Why we need factorization for jet physics in Heavy lon collisions

Varun Vaidya, MIT, June 30, 2022

Probing a strongly coupled medium

- Quark Gluon Plasma created during HIC is a strongly coupled liquid.
- Perturbation Theory is not reliable to describe the structure of the QGP.
- Hydrodynamic description works at long length scales.
- Not suitable for microscopic structure probed by high energy jets.
- Holographic methods \rightarrow Qualitative results \rightarrow Not systematically improvable

> How can we make precise predictions for jet observables in a HIC environment?

- This is NOT a new problem in nuclear physics
- We are faced with the same issue in hadronic colliders: A strongly coupled initial state that cannot be described by perturbation theory.
- Precision predictions for ep, pp colliders still possible.

- We rely on Factorization.

Familiar examples

Factorization relies on separation of scales

\uparrow
Photon momentum $Q \rightarrow$ UV scale
Hadron Mass $\Lambda_{Q C D} \rightarrow \mathrm{IR}$ scale

Factorization gives predictive power via proof of universality.

PDF isolates universal information about the strongly coupled initial state.

Why should we care about factorization?

- A precise gauge invariant operator definition of the universal non-perturbative physics.

$$
f_{q}(\xi)=\int \frac{d x^{+}}{2 \pi} e^{-i x^{+} \xi Q} \operatorname{Tr}\left[\bar{\chi}_{q}\left(x^{+}\right) W\left(x^{+}, 0\right) \gamma^{-} \chi_{q}(0) \rho_{H}\right]
$$

- A standalone matrix element in a hadron state is much easier to compute numerically (lattice/Quantum computer) than a full simulation.
- Renormalization of the operator(radiative corrections) can be done only once independent of any specific experiment and independent of any specific hadron :LO \rightarrow DGLAP
- Numerical predictions can be enormously improved by resumming logarithms in
 the expansion parameters by RG running. $\left(\alpha_{s}^{n} \ln ^{n} \frac{Q}{\Lambda_{Q C D}}\right)$
- Systematically improvable \rightarrow Computing perturbative functions to higher order, Including higher powers in the expansion parameter.

Factorization for Jet production

$$
\begin{aligned}
\frac{d \sigma^{p p \rightarrow \operatorname{jet} X}}{d p_{T} d \eta}= & \frac{2 p_{T}}{s} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \frac{d x_{a}}{x_{a}} f_{a}\left(x_{a}, \mu\right) \int_{x_{b}^{\min }}^{1} \frac{d x_{b}}{x_{b}} f_{b}\left(x_{b}, \mu\right) \\
& \times \int_{z_{c}^{\min }}^{1} \frac{d z_{c}}{z_{c}^{2}} \frac{d \hat{\sigma}_{a b}^{c}\left(\hat{s}, \hat{p}_{T}, \hat{\eta}, \mu\right)}{d v d z} J_{c}\left(z_{c}, p_{T}, R, \mu\right) \\
& +O\left(R^{2}\right)+O\left(\frac{\Lambda_{Q C D}^{2}}{p_{T}^{2}}\right)
\end{aligned}
$$

Zhong-bo Kang, Felix Ringer and Ivan Vitev JHEP 10 (2016) 125

Hard function
at p_{T}

Perturbatively calculable jet function at $p_{T} R$
Obeys time-like DGLAP equation

Can we do the same for jets in Heavy Ion Collisions?

Inclusive Jet production in HIC

An analogy with DIS

Define a Bjorken x for the medium

$$
x=\frac{\left(p_{T} R\right)^{2}}{T p_{T}}
$$

Two regimes
$\cdot \mathrm{x} \sim 1 \rightarrow$ Factorize into "Hard jet function" at scale

$$
\left\{\begin{array}{l}
\text { jet } p_{T} \\
p_{T} R \equiv Q
\end{array}\right.
$$

Temperature T, Debye Mass \rightarrow IR scale $p_{T} R \sim Q$ and a "Medium PDF" at the scale T.

In order to keep the factorization for the vacuum evolution, we need to do this "large x DIS" factorization in the target (Medium) rest frame.

Work in progress !

Factorization for Dilute Inhomogeneous Medium

$\cdot \mathrm{x} \ll 1 \rightarrow$ Small x factorization \rightarrow A smaller $p_{T} R$
$\left\{\begin{array}{l}\text { jet } p_{T} \\ p_{T} R \equiv Q\end{array}\right.$
Temperature T

Factorization for Dilute Inhomogeneous Medium

$$
\lambda_{\mathrm{mfp}}^{-1}\left(R, p_{T}, y\right) \rightarrow \hat{q}=\text { Jet transport parameter }
$$

The jet transport parameter depends on both the properties of the jet(via the measurements imposed on it) and the properties of the medium and hence \hat{q} is not a direct probe of observable independent medium properties.

Therefore we must factorize this object further to separate out the universal

 physics of the medium from the properties of the jet.$$
\lambda_{\mathrm{mfp}}^{-1}\left(R, N, p_{T}, y\right)=H_{G}\left(p_{T}, \mu\right) \int d^{2} k_{\perp} S_{\mathrm{med}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\operatorname{med}}\left(R, p_{T}, N, k_{\perp}\right)+O\left(R^{2}\right)
$$

Universal observable independent structure function

Medium
jet function
V. Vaidya

$$
\begin{aligned}
& \text { An Effective Field Theory for jet substructure in Heavy } \\
& \text { jeldya }
\end{aligned}
$$

$$
\text { Ion Collisions. JHEP 11, } 064 \text { (2021) }
$$

$$
\left.\hat{q}\left(p_{T}, R, y, N\right)=H_{G}\left(p_{T}, \mu\right) \int d^{2} k_{\perp} k_{\perp}^{2} S_{\mathrm{med}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\operatorname{med}}\left(p_{T}, R, N, y, \mu\right)+O\left(R^{2}\right)\right)
$$

Medium Structure function

$$
\begin{gathered}
S_{\mathrm{med}\left(k_{\perp}, y\right)=\frac{1}{k_{\perp}^{2}} \int \frac{d k^{-}}{2 \pi} \int d^{4} x e^{-i k \cdot x} \operatorname{Tr}\left[O_{S}^{A}(x+y) O_{S}^{A}(y) \rho_{\mathrm{Med}}\right]}^{O_{S}^{A}=\sum_{i \in q, g} O_{S}^{A, i}} \quad O_{S}^{A, q}=\bar{\psi} S_{+} T^{A} \frac{\gamma^{+}}{2} S_{+}^{\dagger} \psi
\end{gathered}
$$

- Gauge Invariant operator definition for universal medium physics.
- Depends only on the local properties of the medium.
- Renormalization group Equation in rapidity is the BFKL equation.
-The same operator describes the medium in small x DIS and jet propagation in EIC!

RG improved transport parameter

$$
\lambda_{\mathrm{mfp}}^{-1}\left(R, N, p_{T}, y\right)=H_{G}\left(p_{T}, \mu\right) \int d^{2} k_{\perp} S_{\mathrm{med}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\operatorname{med}}\left(R, p_{T}, N, k_{\perp}, \nu\right)
$$

A non-perturbative medium

$$
\lambda_{\mathrm{mfp}}^{-1}\left(R, N, p_{T}, y\right)=H_{G}\left(p_{T}, \mu\right) \int d^{2} k_{\perp} S_{\mathrm{med}^{(}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\operatorname{med}}\left(R, p_{T}, N, k_{\perp}, \nu\right)
$$

$$
p_{T} \gg p_{T} R \gg T
$$

- Jet function is perturbative and calculable.
- Medium function $S_{\text {med }}$ can be matched onto the medium PDF at T
- Medium PDF: Non perturbative but observable independent!
- Only need to recompute the jet function for different jet substructure observables.

Extension to a Dense Medium

$$
\frac{d \sigma}{d \eta d p_{T}}=\frac{1}{V} \int d^{2} y \int d y^{+} \operatorname{InvMellin}\left[\left.\frac{d \sigma}{d \eta d p_{T}}\left(N, R, p_{T}\right)\right|_{\operatorname{vac}}\left(1-\int_{0}^{L^{-}} \frac{d y^{-}}{\lambda_{\operatorname{mfp}}\left(R, N, p_{T}, y\right)}\right)\right]
$$

Dilute Medium

Case B: Dense not so long lived medium :
$L^{-} \sim \lambda_{\mathrm{mfp}}>t_{F} \rightarrow$ Markovian limit
$\rightarrow \sigma(N)=[\sigma(N)]_{(\mathrm{vac})} \exp \left[-\frac{L^{-}}{\lambda_{\mathrm{mfp}}\left(R, p_{T}, N\right)}\right]$

Case C: Short lived Dense medium : $L^{-} \sim \lambda_{\text {mfp }} \ll t_{F} \rightarrow \quad$ Quantum Interference between successive interactions

BK/JIMWLK type equation \rightarrow Also describes small x DIS physics

Case D : Long Lived Dense Medium : $L \gg t_{c} \geq \lambda_{\mathrm{mfp}} \rightarrow \quad$ BDMPS -Z regime

Summary

- Factorization is crucial if we are to make quantitative predictions for jet propagation in a nonperturbative medium.
-It isolates the universal observable independent properties of a strongly coupled medium.
-A general framework to compute any jet observable merely by imposing different measurements on the jet function.

Outlook

This type of analysis can also be extended for the case of a Dense Medium where we need to sum multiple jet-medium interaction.

Thank You

