

sPHENIX Update

Chris Pinkenburg (BNL)

57 weeks till first beam

MDC2 started Dec 1st

Catching up with our simulation needs

Requested Samples [edit | edit source]

Ongoing

20M MB hijing (0-20fm) production link https://github.com/sPHENIX-Collaboration/MDC2/tree/main/submit/fm_0_20@
10M MB pp production link (use MB as flag) https://github.com/sPHENIX-Collaboration/MDC2/tree/main/submit/HF_pp200_signal@

Jet Structure [edit | edit source]

50M dijet events, q^2 20-30GeV^2
1-3M gamma-jet

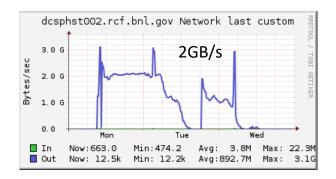
HF [edit | edit source]

```
50M c-cbar production link (use Charm as flag) https://github.com/sPHENIX-Collaboration/MDC2/tree/main/submit/HF_pp200_signal@ 50M b-bbar production link (use Bottom as flag) https://github.com/sPHENIX-Collaboration/MDC2/tree/main/submit/HF_pp200_signal@ 1M c-jet  
1M b-jet  
50M inclusive jet  
1M d-zero --> k - + pi+  
1M d+ --> k - + pi+ + pi+  
1M lamda_c+ --> p + K - + pi+  
2M J/Fsi --> lepton-lepton  
5M b --> J-X  
3M b --> J/Fsi X  
100M MB pp production link (use MB as flag) https://github.com/sPHENIX-Collaboration/MDC2/tree/main/submit/HF_pp200_signal@
```

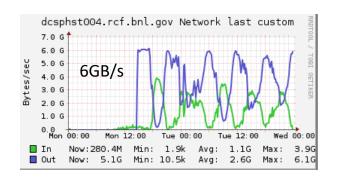
Developing list, close to our computing plan presented in March 2021

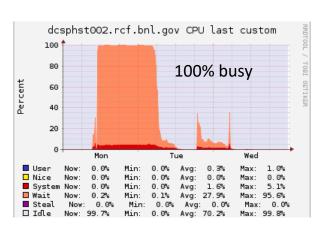
Each project involves multiple processing passes:

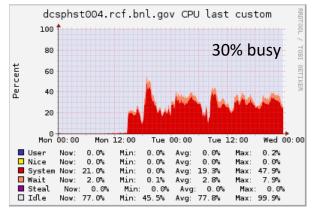
- GEANT4*
- Pileup (we will have multiple events in the tpc)
- TPC electron drift*
- Tracking (close to real data)
- Calorimeter Clustering
- Jet Reco, particle flow,...


*) Cpu intensive

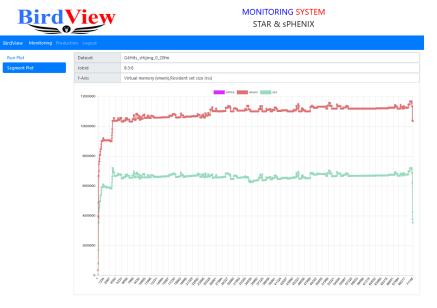
Using (and kicking the tires) of new cpu hardware and take closer look at storage


First MDC2 Result





Plans for Storage


- Older simulation data still reside in dCache
 - Being superseded by MDC2 production
 - Once we have working samples for analysis dCache storage can be wiped and will be moved to lustre
- MinIO works to access lustre on shared pool
 - Lower performance
 - Started processing cpu intensive MDC2 parts on shared pool
 - Direct access from ROOT possible, need to evaluate feasibility at scale

Performance

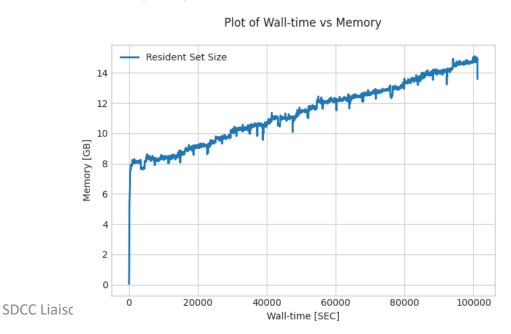
We have now a stable controlled environment allowing reproducible characterization of our performance

Jobs run under prmon (hsf process monitor)

Work in progress

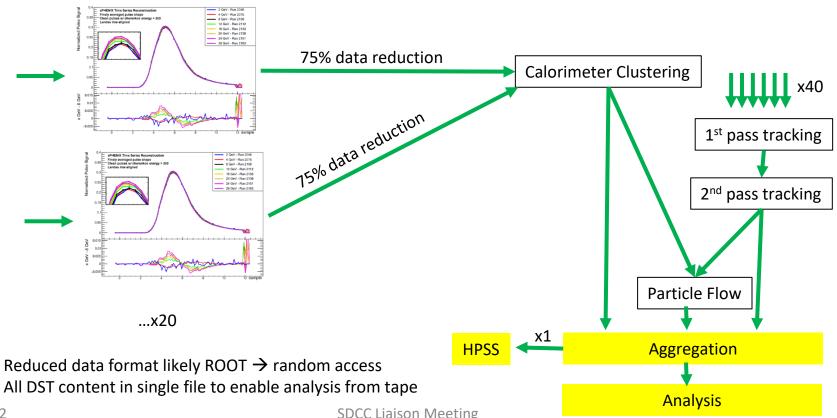
Aggregate and job by job display

Performance Tracking



We can test snapshots of our tracking on large scale – turnaround time few hours for 500 events

Controlled environment extremely important, conclusive measurement were impossible on the shared pool


30 hours for 10k, Yes – we have a memory leak, investigating

Current Workflow (January 2022)

1/20/2022

Next steps

- Conditions DB is making nice progress include (calorimeter) calibrations into MDC2 processing
 - Need to see about cvmfs for calibrations produced during pipeline
- Good progress on the distortion correction, distortions can be applied to our simulated data, working on "undistorting"
- Jason Webb (NPPS) has been identified as our PanDa person
 - Make use of Rucio as soon as it is available
- Getting ready to emulate the "real" dataflow (40 input files)
- Fix problems as they arise, speed up code, reduce memory consumption

Summary

- Getting our hands on the new hardware as early as possible was tremendously helpful
 - Can we keep using the loaners until the full complement of "our" nodes is online?

- We need a controlled environment for our development
 - But crash and burn is expected
- The MDC2 serves two purposes
 - Ongoing providing simulations needed for analysis
 - Shorter term: campaigns to characterize aspects of our data processing (e.g. calibrations)
 - Idling cpu's are not foreseen