Progress in Precision Nuclear PDFs

From PDFs to the underlying QCD characteristics

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

Precision QCD CFNS 1-5 August 2022

LHC RUN 3 BEAMS, DETECTORS, ACTION

THE CONVERSATION

The storage-ring magnet for the Muon G-2 experiment at Fermilab. Reidar Hahn/wikipedia, CC BY-SA

The standard model of particle physics may be broken – an expert explains

Published: May 6, 2022 11.43am EDT

Roger Jones, Lancaster University

As a physicist working at the Large Hadron Collider (LHC) at Cern, one of the most frequent questions I am asked is "When are you going to find something?". Resisting the temptation to

PHYSICS TODAY

W-boson mass hints at physics beyond the standard model ide from the <u>Higgs</u> posite particles?" | how we have

HC) at CERN, one

Nearly a decade of coll fundamental particle's

SCIRNEWS

WHY SCIENTISTS THINK PHYSICS

The evidence seems to be growing that some new physics is needed.

RECKONING

COULD BE IN FOR A

CERN Physicists Directly Observe Fundamental Phenomenon in Quantum Chromodynamics

May 19, 2022 by News Staff / Source

A charm quark (c) In a parton shower losses energy by emitting radiation in the form of gluons (g). The thower displays a dead cone of suppressed radiation around the quark for angles smaller than the ratio of the quark's mass (m) and energy (b). The energy decreases at each stage of the shower. Image credit: Daniel Dominguez / CERN.

W-Mass g-2 ALICE Dead-Cone

We are entering the "Precision Era"

Challenge: hadronic component

Precision Era: High Precision W Boson Mass

RESEARCH

PARTICLE PHYSICS

High-precision measurement of the *W* boson mass with the CDF II detector

CDF Collaboration †‡, T. Aaltonen^{1,2}, S. Amerio^{3,4}, D. Amidei⁵, A. Anastassov⁶

		SM
D0 I	80478 ± 83	
CDF I	80432 ± 79	
DELPHI	80336 ± 67 -	
L3	80270 ± 55	-
OPAL	80415 ± 52	
ALEPH	80440 ± 51	
D0 II	80376 ± 23	
ATLAS	80370 ± 19	-
CDF II	80433 ± 9	· · · · · · · · · · · · · · · · · · ·

CSS Resummation

Strange PDF	
PDF Precision	

	CDF (e)	$CDF(\mu)$	DØ(e)
Energy Scale	130	6 0	260
Resolution	140	120	70
Background	50	50	30
Fitting	20	20	30
PDF	100	. 100	70
p_T^W and und. evt.	120	145	120
Ŵidth	-	-	20
Total Sys.	250	240	307
Statistical	150	200	16 0
Total (Stat + Sys)	290	300	346

Table 2. Uncertainties on the combined M_W result.

Source	Uncertainty (MeV)		
Lepton energy scale	3.0		
Lepton energy resolution	1.2		
Recoil energy scale	1.2		
Recoil energy resolution	1.8		
Lepton efficiency	0.4		
Lepton removal	1.2		
Backgrounds	3.3		
$p_{\rm T}^{\rm Z}$ model	1.8		
$p_{\rm T}^W/p_{\rm T}^Z$ model	1.3		
Parton distributions	3.9		
QED radiation	2.7		
W boson statistics	6.4		
Total	9.4		

CDF Collaboration et al., Science 376, 170–176 (2022)

Nuclear PDFS

|--|

Proton	n	
	Fr Ra F Db Sg Bh Hs Mt Ds Rg Cn Uut F Uup Lv Uus Uup	

From Parameterization to a Deeper Understanding

nPDFs: Extend Kinematic Reach in {x,Q²}

Figure 18.5: Comparison of the nNNPDF2.0, CTEQ15WZ+SIH and EPPS16 nuclear PDFs. The curves shown are ratios to the result in the limit of no nuclear corrections. Plot from NNPDF collaboration (Juan Rojo – private communication).

PDG

nuclear Coordinated Theoretical-Experimental Project on QCD

Nuclear A-Dependence

[[2, 275],	[56, 134],
[3, 125],	[64, 61],
[4, 66],	[84, 84],
[6, 15],	[108, 7],
[9, 49],	[119, 152],
[12, 196],	[131, 4],
[14, 101],	[184, 37],
[27, 73],	[197, 50],
[40, 92],	[208, 163]]

F.

nCTEQ: arXiv: 2204.13157

nCTEQ: Phys.Rev.D 104 (2021) 094005

HI X

Hi-X at JLab

E.P. Segarra

T. Ježo

nCTEQ15HIX -- Extending nPDF Analyses into the High-x, Low Q2 Region *E.P. X E.P. Segarra, T. Ježo, A. Accardi, P. Duwentäster, O. Hen, T.J. Hobbs, C. Keppel, M. Klasen, K. Kovařík, A. Kusina, J.G. Morfin, K.F. Muzakka, F.I. Olness, I. Schienbein, J.Y. Yu* **PRD 103, 114015 (2021)**

Challenges at Large x & Low Q²: JLab data \Rightarrow EIC

Nuclear PDFs: x>1 allowed; impacts F_2^{Nuc}/F_2^{Iso} in Fermi region **Target Mass Corrections** pick up M^2/Q^2 higher twist contributions **Deuteron Corrections** impacts $F_2^{Nuc}/F_2^{Deuteron}$ ratio

nCTEQ15HIX include large x JLab data

We can extend our kinematic reach in {x,Q²}

what about small x region

¹⁶ Deep Inelastic Scattering (DIS)

Faiq Muzakka, Karol Kovarik, ...

Could be: neutral photon γ or charged W[±]

Strange PDF: *v* **Nucleon di-muon Production**

Puzzle: Split Personality ... What is the correct Nuclear ratio

Puzzle: Split Personality ... What is the correct Nuclear ratio 19

Faiq Muzakka, Karol Kovarik, ...

W and Z Boson Production²⁰ at the Large Hadron Collider (LHC)

Tomas Jezo, Aleksander Kusina, Fred Olness, ...

 $p p \rightarrow W, Z$ $p Pb \rightarrow W, Z$

LHC Heavy Ion

... there's another way to measure the strange quark

nCTEQ: Eur.Phys.J.C 80 (2020) 10, 968

Surprise: ... LHC sees more strange than expected

$$u\bar{d} + u\bar{\mathbf{s}} + \mathbf{c}\bar{d} + \mathbf{c}\bar{\mathbf{s}} \rightarrow W^{+}$$

$$\bar{u}d + \bar{u}\mathbf{s} + \bar{\mathbf{c}}d + \bar{\mathbf{c}}\mathbf{s} \rightarrow W^{-}$$

$$u\bar{u} + d\bar{d} + \mathbf{s}\bar{\mathbf{s}} + \mathbf{c}\bar{\mathbf{c}} \rightarrow Z$$

Surprise: We expected $R_s = 1/2$ some $R_s > 1$

$$R_S = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$

ATLAS: Eur. Phys. J. C 77 (2017) 367

Heavy Ion Case: ... LHC STILL sees more strange than expected ²²

EIC

Charm Jets at the EIC

JLAB-PHY-20-3205, SMU-HEP-20-05

Charm jets as a probe for strangeness at the future Electron-Ion Collider

Miguel Arratia,^{1,2} Yulia Furletova,² T. J. Hobbs,^{3,4} Fredrick Olness,³ and Stephen J. Sekula³,^{*}

Phys.Rev.D 103 (2021) 7, 074023

GLUON

Measuring the nuclear Gluon PDF²⁷

Parton Distribution Functions

Pit Duwentaster, Michael Klasen, ...

how can we determine the gluon

Nuclear Medium Effects at small momentum fraction (x)

Low

Energy

g(x)

Hi

Energy

factor of A^{1/3}

Get A^{1/3} density

enhancement

 $Q_S^2 \sim A^{1/3}$

Review: Edmond Iancu & Raju Venugopalan: arXiv:0303204

Saturation, BFKL, recombination, ...

Can Saturation be Discovered at EIC?

EIC has an unprecedented small-x reach for DIS on large nuclear targets, allowing to seal the discovery of saturation physics and study of its properties:

Precision Gluon can help study nuclear medium effects

Pit Duwentaster, Michael Klasen, ...

it Duw	entaster, Michael Klasen,		Data set	$\sqrt{s_{NN}} [\text{GeV}]$	Observ.	No. points
	$f_{1,i}(x,\mu_i)$	Semi-Inclusive	PHENIX π^0	200	R _{dAu}	21
		Hadron (SIH)	PHENIX η	200	R_{dAu}	12
		production	PHENIX π^{\pm}	200	R_{dAu}	20
	$\bigcup_{i} D_k^h$	(z,μ_f)	PHENIX K^{\pm}	200	R_{dAu}	15
			$\mathrm{STAR}\pi^0$	200	R_{dAu}	13
	i k		STAR η	200	R_{dAu}	7
			STAR π^{\pm}	200	R_{dAu}	23
			ALICE 5 TeV π^0	5020	R_{pPb}	31
			ALICE 5 TeV η	5020	R_{pPb}	16
	$f_{2,j}(x,\mu_i)$		ALICE 5 TeV π^{\pm}	5020	R_{pPb}	58
5			ALICE 5 TeV K^{\pm}	5020	R_{pPb}	58
		Q = 2 G eV	ALICE 8 TeV π^0	8160	R_{pPb}	30
	nCTEQ15+SIH	Q = 2 GeV	ALICE 8 TeV η	8160	R_{pPb}	14
4 (X) _{qd} <i>b</i> X 1	nCTEQ15 nCTEQ15 Pb nCTEQ15SIH Pb - With eta data	p = 2 GeV	S	emi-Incl Hadron (product Determines in small x 1	usive SIH) ion gluon egion	
1	0 3 10-2	10 ⁻¹ I	impact of inclusive hadro nCTEO [•] P Dr	on production data	a on nuclea	r gluon PDFs 021) 094005
		Λ				

xFitter Resummation Study

www.xFitter.org

Sample data files: LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0 HERA: H1, ZEUS, Combined Fixed Target: ... User Supplied: ...

Features & Recent Updates:

Photon PDF & QED Pole & MS-bar masses Profiling and Re-Weighting LITAPDF) extensions includ extensions includ nuclear PDFs nuclear P

xFitter 2.2.0 Future Freeze

Nuclear xFitter: (Daiquiri)

Pion PDFs & FFs

Parton Distribution Functions

Fragmentation Functions

Phys.Rev.D 104 (2021) 5, 056019

Fragmentation Functions

Parton Distribution Functions

Phys.Rev.D 102 (2020) 1, 014040

Pion $\pi^+ = u\bar{d}$

xFitter

Pion Fit

Phys.Rev.D 102 (2020) 1, 014040

DGLAP violation??? saturation resummation QCD QED Pion PDFs busiced busiced pow-Q² higher twist non-linear QCD

Special thanks to: Ivan Novikov, Alexander Glazov, Oleksandr Zenaiev

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter Developers' team: Ivan Novikov,^{1,2,}* Hamed Abdolmaleki,³ Daniel Britzger,⁴ Amanda Cooper-Sarkar,⁵ Francesco Giuli,⁶ Alexander Glazov,^{2,†} Aleksander Kusina,⁷ Agnieszka Luszczak,⁸ Fred Olness,⁹ Pavel Starovoitov,¹⁰ Mark Sutton,¹¹ and Oleksandr Zenaiev¹²

xFitter: Phys.Rev.D 102 (2020) 1, 014040

xFitter Meson PDFs

xFitter: open-source framework for global fits to meson PDFs

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter Developers' team: Ivan Novikov,^{1,2,} Hamed Abdolmaleki,³ Daniel Britzger,⁴ Amanda Cooper-Sarkar,⁵ Francesco Giuli,⁶ Alexander Glazov,^{2,} Aleksander Kusina,⁷ Agnieszka Luszczak,⁸ Fred Olness,⁹ Pavel Starovoitov,¹⁰ Mark Sutton,¹¹ and Oleksandr Zenaiev¹²

e-Print: 2002.02902 [hep-ph]

xFitter Pion PDFs

Ex	perim	\mathbf{ent}	Normalization uncertainty	$\chi^2/N_{ m points}$
	E615		$15 \ \%$	206/140
NA10	(194	${\rm GeV})$	6.4%	107/67
NA10	(286)	GeV)	6.4%	95/73
	WA70		32%	64/99

$$xv(x) = A_v x^{B_v} (1-x)^{C_v} (1+D_v x^{\alpha}),$$

$$xS(x) = A_S x^{B_S} (1-x)^{C_S} / \mathcal{B}(B_S+1, C_S+1),$$

$$xg(x) = A_g (C_g+1)(1-x)^{C_g},$$

	$\langle xv angle$	$\langle xS angle$	$\langle xg angle$	Q^2 (GeV ²)
JAM 31	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 18	0.428 ± 0.030			4
SMRS 25	0.47			4
Han et al. 44	0.51 ± 0.03			4
GRVPI1 27	0.39	0.11	0.51	4
Ding et al. 11	0.48 ± 0.03	0.11 ± 0.02	0.41 ± 0.02	4
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 16	0.558 ± 0.166			5.76
Lattice-2 17	0.48 ± 0.04			5.76
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH 26	0.434 ± 0.022			27
ChQM-1 13	0.428			27
ChQM-2 15	0.46			27
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS 25	0.49 ± 0.02			49
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49

18

Pion Fragmentation Functions

Phys.Rev.D 104 (2021) 5, 056019

Hamed Abdolmaleki, Maryam Soleymaninia, Hamzeh Khanpour

PHYSICAL REVIEW D 104, 056019 (2021)

QCD analysis of pion fragmentation functions in the xFitter framework

Hamed Abdolmaleki,^{1,*} Maryam Soleymaninia,^{1,†} Hamzeh Khanpour^(D),^{1,2,3,‡} Simone Amoroso^(D),^{4,§} Francesco Giuli^(D),^{5,||} Alexander Glazov^(D),^{4,¶} Agnieszka Luszczak^(D),^{6,**} Fredrick Olness^(D),^{7,††} and Oleksandr Zenaiev^{8,‡‡} (xFITTER Developers' Team:)

xFitter: Multiple fits with a vast array of data sets

HAMED ABDOLMALEKI et al.

PHYS. REV. D 104, 056019 (2021)

TABLE I. The Single Inclusive electron-positron Annihilation (SIA) datasets used in the pion FFs analysis. The values of χ^2 per N data points for the individual SIA experiments are shown. The z range for each experiment is displayed in Fig. 8. The measured observable is also listed where \sqrt{s} is the total CMS energy, $\beta = p_h/E_h$, and $z = 2E_h/\sqrt{s}$.

23					χ^2 /numbe	er of points		
Observable	Experiment	\sqrt{s} [GeV]	Fit A (NLO)	Fit A (NNLO)	Fit B (NNLO)	Fit C (NNLO)	Fit D (NNLO)	Fit E (NNLO)
$\frac{1}{\sigma} \frac{d\sigma^h}{dz}$	SLD	91.20	57/34	41/34	41/34	48/34	39/34	45/34
$\frac{1}{\sigma} \frac{d\sigma^h}{d\tau} _{\text{nds}}$	SLD _{uds}	91.20	66/34	52/34	56/34	44/34	43/34	45/34
$\frac{1}{\sigma} \frac{d\sigma^h}{dz} \Big _C$	SLD _c	91.20	35/34	33/34	32/34	32/34	32/34	32/34
$\frac{1}{\sigma} \frac{d\sigma^h}{dz} _h$	SLD _b	91.20	25/34	24/34	24/34	24/34	23/34	24/34
$\frac{1}{\sigma} \frac{d\sigma^h}{dr}$	OPAL	91.20	42/24	41/24	41/24	39/24	39/24	39/24
$\frac{1}{2} \frac{d\sigma^h}{dr}$	DELPHI	91.20	37/21	41/21	41/21	44/21	44/21	43/21
$\frac{1}{2} \frac{d\sigma^h}{dr} _{\text{nds}}$	DELPH _{uds}	91.20	25/21	27/21	26/21	30/21	31/21	30/21
$\frac{1}{\tau} \frac{d\sigma^h}{dr} \Big _h$	DELPH _b	91.20	20/21	20/21	21/21	19/21	20/21	19/21
$\frac{1}{d\sigma^h} \frac{d\sigma^h}{d\sigma^h}$	ALEPH	91.20	21/23	14/23	14/23	11/23	11/23	12/23
$\frac{1}{c} \frac{d\sigma^h}{dz}$	TASSO44	44.00	15/6	17/6	15/6	18/6	16/6	18/6
$\frac{1}{d\sigma} \frac{d\sigma^h}{d\sigma}$	TASSO34	34.00	6.8/9	8.0/9	6.8/9	9.3/9	7.3/9	8.3/9
$\frac{\partial v_{\text{tot}}}{\partial \sigma} \frac{d\sigma^h}{d\sigma}$	TPC	29.00	6.3/13	11/13	11/13	11/13	7.1/13	9.2/13
$\frac{b}{\rho} \frac{d\sigma^{h}}{d\tau}$	TASSO22	22.00	5.7/8	5.5/8	5.6/8	6.1/8	5.9/8	5.8/8
p dz $\frac{s}{\theta} \frac{d\sigma^{h}}{dz}$	TASSO14	14.00	11/9	11/9	11/9	9.9/9	11/9	9.8/9
$p \frac{dz}{dz}$	TASSO12	12.00	1.4/4	1.4/4	1.3/4	0.96/4	1.4/4	1.1/4
$\frac{1}{2} \frac{d\sigma^h}{dr}$	BABAR	10.52	71/40	53/40	77/40	1 12/2		33/37
$\frac{d\sigma^h}{d\tau}$	BELLE13	10.54	21/70	14/70				
$\frac{dz}{dz^h}$	BELLE20	10.58	x (4) x ($(\mathbf{x}\rangle) \in \mathcal{X}$	82/32	32/32	9.2/28	17/28
Correlated χ^2			11	9.4	8.4	16	9.4	12
Log penalty χ^2 Total χ^2 /dof			+4.2 480/386	+3.0 427/386	+4.2 518/348	+7.7 404/308	+5.6 357/304	+6.8 410/341

xFitter: Comparisons: ... good overall ... *more work needed*

HAMED ABDOLMALEKI et al.

PHYS. REV. D 104, 056019 (2021)

41

nCTEQ++

a modern, modular code base

nCTEQ++ ... a complete rewrite in C++

Top level C++, modular structure, output to YAML & Python scripts

Code benchmark timings:

Original Fortran Code

contains multiple levels of integrals

using modern grid techniques

Typical fits current run a few days to a week. This will be reduced to a few hours.

High order DIS processes (Peter Risse)

New Tools

PDFSense & & ... borrowing from AI

Artificial Intelligence Tools: Projector tool of Google TensorFlow

Dianne Cook, Ursula Laa, German Valencia arXiv:1806.09742

TensorFlow Embedding Projector

https://metapdf.hepforge.org/PDFSense/

Principal Component Analysis (PCA) visualizes the 56-dim. manifold by reducing it to 10 dimensions (à la META PDFs)

http://projector.tensorflow.org

t-distributed stochastic neighbor embedding (t-SNE) sorts vectors according to their similarity

$$r_i(\vec{a}) = \frac{1}{s_i} \left(T_i(\vec{a}) - D_{i,sh}(\vec{a}) \right)$$

CONCLUSIONS

nCTEQ: arXiv: 2204.13157

nCTEQ: Phys.Rev.D 104 (2021) 094005

From Parameterization to a Deeper Understanding

