k2 term,.

• This contines at all powers of βr · k.
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7. Outlook

• Result is general, but still purely eikonal.

• Extension beyond eikonal approximation should be possible (much is known about“next
to eikonal”: Laenen, Magnea . . . )

• DIS color-singlet boson production is a special case.

• The phenomenology remains to be studied systematically. (Say using dispersive model
as in Dasgupta & Webber for DIS)

• Application to single-hadron is nontrivial because with two Wilson lines in the final state,
the relevant cancellations will be more elaborate. Also, webs are matrices in the space
of color tensors. It should be fun.

24


