Jet tomography in DIS today and tomorrow

Miguel Arratia

DIS Born-level configuration $\gamma^* q ightarrow q$

A new channel to probe for quark transverse-momentum distributions (TMDs) and evolution

Liu et al. PRL. 122, 192003, Gutierrez et al. PRL. 121, 162001

"The advantage of the lepton-jet correlation as compared to the standard SIDIS processes is that it **does not involve TMD fragmentation functions.**"

Ideally, a complete "quantum tomography" of the proton involves:

$$W(x,p) = \int \psi^*(x-\eta/2)\psi(x+\eta/2)e^{ip\eta}d\eta$$

Difficult, so attempt to measure "projections" of the quantum-phase density

Existing TMD data

Constraining TMD evolution with HERA data

Bridging DIS from fixed-target exp. and high Q2 Drell-Yan at colliders.

Fixing open issues of TMD factorization & universality

The H1 experiment at HERA

Tracking system
 (silicon tracker, jet chambers, proportional chambers)

- LAr calorimeter (em/had)
- Scintillating fiber calorimeter

Both combined using an energy flow algorithm

1% Jet energy scale

0.5-1% lepton energy scale

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

PHYSICAL REVIEW LETTERS									
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Staff
Open Access Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding									
V. Andreev et al. (H1 Collaboration) Phys. Rev. Lett. 128 , 132002 – Published 31 March 2022									
Article	Reference	s No Citir	ng Articles	Supplemental N	Naterial	PDF	HTML	Export Ci	itation

Jet transverse momentum

Well described by NNLO calculation, and some MCs like Herwig and Djangoh

Jet pseudorapidity

Not well described at large pseudorapidity by NNLO, missing higher-order terms.

Well described by Rapgap

Lepton-jet momentum imbalance $q_T = |\vec{p}_T^e + \vec{p}_T^{\text{jet}}|$

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks

Textbook example of "matching" between collinear and TMD frameworks

<u>First time seen in</u> <u>DIS!</u>

<u>(not seen in</u> <u>fixed-target DIS)</u>

Lepton-jet azimuthal correlations

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks

Omnifold allowed us to do a simultaneous, unbinned "unfolding"

First-ever measurement that uses <u>machine-learning</u> to correct for detector effects.

"But the jets at EIC will be too low energy to be interesting" Said most people commenting jets @ EIC

"But the uncertainties at low energy would be too large" Said most people commenting jets @ EIC

"But you cannot do jet substructure with low-energy jets" Said most people commenting jets @ EIC

https://www-h1.desy.de/publications/H1preliminary.short_list.htm

Jet substructure observables with machine learning

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-034.long.html

$$\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_{i}^{\kappa} \left(\frac{R_{i}}{R_{0}}\right)^{\beta} \qquad \begin{array}{c} \kappa & & \lambda_{\beta}^{\kappa} & \text{Charge information} \\ \mathbf{\lambda}_{\beta}^{\kappa} = Q_{\kappa} = \sum_{i \in jet} q_{i} \times z_{i}^{\kappa}. \\ \mathbf{1} & \text{Charge} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \beta \end{array}$$

Charged hadron Multiplicity

Jet charge

Dispersion

Angularities

 β $\frac{R_i}{R_i}$ $\lambda_eta^\kappa = \sum_{i\in ext{jet}} z^\kappa_i$,

(1, 1)

(1, 1.5)

All of them unfolded simultaneously!!!

Differentially in Q2

All of them unfolded simultaneously!!! & differentially in Q2

New methods needed to study Jet in Breit Frame

Like Centauro algorithm Phys. Rev. D 104, 034005 (2021)

← → C ■ fastjet.hepforge.org/contrib/contents/1.049.html

fastjet.fr

- fastjet-contrib
- contrib list
- contrib svn

Version 1.049 of FastJet Contrib is distributed with the following packages

Package	Version	Release date	Information
Centauro	1.0.0	2020-08-04	README NEWS
ClusteringVetoPlugin	1.0.0	2015-05-04	README NEWS
ConstituentSubtractor	1.4.5	2020-02-23	README NEWS
EnergyCorrelator	1.3.1	2018-02-10	README NEWS

Easy to use for your EIC studies

Event shapes with grooming using Centauro metric

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-033.long.html

Charge-asymmetryjet substructure

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-032.long.html

The road towards EIC during this decade

Every jet-related observable in ep collisions can and will be measured with H1 data

The ultimate "reference" for future polarized ep and eA data at EIC

Open Access

Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding

V. Andreev *et al.* (H1 Collaboration) Phys. Rev. Lett. **128**, 132002 – Published 31 March 2022

Article	References	No Citing Articles	Supplemental Material	PDF HTML	Export Citati	ion
H1prelim-2.	2-034	Jet Substructure at hi Document ♥i11 Info Figures: (1) (2a) (2b) (2 (5k) (5l) (5m) (5n) (5o) (igh Q**2 using machine learning c) (2d) (2e) (2f) (3a) (3b) (3c) (3d) (3e) (3 (5p) (5q) (5r) (5s) (5t) (5u) (5v) (5v) (5x)	f) (3g) (3h) (3j) (3j) (3k) (3) (3m) (use mouse for preview)	(3n) (3o) (3p) (3q) (3r)	
H1prelim-2	2-033	Groomed event shap Document ⊕ii1 Info Figures: (Sa) (Sb) (Sc) (s in high Q**2 DIS 5d) (5e) (5f) (5g) (5h) (5i) (5j) (5k) (5h (6	a) (6b) (6c) (6d) (6c) (6f) (7a) (7b)	(7c) (7d) (7c) (7f) (7g)	
H1prelim-2	2-032	Charge asymmetry J. Document Offin Info Figures: (1) (2) (3a) (3b	et substructure in DIS) (3c) (4a) (4b) (5a) (5b) (6) (7) (9) (10) (11) (12) (13) (14) (use mouse for pr	eview)	<u>ht</u> or
H1prelim-2	1-032	Measurement of 1-je	ttiness in the Breit Frame at high Q	<u>^2</u>		

Stay tuned. Just the beginning of a new & rich jet program

https://www-h1.desy.de/publicati ons/H1preliminary.short_list.html

H1 team at DIS22 in Santiago de Compostela

H1 had 5 contributed talks showing new jet-related results!

Spin-orbit correlations lead to azimuthal asymmetries

Transversely-polarized proton

Projection for Lepton-jet Sivers asymmetry

$$q_T = |\vec{p}_T^e + \vec{p}_T^{\text{jet}}|$$

Prediction & projection in PRD 102, 074015 (2020) Based on formalism in Liu et al. PRL. 122, 192003

Hadron-in-jet Collins asymmetry at EIC

PRD 102, 074015 (2020)

10 + 275 GeV, 100 fb⁻¹, 0.1 < y < 0.85, $j_{\rm T} < 1.5$ GeV, $q_{\rm T}/p_{\rm T}^{\rm jet} < 0.3$

Summary

- New measurement of lepton jet momentum and azimuthal imbalance in DIS, which provide a new way to constrain TMD PDFs and their evolution
 - Pure TMD calculation does a great job at low qT; Pure collinear calculation does a great job at large qT. Large overlap. Data can **constrain matching between TMD and collinear frameworks**
 - **First-ever measurement that uses machine-learning to correct for detector effects.** (using Omnifold method)
 - This is the first measurement in a series of studies that aim at creating a **pathfinder program for the future EIC**

backup

Correlation matrix

q_T/Q

Simultaneous Unfolding of these observables

η^{jet}

p^{jet}

- Unbinned (binned here for reference)

Reweighting the reco-level distributions

We use simple fully connected networks with a few hidden layers.

The distribution is binned for illustration, but the reweighting is unbinned.

Closure tests (Pseudo Data: Django, Response: Rapgap)

Systematic uncertainties

Systematic uncertainties

All these distributions are simultaneously reweighted

Jet performance (energy flow reconstruction)

Closure tests (Pseudo Data: Django, Response: Rapgap)

Hadronization corrections (applied to NNLO calculation)

Small, and consistent with Pythia8 and Herwig despite different models of hadronization

Lepton-jet imbalance $q_T = |\vec{k}_{l\perp} + \vec{p}_{\perp}^{\dagger}|$ In Born-level configuration Probes quark TMD PDFs

Liu et al. PRL. 122, 192003 (2019)

$$\begin{split} \frac{d^5 \sigma(\ell p \to \ell' J)}{dy_\ell d^2 k_{\ell\perp} d^2 q_\perp} &= \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x, k_\perp, \zeta_c, \mu_F) \\ &\quad \times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_\perp, \mu_F) \\ &\quad \times \delta^{(2)}(q_\perp - k_\perp - \lambda_\perp). \end{split}$$

TMD calculation, without free parameters, describes data over wide kinematic range

$$\begin{split} \frac{d^5 \sigma(\ell \, p \to \ell' J)}{dy_\ell d^2 k_{\ell\perp} d^2 q_\perp} &= \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x, k_\perp, \zeta_c, \mu_F) \\ &\times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_\perp, \mu_F) \\ &\times \delta^{(2)}(q_\perp - k_\perp - \lambda_\perp). \end{split}$$

 TMD calculations by F. Yuan and Z. Kang, TMD PDFs and soft factors extracted from low Q2 DIS and DY data. Sun et al. arXiv:1406.3073

https://www-h1.desy.de/publications/H1preliminary.short_list.html

H1prelim-22-034 Jet Substructure at high Q**2 using machine learning Document H1 Info Figures: (1) (2a) (2b) (2c) (2d) (2e) (2f) (3a) (3b) (3c) (3d) (3e) (3f) (3g) (3h) (3i) (3j) (3k) (3l) (3m) (3n) (3o) (3p) (3q) (3r) (5k) (5l) (5m) (5m) (5m) (5m) (5m) (5m) (5m) (5m	
H1prelim-22-033 Groomed event shaps in high Q**2 DIS Document \oplus_{H1} Info	Stay tuned.
Figures: (5a) (5b) (5c) (5d) (5e) (5f) (5g) (5h) (5j) (5k) (5j) (6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c) (7d) (7e) (7f) (7g)	Just the
H1prelim-22-032 Charge asymmetry Jet substructure in DIS Document H1 Info Figures: (1) (2) (3a) (3b) (3c) (4a) (4b) (5a) (5b) (6) (7) (9) (10) (11) (12) (13) (14) (use mouse for preview)	beginning of a
	new, rich
H1prelim-21-032 Measurement of 1-jettiness in the Breit Frame at high Q^2 Document $\Theta_{H1 Info}$ Figures: (1a) (1b) (2) (3a) (3b) (4) (5) (6) (7a) (7b) (8) (9) (10) (11) (12) (13) (use mouse for preview)	program in DIS

Azimuthal correlation

Textbook example of "matching" between collinear and TMD frameworks

<u>First time seen in</u> <u>DIS!</u>

<u>(not seen in</u> <u>fixed-target DIS)</u>