Parton orbital angular momentum

Yoshitaka Hatta
BNL/RIKEN BNL

CFNS workshop: Precision QCD at the EIC, Stony Brook, Aug. 1-5, 2022

Outline

- Definition of OAM
- Evolution of OAM
-Small-x limit of OAM
- Observables of OAM

Proton spin decomposition

Jaffe-Manohar sum rule

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{c a n}^{q}+L_{c a n}^{g}
$$

Enormous work has been done for the parton helicity contributions $\Delta \Sigma, \Delta G$
A big elephant in the room: Orbital angular momentums (OAM) $L_{\text {can }}^{q, g}$
What are they exactly?
Are they numerically important?
Are they measurable?

This talk is only about OAM in the JM sum rule, not one in the Ji sum rule

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{g}
$$

Canonical OAM in QCD

Decomposition of the canonical angular momentum tensor operator $M_{c a n}^{\mu \nu \rho}$

$$
\begin{aligned}
& \Delta L_{q}=\frac{1}{2 E(2 \pi)^{3} \delta^{3}(0)}\left\langle p_{\infty}^{0}, s^{0}\right| \int \mathrm{d}^{3} x i \psi^{\dagger}(x \times \nabla)^{3} \psi\left|p_{\infty}^{0}, s^{0}\right\rangle, \\
& \Delta L_{g}=\frac{1}{2 E(2 \pi)^{3} \delta^{3}(0)}\left\langle p_{\infty}^{0}, s^{0}\right| \int \mathrm{d}^{3} x \operatorname{Tr}\left\{E^{k}(x \times \nabla)^{3} A^{k}\right\}\left|p_{\infty}^{0}, s^{0}\right\rangle .
\end{aligned}
$$

To be understood in the light-cone gauge $A^{+}=0$

Gauge invariant canonical OAM

YH (2011)
see also, Bashinsky, Jaffe (1999);
Chen, Lu, Sun, Wang, Goldman (2008)

Exact definition of OAM to be used in the Jaffe-Manohar decomposition

$$
\begin{aligned}
& \lim _{\Delta \rightarrow 0}\left\langle P^{\prime} S\right| \bar{\psi} \gamma^{+} i \overleftrightarrow{D}_{\text {pure }}^{i} \psi|P S\rangle=i S^{+} \epsilon^{i j} \Delta_{\perp j} L_{\text {can }}^{q} \\
& \lim _{\Delta \rightarrow 0}\left\langle P^{\prime} S\right| F^{+\alpha} \overleftrightarrow{D}_{\text {pure }}^{i} A_{\alpha}^{p h y s}|P S\rangle=-i \epsilon^{i j} \Delta_{\perp j} S^{+} L_{\text {can }}^{g} \\
& \quad A_{\text {phys }}^{\mu}(x)=\frac{1}{D^{+}} F^{+\mu}=\int_{x^{-}}^{\infty} d z^{-} W\left[x^{-}, z^{-}\right] F^{+\mu}\left(z^{-}, x_{\perp}\right) \\
& D_{\text {pure }}^{\mu}=D^{\mu}-i A_{\text {phys }}^{\mu}
\end{aligned}
$$

The boundary condition for the operator $1 / D^{+}$does not matter

OAM from the Wigner distribution

Wigner distribution
Phase space distribution of partons in QCD

```
Lorce, Pasquini (2011);
YH (2011);
Lorce, Pasquini, Xiong, Yuan (2011)
```

Belitsky, Ji, Yuan (2004)

$$
\begin{aligned}
& W\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) \\
& =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} \frac{d z^{-} d^{2} z_{\perp}}{16 \pi^{3}} e^{i x P^{+} z^{-}-i \vec{k}_{\perp} \cdot \vec{z}_{\perp}}\left\langle P-\frac{\Delta}{2}\right| \bar{q}(b-z / 2) \gamma^{+} q(b+z / 2)\left|P+\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

Define

$$
L^{q}=\int d x \int d^{2} b_{\perp} d^{2} k_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} W^{q}\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

OAM from the generalized TMD (GTMD)

Fourier transform of Wigner : GTMD

$$
W\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) \rightarrow W\left(x, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

$$
\begin{aligned}
& \int \frac{d^{3} z}{2(2 \pi)^{3}} e^{i x P^{+} z^{-}-i \widetilde{k}_{\perp} \cdot \widetilde{z}_{\perp}}\left\langle p^{\prime}\right| \bar{\psi}(-z / 2) \gamma^{+} \psi(z / 2)|p\rangle \\
& =\frac{1}{2 M} \bar{u}\left(p^{\prime}\right)\left[F_{1,1}^{q}+i \frac{\sigma^{j+}}{P^{+}}\left(\widetilde{k}_{\perp}^{j} F_{1,2}^{q}+\widetilde{\Delta}_{\perp}^{j} F_{1,3}^{q}\right)+i \frac{\sigma^{i j} \widetilde{k}_{\perp}^{i} \widetilde{\Delta}^{j}{ }^{2}}{M^{2}} F_{1,4}^{q}\right] u(p) \\
& L_{q, g}=-\int d x \int d^{2} k_{\perp} \frac{k_{\perp}^{2}}{M^{2}} F_{1,4}^{q, g}(x)
\end{aligned}
$$

Which OAM is this?

Wilson lines and OAMs

Canonical (JM) OAM from the light-cone staple Wilson line

$$
\int d^{2} k_{\perp}\left(b_{\perp} \times k_{\perp}\right) W_{L C}\left(b_{\perp}, k_{\perp}\right)=\left\langle\bar{\psi} b_{\perp} \times i D_{\perp}^{\text {pure }} \psi\right\rangle
$$

$$
D_{\text {pure }}^{\perp}=D^{\perp}-\frac{i}{D^{+}} F^{+\perp}
$$

Kinetic (Ji's) OAM from the straight Wilson line
Ji, Xiong, Yuan (2012)

Jaffe-Manohar vs. Ji on a lattice

Staple length

‘PDF' of OAM

In order to determine $\Delta \Sigma, \Delta G$, we first extract the associated PDFs $\Delta q(x), \Delta G(x)$ and integrate over x .

Same with $L_{\text {can }}^{q, g}$

OAM from the Wigner distribution

$$
L_{c a n}^{q}=\int d x \int d^{2} b_{\perp} d^{2} k_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} W^{q}\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

Define the x -distribution

$$
L_{c a n}^{q}(x)=\int d^{2} b_{\perp} d^{2} k_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} W^{q}\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)
$$

It's a twist-3 PDF, similar to $g_{2}(x)$.

Twist structure of OAM PDF

Wandzura-Wilczek part

$$
\left.\begin{array}{rl}
L_{c a n}^{q}(x)=x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime}}\left(H_{q}\left(x^{\prime}\right)+E_{q}\left(x^{\prime}\right)\right)-x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}} \tilde{H}_{q}\left(x^{\prime}\right) \\
-x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \Phi_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{3 x_{1}-x_{2}}{x_{1}^{2}\left(x_{1}-x_{2}\right)^{2}} & \text { genuine twist-3 } \\
-x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \tilde{\Phi}_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{1}{x_{1}^{2}\left(x_{1}-x_{2}\right)} & \\
& \Phi_{F}
\end{array} \quad \sim\left\langle P^{\prime}\right| \bar{\psi} \gamma^{+} F^{+i} \psi|P\rangle\right)
$$

$$
\begin{aligned}
L_{c a n}^{g}(x)= & \frac{x}{2} \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}}\left(H_{g}\left(x^{\prime}\right)+E_{g}\left(x^{\prime}\right)\right)-x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{2}} \Delta G\left(x^{\prime}\right) \\
& +2 x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 3}} \int d X \Phi_{F}\left(X, x^{\prime}\right)+2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \tilde{M}_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{1}{x_{1}^{3}\left(x_{1}-x_{2}\right)} \\
& +2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} M_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{2 x_{1}-x_{2}}{x_{1}^{3}\left(x_{1}-x_{2}\right)^{2}}
\end{aligned}
$$

Evolution of $L_{q, g}(x)$: WW part

$$
\frac{d}{d \ln Q^{2}}\binom{L_{q}(x)}{L_{g}(x)}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left(\begin{array}{llll}
\hat{P}_{q q}(z) & \hat{P}_{q g}(z) & \Delta \hat{P}_{q q}(z) & \Delta \hat{P}_{q g}(z) \\
\hat{P}_{g q}(z) & \hat{P}_{g g}(z) & \Delta \hat{P}_{g q}(z) & \Delta \hat{P}_{g g}(z)
\end{array}\right)\left(\begin{array}{c}
L_{q}(x / z) \\
L_{g}(x / z) \\
\Delta q(x / z) \\
\Delta G(x / z)
\end{array}\right),
$$

Leading order Hagler, Schafer (1998)
Harindranath, Kundu (1999)
Hoodbhoy, Ji, Lu (1999)

All orders
Boussarie, YH, Yuan (2019)

$$
\begin{aligned}
\frac{\partial}{\partial \ln Q^{2}}\binom{L_{q}^{\omega}}{L_{g}^{\omega}} & =\left(\begin{array}{ll}
\gamma_{q q}^{\omega+1} & \gamma_{q g}^{\omega+1} \\
\gamma_{g q}^{\omega}+1 & \gamma_{g g}^{\omega}+1
\end{array}\right)\binom{L_{\sum}^{\omega}}{L_{g}^{\omega}} \\
& +\frac{1}{\omega+1}\left(\begin{array}{cc}
\gamma_{q q}^{\omega+1}-\Delta \gamma_{q q}^{\omega} & 2 \gamma_{q g}^{\omega+1}-\Delta \gamma_{q g}^{\omega} \\
\gamma_{g q}^{\omega+1}-2 \Delta \gamma_{g q}^{\omega} & 2 \gamma_{g g}^{\omega+1}-2 \Delta \gamma_{g g}^{\omega}
\end{array}\right)\binom{\Delta \Sigma^{\omega}}{\Delta G^{\omega}}
\end{aligned}
$$

Evolution of $L_{q, g}(x)$: genuine twist-3 part

Non-forward matrix elements of $\bar{\psi} \gamma^{+} F^{+i} \psi$ in the limit $\Delta_{\perp} \rightarrow 0$, zero skewness
\rightarrow The same evolution as for the Efremov-Teryaev-Qiu-Sterman function.
Numerical code developed by Pirnay (2013)
Straightforward to adapt to the OAM problem

Scale evolution of the `potential’ angular momentum

$$
L_{\text {pot }}=L_{J i}-L_{\text {can }} \sim\left\langle\bar{\psi} \gamma^{+} \epsilon^{i j} x^{i} \times \frac{1}{D^{+}} F^{+j} \psi\right\rangle
$$

Cf. $L_{\text {pot }}=0$ to one-loop in QED Ji, Schafer, Yuan, Zhang, Zhao (2016)
Evolution not characterized by a single anomalous dimension. Different Mellin moments mix under evolution.

OAM at small-x

Suppose a quark emits a very soft gluon.
Nothing happens to the quark.
From angular momentum conservation, gluon helicity and OAM must cancel.

$$
\begin{aligned}
& \frac{d}{d \ln Q^{2}} L_{g}(x)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left(-2 C_{F}+\cdots\right) \Delta q(x / z) \\
& \frac{d}{d \ln Q^{2}} \Delta G(x)=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d z}{z}\left(+2 C_{F}+\cdots\right) \Delta q(x / z)
\end{aligned}
$$

1-loop DGLAP evolution

`Democratic model'

$$
\begin{aligned}
& \Delta \Sigma\left(x, Q_{0}^{2}\right)=\frac{1}{4}, \quad \Delta G\left(x, Q_{0}^{2}\right)=\frac{1}{8}, \\
& L_{q}\left(x, Q_{0}^{2}\right)=\frac{1}{8}, \quad L_{g}\left(x, Q_{0}^{2}\right)=\frac{1}{8},
\end{aligned}
$$

All-order argument

Start from the exact formula YH, Yoshida (2013)

$$
\begin{aligned}
L_{c a n}^{g}(x)= & \frac{x}{2} \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}}\left(H_{g}\left(x^{\prime}\right)+E_{g}\left(x^{\prime}\right)\right)-x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}} \Delta G\left(x^{\prime}\right) \\
& +2 x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 3}} \int d X \Phi_{F}\left(X, x^{\prime}\right)+2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \tilde{M}_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{1}{x_{1}^{3}\left(x_{1}-x_{2}\right)} \\
& +2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} M_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{2 x_{1}-x_{2}}{x_{1}^{3}\left(x_{1}-x_{2}\right)^{2}}
\end{aligned}
$$

Assume that the helicity term dominates on the rhs (in the spirit of double-log approximation)

If $\Delta G(x) \sim \frac{1}{x^{\alpha}}$, then $\quad L_{g}(x) \approx-\frac{2}{1+\alpha} \Delta G(x)$

Double logarithmic approximation (DLA)

Higher order diagrams for $\Delta \Sigma(x), \Delta G(x)$ contain double logarithms $\left(\alpha_{s} \ln ^{2} 1 / x\right)^{n}$

The same is expected for OAM at small-x.

Unlike BFKL, we need to resum quark ladders and non-ladder diagrams.

Resummation hard, but can be done.
Kirshner, Lipatov (1983)
Bartels, Ermolaev, Ryskin (1996),
Kovchegov, Pitonyak. Sievert (2015~)
Kovchegov (2019)
Boussarie, YH, Yuan (2019)
Cougoulik, Kovchegov, Tarasov, Tawabutr (2022)

InfraRed Evolution Equation (IREE) for helicity PDF

Kirshner, Lipatov (1983)
Bartels, Ermolaev, Ryskin (1996),

$$
\begin{aligned}
& F_{0}=\frac{g^{2}}{\omega} M_{0}-\frac{g^{2}}{2 \pi^{2} \omega^{2}} F_{8} G_{0}+\frac{1}{8 \pi^{2} \omega} F_{0}^{2} \\
& F_{8}=\frac{g^{2}}{\omega} M_{8}+\frac{g^{2} C_{A}}{8 \pi^{2} \omega} \frac{d}{d \omega} F_{8}+\frac{1}{8 \pi^{2} \omega} F_{8}^{2}
\end{aligned}
$$

$$
M_{0}=\left(\begin{array}{cc}
C_{F} & -2 T_{f} \\
2 C_{F} & 4 C_{A}
\end{array}\right) \quad M_{8}=\left(\begin{array}{cc}
-1 / 2 N_{c} & -T_{f} \\
C_{A} & 2 C_{A}
\end{array}\right) \quad G_{0}=\left(\begin{array}{cc}
C_{F} & 0 \\
0 & C_{A}
\end{array}\right)
$$

Generalizing IREE to OAM

$$
\begin{aligned}
& F_{0}=\frac{g^{2}}{\omega} M_{0}-\frac{g^{2}}{2 \pi^{2} \omega^{2}} F_{8} G_{0}+\frac{1}{8 \pi^{2} \omega} F_{0}^{2} \\
& F_{8}=\frac{g^{2}}{\omega} M_{8}+\frac{g^{2} C_{A}}{8 \pi^{2} \omega} \frac{d}{d \omega} F_{8}+\frac{1}{8 \pi^{2} \omega} F_{8}^{2}
\end{aligned}
$$

The same coupled equations, but now with 4×4 matrices.

$$
M_{0}=\left(\begin{array}{cccc}
C_{F} & -2 T_{f} & 0 & 0 \\
2 C_{F} & 4 C_{A} & 0 & 0 \\
-C_{F} & 2 T_{f} & 0 & 0 \\
-2 C_{F} & -4 C_{A} & 2 C_{F} & 2 C_{A}
\end{array}\right) \quad G_{0}=\left(\begin{array}{cccc}
C_{F} & 0 & 0 & 0 \\
0 & C_{A} & 0 & 0 \\
0 & 0 & C_{F} & 0 \\
0 & 0 & 0 & C_{A}
\end{array}\right) \quad M_{8}=\left(\begin{array}{cccc}
-1 / 2 N_{C} & -T_{f} & 0 & 0 \\
C_{A} & 2 C_{A} & 0 & 0 \\
1 / 2 N_{c} & T_{f} & 0 & 0 \\
-C_{A} & -2 C_{A} & C_{A} & C_{A}
\end{array}\right)
$$

Exact solution

$$
\begin{aligned}
F_{0}^{2 \times 2} & =\frac{g^{2}}{\omega} M_{0}^{2 \times 2}+\left(\begin{array}{cc}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right)
\end{aligned} \quad \leftarrow \text { Bartels, Ermolaev, Ryskin solution } \quad \begin{aligned}
F_{0}^{4 \times 4} & =\frac{g^{2}}{\omega} M_{0}^{4 \times 4}+\left(\begin{array}{cccc}
A_{1} & A_{2} & 0 & 0 \\
B_{1} & B_{2} & 0 & 0 \\
-A_{1} & -A_{2} & 0 & 0 \\
-2 B_{1} & -2 B_{2} & 0 & 0
\end{array}\right) \times(-1)
\end{aligned}
$$

Fully consistent with the evolution of WW part in DLA

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial \ln Q^{2}}\binom{L_{q}^{\omega}}{L_{g}^{\omega}} & =\left(\begin{array}{ll}
\gamma_{q q}^{\omega+1} & \gamma_{q g}^{\omega+1} \\
\gamma_{g q}^{\omega+1} & \gamma_{g g}^{\omega+1}
\end{array}\right)\binom{L_{\Sigma}^{\omega}}{L_{g}^{\omega}} \\
& +\frac{1}{\omega+1}\binom{\gamma_{q q}^{\omega+}\left(1-\Delta \gamma_{q q}^{\omega}\right.}{\gamma_{g q}^{\omega+}-2 \Delta \gamma_{g q}^{\omega}} 2 \gamma_{q g}^{\omega+}\left(-\Delta \gamma_{q g}^{\omega}\right. \\
2 \gamma_{g g}^{\omega+}-2 \Delta \gamma_{g g}^{\omega}
\end{array}\right)\binom{\Delta \Sigma^{\omega}}{\Delta G^{\omega}}+\cdots .
$$

Result in DLA

$$
n_{f}=4
$$

$$
\begin{aligned}
& \Delta G(x) \approx-2.29 \Delta \Sigma(x) \propto x^{-3.45 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}} \\
& L_{g}(x) \approx-2 \Delta G(x), \quad \Delta \Sigma(x) \approx-L_{q}(x)
\end{aligned}
$$

Compare with the all-order argument

$$
L_{g}(x) \approx-\frac{2}{1+\alpha} \Delta G(x)
$$

EIC will allow us to constrain $\Delta G(x)$ at small-x.

However, this will not solve the spin puzzle because whatever helicity we find at small-x will be more than compensated by the OAM.

Observables for OAM

- Nonexistent...until recently
- Still at the level of identifying processes that may be sensitive to OAM at leading order.
- Measuring OAM = Measuring Wigner. Challenging for an all-order factorization

Longitudinal single spin asymmetry in diffractive dijets

Leading order, unpolarized (twist-2 GPDs) Braun, Ivanov (2005)
Single spin asymmetry Ji, Yuan, Zhao (2016); YH, Nakagawa, Yuan, Xiao, Zhao (2016)

Interference between twist-2 and twist-3 amplitudes

$$
d \sigma^{h_{p}} \sim h_{p} \sin \left(\phi_{q_{\perp}}-\phi_{\Delta_{\perp}}\right)(z-\bar{z}) \mathfrak{I} \mathfrak{m}\left(A_{2} A_{3}^{*}\right)
$$

Asymmetry vanishes for symmetric jet configurations $z=1 / 2$

Longitudinal double spin asymmetry in diffractive dijets

Bhattacharya, Boussarie, YH, 2201.08709

Interference between twist-2 (unpol gluon GPD) and twist-3 (gluon OAM) $\mathcal{H}_{g} \mathcal{L}_{g}^{*}$

Interference between longitudinal and transverse photon amplitudes

Another contribution from helicity GPD "kinematical higher twist" effect (also present in SSA)

Collinear factorization breaking?

In general, the cross section contains Compton form factors with a third pole

$$
\int d x \frac{H_{g}(x, \xi)}{\left(x^{2}-\xi^{2}+i \xi \epsilon\right)^{3}}
$$

The x-integral is divergent if gluon GPDs contain

$$
H_{g}(x, \xi) \sim \theta(\xi-|x|)\left(x^{2}-\xi^{2}\right)^{2}
$$

Luckily, all these factorization breaking terms can be eliminated by setting $z=1 / 2$
In SSA, one cannot set $z=1 / 2$ because the asymmetry vanishes there.

Complete result

$$
\frac{d \sigma}{d y d Q^{2} d \phi_{l_{\perp}} d z d q_{\perp}^{2} d^{2} \Delta_{\perp}}=\frac{\alpha_{e m} y}{2^{11} \pi^{7} Q^{4}} \frac{\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}}{\left(W^{2}+Q^{2}\right)\left(W^{2}-M_{J}^{2}\right) z \bar{z}}
$$

$$
\begin{aligned}
\int d \phi_{q_{\perp}} L^{\mu \nu} A_{\mu}^{*} A_{\nu}= & \left.-\frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{(1+\xi) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}} \right\rvert\, l_{\perp} \| \Delta_{\perp} \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
\times & \mathfrak{R e}\left[\left\{\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}}\left(\mathcal{H}_{g}^{(2) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(2) *}\right)\right\} \mathcal{L}_{g}\right. \\
& \left.+\left(\mathcal{E}_{g}^{(1) *}+\frac{4 q_{\perp}^{2}}{q_{\perp}^{2}+\mu^{2}} \mathcal{E}_{g}^{(2) *}\right) \frac{\mathcal{O}}{2}\right] \\
+ & \frac{2^{10} \pi^{4}}{N_{c}} h_{l} h_{p} \alpha_{s}^{2} \alpha_{e m} e_{q}^{2} \frac{\left(1-\xi^{2}\right) \xi Q^{2}}{\left(q_{\perp}^{2}+\mu^{2}\right)^{2}}\left|l_{\perp}\right|\left|\Delta_{\perp}\right| \cos \left(\phi_{l_{\perp}}-\phi_{\Delta_{\perp}}\right) \\
& \times \mathfrak{R e}\left[\left(\mathcal{H}_{g}^{(1) *}-\frac{\xi^{2}}{1-\xi^{2}} \mathcal{E}_{g}^{(1) *}\right)\left(\tilde{\mathcal{H}}_{g}^{(2)}-\frac{\xi^{2}}{1-\xi^{2}} \tilde{\mathcal{E}}_{g}^{(2)}\right)\right]
\end{aligned}
$$

Interplay between OAM and helicity

Cross section proportional to

$$
\mathcal{H}_{g}^{(1)}\left(\tilde{\mathcal{H}}_{g}^{(2)}+\frac{q_{\perp}^{2}-z \bar{z} Q^{2}}{q_{\perp}^{2}+z \bar{z} Q^{2}} \mathcal{L}_{g}\right)
$$

$$
\tilde{\mathcal{H}}_{g}^{(2)}(\xi)=\int d x \frac{x \tilde{H}_{g}(x, \xi)}{\left(x^{2}-\xi^{2}+i \xi \epsilon\right)^{2}} \quad \mathcal{L}_{g}(\xi)=\int_{-1}^{1} d x \frac{x^{2} L_{g}(x, \xi)}{(x-\xi+i \epsilon)^{2}(x+\xi-i \epsilon)^{2}}
$$

Gluon OAM and helicity opposite signs at small-x YH, Yang (2018); Boussarie, YH, Yuan (2019)

Depending on the sign of $q_{\perp}^{2}-\frac{Q^{2}}{4}$, the two contributions add up/cancel.

Prediction for EIC

Use the Wandzura-Wilczek approximation for gluon OAM

$$
L_{g}(x) \approx x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} x^{\prime} G\left(x^{\prime}\right)-2 x \int_{x}^{1} \frac{d x^{\prime}}{x^{\prime 2}} \Delta G\left(x^{\prime}\right)
$$

...though our ultimately interest is in the deviation from this formula Use the double distribution trick (Radyushkin) to model GPDs $H_{g}(x) \rightarrow H_{g}(x, \xi)$ etc.

First-ever quantitative prediction for an observable sensitive to OAM To extract OAM, we need to know $\Delta G(x)$ precisely at small-x

Quark OAM?

Bhattacharya, Metz, Zhou (2017)

Spin asymmetires in double Drell-Yan

$$
\pi N \rightarrow\left(\ell_{1}^{-} \ell_{1}^{+}\right)\left(\ell_{2}^{-} \ell_{2}^{+}\right) N^{\prime}
$$

$$
\begin{aligned}
\frac{1}{2}\left(\tau_{L U}+\tau_{U L}\right)=\frac{1}{2}\left(\left|\mathcal{T}_{+,+}\right|^{2}-\left|\mathcal{T}_{-,-}\right|^{2}\right)= & \frac{4}{M^{2}} \varepsilon_{\perp}^{i j} \Delta q_{\perp}^{i} \Delta_{a \perp}^{j} \operatorname{Im}\left\{C^{(-)}\left[F_{1,1} \Phi_{\pi}\right] C^{(+)}\left[\vec{\beta}_{\perp} \cdot \vec{k}, \perp F_{1,4}^{*} \Phi_{\pi}^{*}\right]\right. \\
& \left.-C^{(+)}\left[G_{1,4} \Phi_{\pi}\right] C^{(-)}\left[\vec{\beta}_{\perp} \cdot \vec{k}_{a \perp} G_{1,1}^{*} \Phi_{\pi}^{*}\right]\right\}
\end{aligned}
$$

A proof of factorization with GTMDs?
Echevarria. Gutierrez Garcia, Scimemi 2208.00021

Conclusions

- OAM is an essential component of the spin sum rule.
- Helicity is not RG invariant. OAM is always there.
- Unraveling the proton spin structure is a key mission of EIC. More attention/discussion needed in the community.
- Our proposal: DSA in diffractive dijet. Reduces to a twist-3 GPD observable.

