

High brightness SRF Gun Overview

Irina Petrushina

Stony Brook University

June 21, 2022

У 🖪 🔘 in @BrookhavenLab

< - >

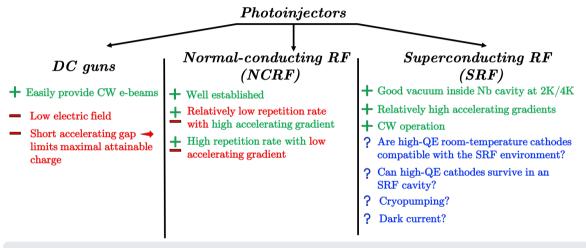
Contents

1 Overview

- Current status of existing electron sources
- Promises and challenges of the SRF technology

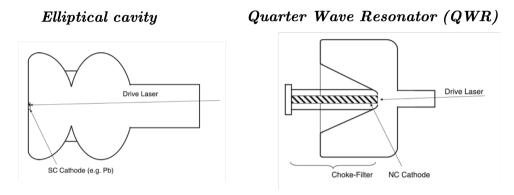
2 Experience with SRF photoinjectors worldwide

- BNL 113 MHz QWR SRF photoinjector
 - Cavity design and assembly
 - Photoinjector commissioning & performance
 - Emittance studies


4 Conclusions and future plans

High-quality, high-current electron beams are needed!

- high-power X-ray and extreme ultraviolet (EUV) continuous wave (CW) free electron lasers (FELs)
- intense γ -ray sources
- coolers for hadron beams
- electron-hadron colliders.


Photoinjectors—what's available?

It is expensive and challenging—hence, there are very few operational SRF guns!

June 21, 2022

SRF photoinjectors—which one to $choose^{1}$?

QWR operates at lower frequencies:

- + Relaxed cryostat temperatures
- + Reduced RF losses
- + Short accelerating gap compared to the wavelength \rightarrow high transit time factor

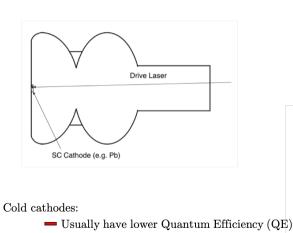
4/22

• • = • • = •

SRF photoinjectors—which one to $choose^{1?}$

Cold cathode

Warm cathode


mmmmm

Superconducting Choke Filter

Helium Vessel

. Choke-Filter NC Cathode

3.5 Cell Cavity

- Hard to replace

Irina Petrushina (SBU)

June 21, 2022

Drive Laser

HOM Coupler

Fundamental Power Coupler

(FPC)

4 E

As of now:

- 2 SRF guns in operation
- $\bullet~4~{\rm SRF}~{\rm guns}~{\rm in}~{\rm R\&D}$
- 1 SRF gun in plan

Different approaches are utilized:

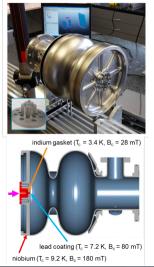
- **DESY:** elliptical cavities with SC cathodes
- HZDR, KEK, HZB: elliptical cavities with NC cathodes in choke filter
- **PKU:** elliptical cavities with NC cathodes in DC module
- BNL, SLAC: QWR with NC cathodes and choke filter

	DESY	PKU	HZDR	KEK	HZB	BNL	SLAC
Cavity Type	1.6-cell elliptical	1.5-cell elliptical	3.5-cell elliptical	1.5-cell elliptical	1.4-cell elliptical	QWR	QWR
RF frequency [MHz]	1300	1300	1300	1300	1300	113	186
Operation temperature [K]	2	2	2	2	2	4	4
Field at cathode [MV/m]	40	6	14	23	24-27	15	30
Cathode	Pb	CsK_2Sb	Mg, Cs_2Te	CsK_2Sb	Cu or CsK ₂ Sb	CsK_2Sb	CsK_2Sb (?)
Laser wavelength [nm]	UV	519	262	532	521 - 523	532	532
Bunch charge [pC]	20-250	100	0-250	80	77	100-20000	100
Status	R&D	R&D	User Operation	R&D	R&D	Operation	In plan

Secrets of obtaining high-quality beams

Emittance of the beam extracted from a photoinjector depends on the value of the electric field at the cathode at the moment of emission, E_{em} , and the bunch shape:

pancake-beam:
$$\varepsilon_n \propto \sqrt{q \frac{E_{MTE}}{E_{\rm em}}}$$
 cigar-beam: $\varepsilon_n \propto \frac{\sqrt{E_{MTE}}}{E_{\rm em}} \left(\frac{q}{\Delta t}\right)^{2/3}$

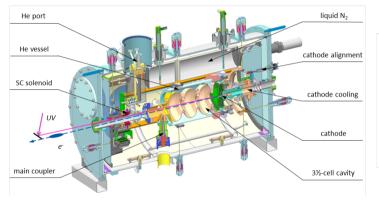

$E_{\rm em} = E_{\rm max} \sin(\phi)$

Phase of emission, ϕ , is selected to maximize the beam energy gain. It depends on the geometry of the RF cavity, accelerating gradient $E_{\rm acc}$, the RF frequency, and it is well described by a dimensionless parameter $\alpha = \frac{eE_{\rm acc}}{2mc\omega}$.

For HZDR:
$$\alpha = 0.7$$
, $\phi = 12.5^{\circ}$, $E_{\rm em} = (0.2 - 0.25)E_{\rm max}$
For BNL: $\alpha = 8.34$, $\phi = 78.5^{\circ}$, $E_{\rm em} \sim 0.98E_{\rm max}$

DESY: 1.3 GHz 1.6-Cell Cavity with SC Cathode

Status: R&D, high brightness source for CW XFEL


Parameter	Value	
Rep. rate [kHz]	100 -1000	
Bunch charge [pC]	20-250	
Emittance [mm-mrad]	0.4 - 0.8	
Beam energy [MeV]	> 3	
Frequency [GHz]	1.3	
Gradient [MV/m]	21	
Field on cathode [MV/m]	40	
Cathode	Pb, screwed to back wall	

Irina Petrushina (SBU)

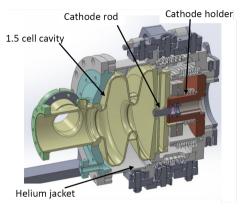
- - E + - E +

HZDR: 1.3 GHz 3.5-Cell Cavity with NC cathode & RF choke

Status: In user operation since 2019 for THz and Neutron generation

Parameter	Value
Rep. rate [kHz]	25 - 250
Bunch charge [pC]	0-250
Emittance [mm-mrad]	2 - 15
Beam energy [MeV]	4.5
Frequency [GHz]	1.3
Gradient [MV/m]	8
Field on cathode [MV/m]	14
Cathode	Cs_2Te on Cu

Further developments presently concentrate on:


- Improve cathode cooling
- $\bullet~{\rm Re\-establish}~{\rm Cs}_2{\rm Te}$ for high bunch charge operation
- Study other cathode materials for SRF gun
- Establish a dedicated gun-lab

Irina Petrushina (SBU)

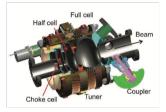
June 21, 2022

KEK: 1.3 GHz 1.5 Cell Cavity with NC cathode & RF choke

Status: R&D, high current beam for ERL

Parameter	Value
Rep. rate [GHz]	1.3
Bunch charge [pC]	80
Emittance [mm-mrad]	0.6
Beam energy [MeV]	2
Frequency [GHz]	1.3
Gradient [MV/m]	16
Field on cathode [MV/m]	23
Cathode	$\mathrm{CsK_2Sb}$

Next steps:


- Test with cathode rod in horizontal cryostat
- Beam test in horizontal test cryostat with small beam current (<500 keV, <1uA)

Irina Petrushina (SBU)

୍ର 11/22

HZB: 1.3 GHz 1.4 Cell cavity with NC cathode & RF choke

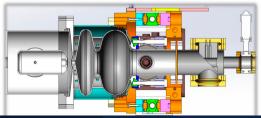
Status: R&D, for bERLinPro ERL

Parameter	Value
Rep. rate [GHz]	N/A
Bunch charge [pC]	77
Emittance [mm-mrad]	<1
Beam energy [MeV]	3
Frequency [GHz]	1.3
Gradient [MV/m]	16
Field on cathode [MV/m]	24 - 27
Cathode	CsK_2Sb , NaK_2Sb

Next steps:

- Mid-2021 to check performance of gun cavity and RF system
- $\bullet\,$ Beam operation with SRF gun and SRF booster in 2022
- Proof-of-concept in 2022+
- $\bullet\,$ Full injector operation with Gun and Booster expected between late 2022 and 2023

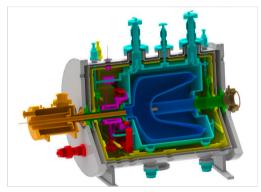
PKU: 1.3 GHz 1.5-Cell + NC cathode with DC gap


Status: R&D, injector test for CW XFEL

Highlight:

First beam from the PKU gun was generated on 04/29/2021

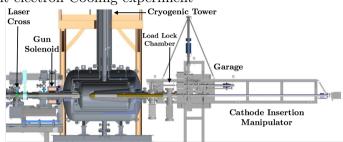
Parameter	Value
Rep. rate [MHz]	1
Bunch charge [pC]	100
Emittance [mm-mrad]	0.37
Beam energy [MeV]	2.8
Frequency [GHz]	1.3
Gradient [MV/m]	14
Field on cathode [MV/m]	6
Cathode	CsK_2Sb, Cs_2Te

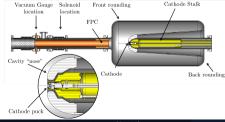


Irina Petrushina (SBU)

クへで 13/22

Status: Initial Planning, e-source for LCLS-II He



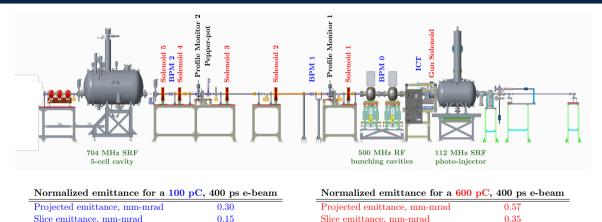

Parameter	Value
Rep. rate [MHz]	N/A
Bunch charge [pC]	100
Emittance [mm-mrad]	< 0.1
Beam energy [MeV]	1.8
Frequency [MHz]	185.7
Gradient [MV/m]	20
Field on cathode [MV/m]	30
Cathode	CsK_2Sb (?)

BNL: 113MHz QWR gun with NC cathode & choke filter

Status: Routine operation, Coherent electron Cooling experiment

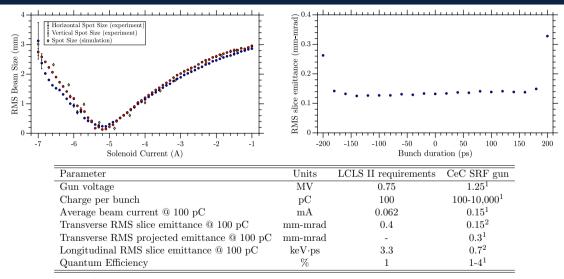
Parameter	Value
Rep. rate [kHz]	78
Bunch charge [pC]	0-20000
Emittance [mm-mrad]	$0.3@100 \ \mathrm{pC}$
Beam energy [MeV]	1.25
Frequency [MHz]	113
Field on cathode [MV/m]	15
Cathode	CsK_2Sb

Highlights

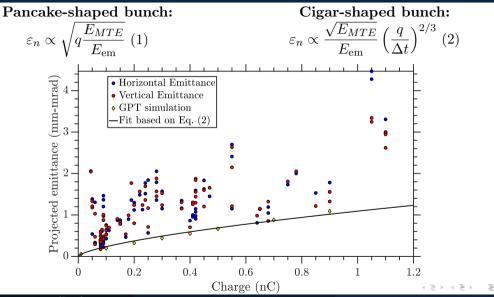

- 1-2 months lifetime of high-QE CsK₂Sb cathodes
- dedicated procedure for the cavity start-up no issues with multipacting
- $\bullet~0.15$ mm-mrad normalized RMS slice emittance measured for 100 pC bunches

Irina Petrushina (SBU)

15/22


イロト イポト イヨト イヨト

Unexpected and Exciting Results: Very Low Transverse Emittance


Transverse emittance from our SRF gun satisfies the requirements for a CW X-Ray FEL (0.4 mm-mrad for 100 pC bunches)!

Unexpected and Exciting Results: Very Low Transverse Emittance

¹Measured value, ²Extracted from simulations

Emittance Measurements for a variety of settings during 2017-2018

Irina Petrushina (SBU)

The collaboration between Stony Brook University, BNL, FNAL, and TJNAF is aiming to demonstrate:

- High current SRF electron gun: increase the average current of unpolarized electron beams to 100 mA.
- **Polarized SRF electron gun:** demonstrate sufficient lifetime of Cs₂Te-coated GaAs photocathode in the CeC SRF gun using 532 nm laser; generate and characterize polarized electron beams using 780 nm IR laser.
- SRF electron gun performance restoration techniques: simulate, design and build plasma processing system suitable for the 113 MHz gun geometry.

医子宫下

- SRF guns have demonstrated reliable performance in routine operation.
- Current designs have the potential to reach the high brightness requirement of modern XFELs and high average current for ERL.
- First tests of using an SRF gun as a polarized electron source are coming in the near future.
- There are still unanswered questions to be investigated:
 - Proper cathode solution is a key for the successful gun operation
 - Improved cavity gradient is pursued
 - High-QE long lifetime cathodes are a must
 - Effort on lowering the beam emittance: retracted cathode, higher field at the cathode.

• • = •

June 21, 2022

Special thanks:

- CeC team: V.N. Litvinenko, I. Pinayev, G. Wang, Y. Jing, J. Ma, K. Shih, Y.H. Wu
- LLRF group: G. Narayan, F. Severino, T. Hayes, K. Smith
- J. Tuozzolo¹, J.C. Brutus¹, S. Belomestnykh³, C. Boulware², C. Folz¹, T. Grimm², P. Inacker¹, D. Kayran¹, G. Mahler¹, M. Mapes¹, T. Miller¹, T. Rao¹, J. Skaritka¹, Y. Than¹, E. Wang¹, B. Xiao¹, T. Xin¹, A. Zaltsman¹.
- ¹ Brookhaven National Laboratory, Upton, NY, USA
- 2 Niowave Inc., Lansing, MI, USA
- ³ Fermilab, Batavia IL, USA

For more details on the 113 MHz SRF gun refer to:

High-Brightness Continuous-Wave Electron Beams from Superconducting Radio-Frequency Photoemission Gun	Mitigation of multipacting in 113 MHz superconducting rf photoinjector		
I. Petrushina <i>et al.</i> Phys. Rev. Lett. 124 , 244801 – Published 18 June 2020	I. Petrushina, V. N. Litvinenko, I. Pinayev, K. Smith, G. Narayan, and F. Severino Phys. Rev. Accel. Beams 21 , 082001 – Published 13 August 2018		
	・ロト・A型ト・AEト E のな		

References

- A. Arnold and J Teichert. "Overview on superconducting photoinjectors". In: *Physical Review Special Topics-Accelerators and Beams* 14.2 (2011), p. 024801.
- [2] A. Arnold et al. "A high-brightness SRF photoelectron injector for FEL light sources". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593.1 (2008), pp. 57–62.
- M. Schmeißer et al. "Results from beam commissioning of an SRF pluggun cavity photoinjector". In: Proceedings of the 4th International Particle Accelerator Conference, IPAC'13 (2013).
- J.R. Harris et al. "Design and operation of a superconducting quarterwave electron gun". In: *Physical Review Special Topics-Accelerators and Beams* 14.5 (2011), p. 053501.
- J. Bisognano et al. "Wisconsin SRF Electron Gun Commissioning". In: Proc. NAPAC'13 (2013), pp. 622–624.
- [6] Shengwen Quan et al. "Stable operation of the DC-SRF photoinjector". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2015), pp. 117-120.

- [7] I. Petrushina et al. "High brightness CW electron beams from Superconducting RF photoemission gun". In: arXiv preprint arXiv:2003.05920 (2020).
- [8] Vladimir N Litvinenko and Yaroslav S Derbenev. "Coherent electron cooling". In: *Physical Review Letters* 102.11 (2009), p. 114801.
- [9] V.N. Litvinenko et al. "Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling". In: *Proceedings of 24th Particle Accelerator Conference*. Vol. 253. New York, NY, USA, 2011, pp. 2064–2066.
- [10] Igor Pinayev et al. "High-gradient high-charge CW superconducting RF gun with CsK2Sb photocathode". In: arXiv preprint arXiv:1511.05595 (2015).
- V.N. Litvinenko et al. "Microbunching Plasma-Cascade Instability". In: Proceedings of the 10th IPAC, IPAC'19, WEPRB095. Melbourne, Australia, 2019.
- [12] I. Petrushina et al. "Mitigation of multipacting in 113 MHz superconducting rf photoinjector". In: *Physical Review Accelerators and Beams* 21.8 (2018), p. 082001.
- [13] E. Wang. "Long lifetime of bialkali photocathodes operating in high gradient Superconducting Radio Frequency gun". In: *Scientific Reports (in preparation)* (2020).

イロト イボト イヨト イヨト

June 21, 2022