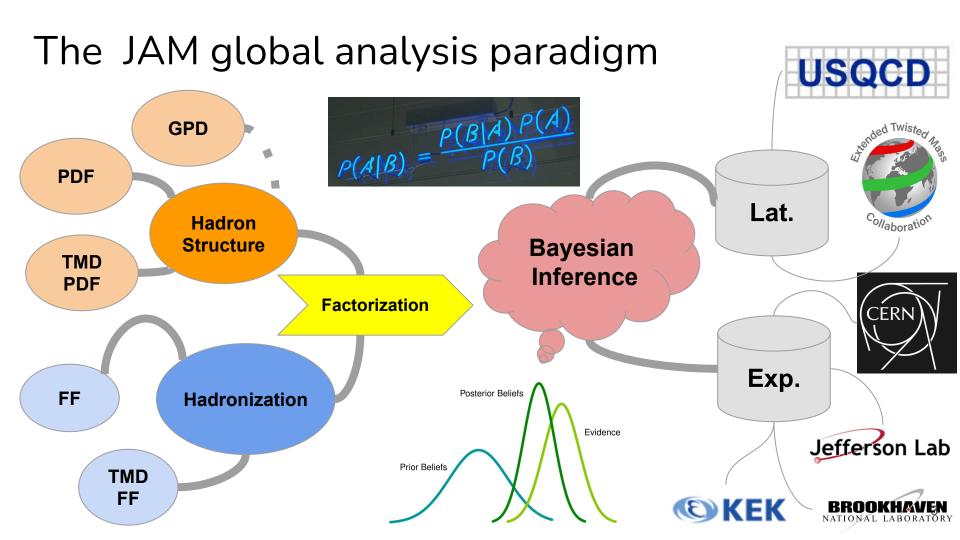
JAM perspective

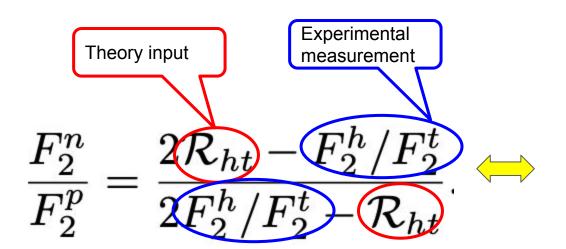
Nobuo Sato

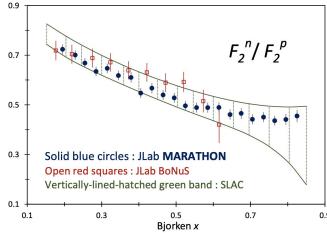


JEFFERSON LAB ANGULAR MOMENTUM COLLABORATION

The Jefferson Lab Angular Momentum (JAM) Collaboration is an enterprise involving theorists, experimentalists, and computer scientists from the Jefferson Lab community using QCD to study the internal quark and gluon structure of hadrons and nuclei. Experimental data from high-energy scattering processes are analyzed using modern Monte Carlo techniques and state-of-the-art uncertainty quantification to simultaneously extract various quantum correlation functions, such as parton distribution functions (PDFs), fragmentation functions (FFs), transverse momentum dependent (TMD) distributions, and generalized parton distributions (GPDs). Inclusion of lattice QCD data and machine learning algorithms are being explored to potentially expand the reach and efficacy of JAM analyses and our understanding of hadron structure in QCD.

High-x pdfs


Search...


Help | Advance

High Energy Physics - Experiment

[Submitted on 12 Apr 2021]

Measurement of the Nucleon F_2^n/F_2^p Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment

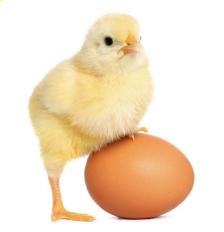
Search...

Help | Advance

High Energy Physics - Experiment

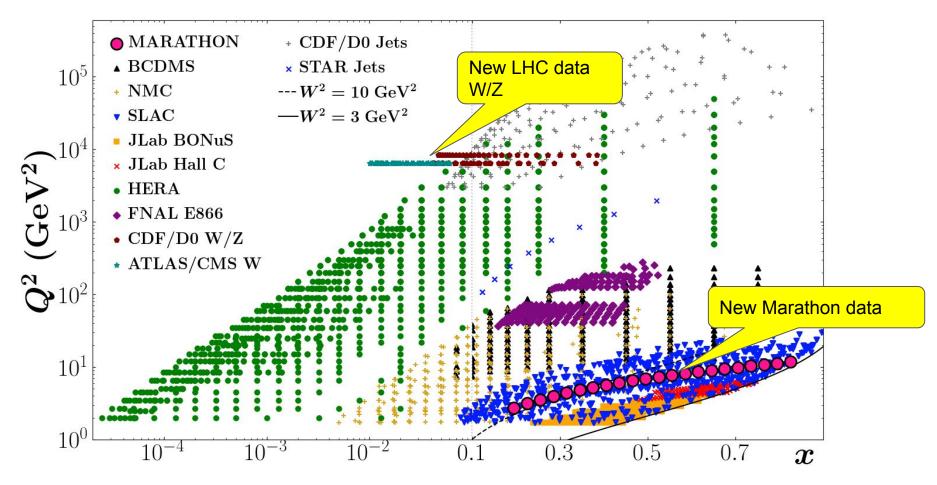
[Submitted on 12 Apr 2021]

Measurement of the Nucleon F_2^n/F_2^p Structure Fur by the Jefferson Lab MARATHON Tritic High Energy Physics - Phenomenology Inelastic Scattering Experime

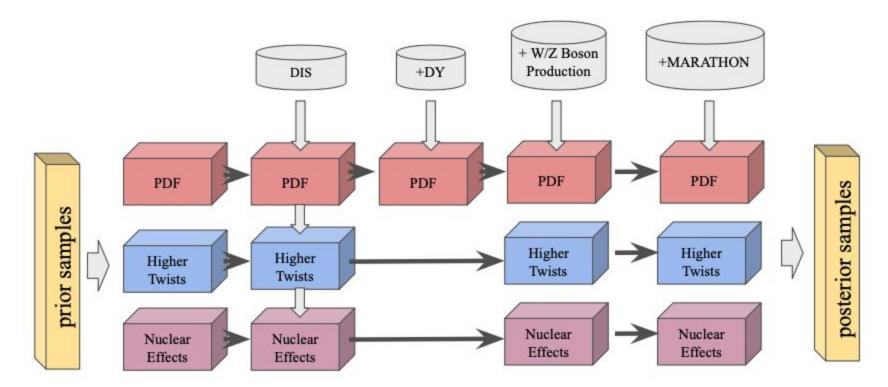

Isovector EMC effect from global QCD analysis with

C. Cocuzza, C. E. Keppel, H. Liu, W. Melnitchouk, A. Metz, N. Sato, A. W. Thomas MARATHON data

$$\frac{1}{F_{2}^{p}} = \frac{2R_{ht}}{2F_{2}^{h}/F_{2}}$$



$$F_2^h/F_2^t$$
 – \mathcal{R}_{ht}

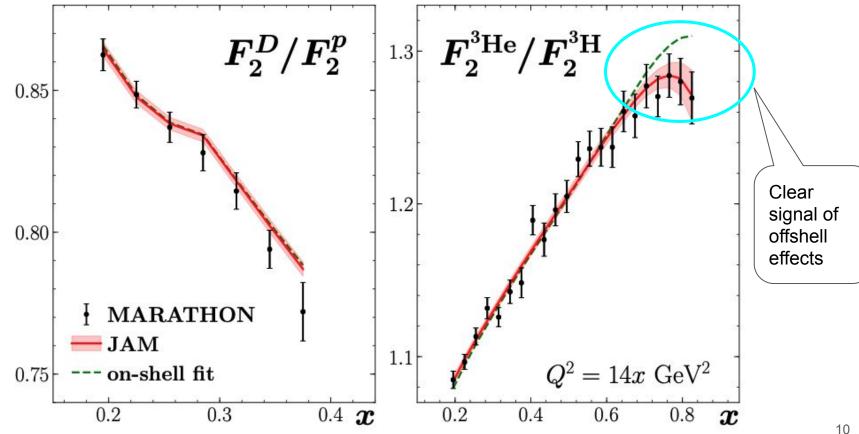


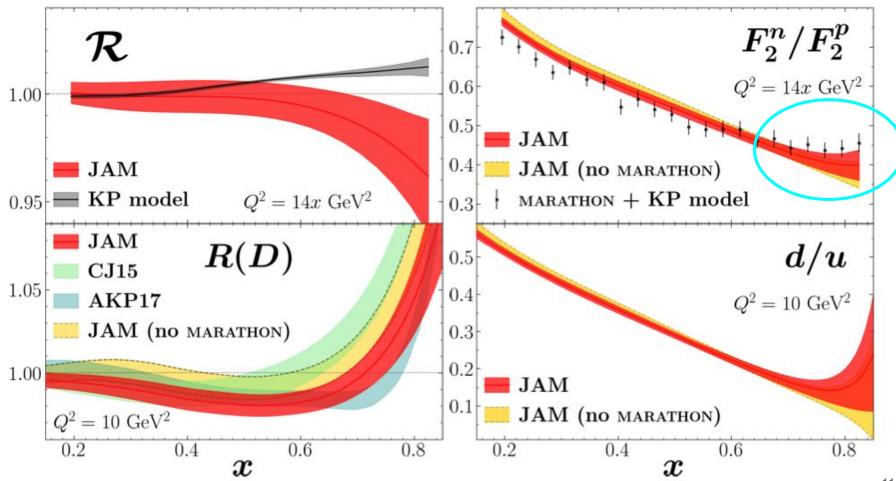
 F_2^n/F_2^p

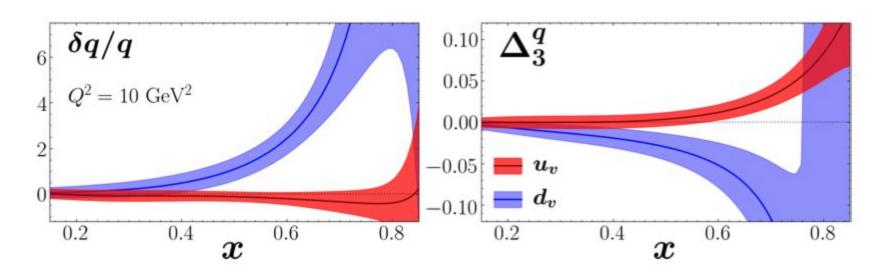
0.7

Multi-step strategy

Theory details for DIS


Nucleon structure functions


$$F_2^N(x,Q^2) = \Big(\sum_q e_q^2 \big[C_q \otimes q_N^+\big] + \big[C_g \otimes g_N\big]\Big)(x,Q^2)^{\times} \left(1 + \frac{C_N^{\rm HT}(x)}{Q^2}\right)$$


PDFs for light nuclei

$$q_A(x,Q^2) = \sum_N q_{N/A}(x,Q^2) = \left[q_{N/A}^{(\mathrm{on})} + q_{N/A}^{(\mathrm{off})}\right](x,Q^2)$$

$$q_{N/A}^{(\mathrm{on})}(x,Q^2) = \left[f_{N/A}^{(\mathrm{on})} \otimes q_N\right]$$
 Offshell quark parametrization
$$q_{N/A}^{(\mathrm{off})}(x,Q^2) = \left[f_{N/A}^{(\mathrm{off})} \otimes \delta q_{N/A}\right]$$

Marathon data

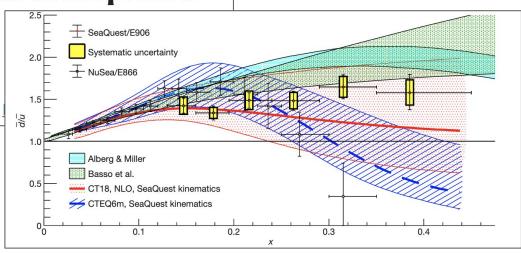
$$\Delta_3^q \equiv rac{q_{p/^3{
m H}} - q_{p/^3{
m He}}}{q_{p/^3{
m H}} + q_{p/^3{
m He}}}$$

Conclusions:

- pdfs of protons in A and A' can be different
- It suggest that canonical modeling of NPDFs is wrong

Sea asymmetry

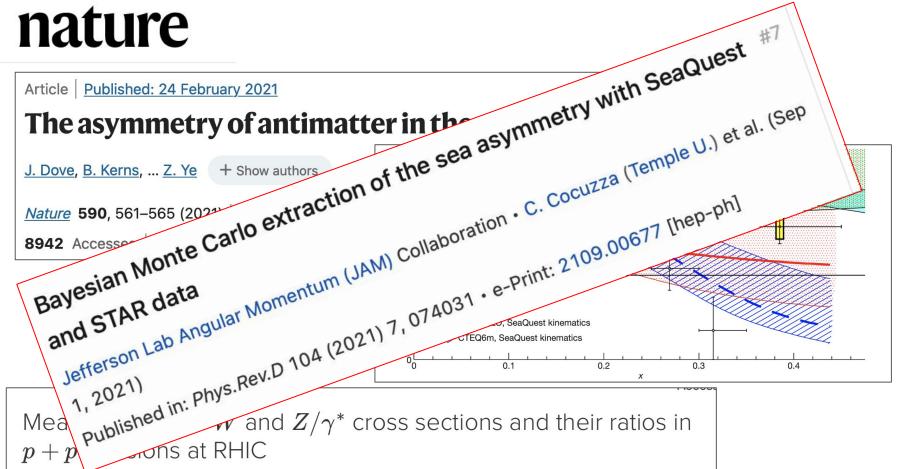
nature


Article Published: 24 February 2021

The asymmetry of antimatter in the proton

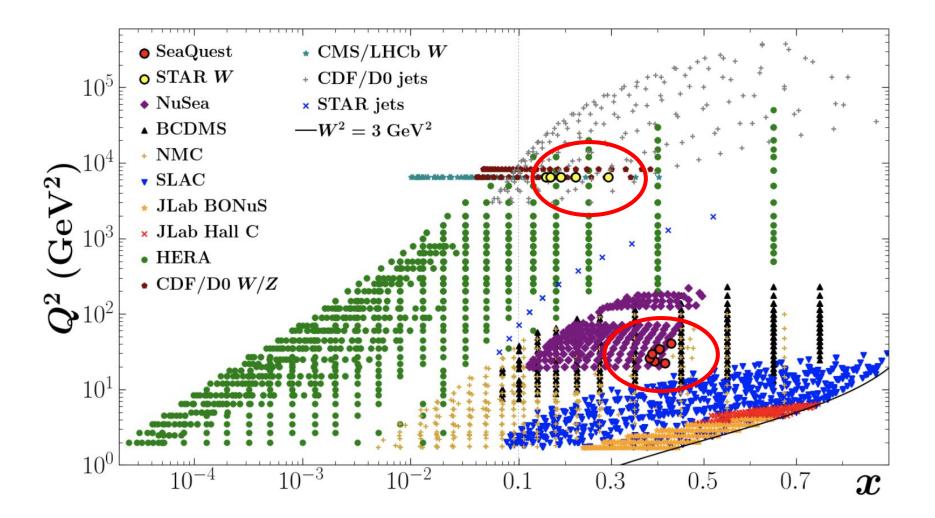
J. Dove, B. Kerns, ... Z. Ye + Show authors

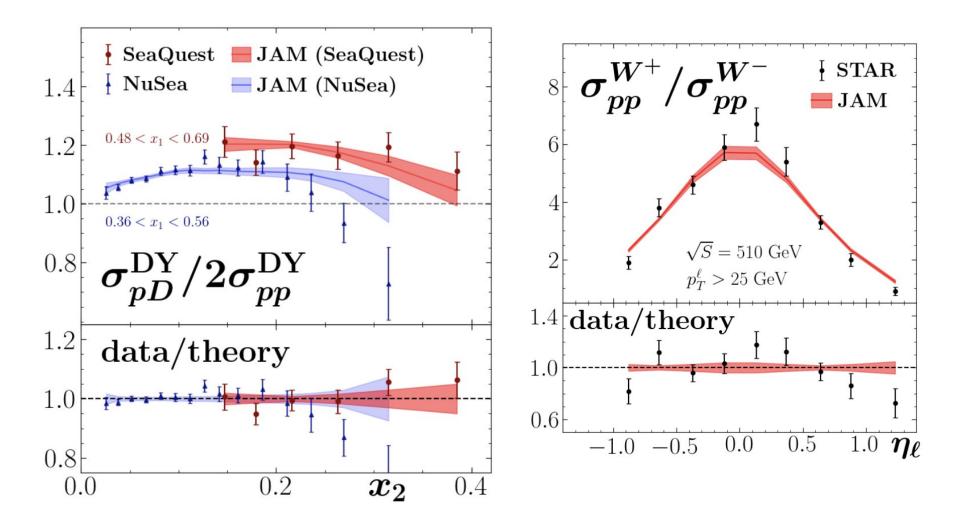
Nature **590**, 561–565 (2021) Cite this article


8942 Accesses | 13 Citations | 290 Altmetric

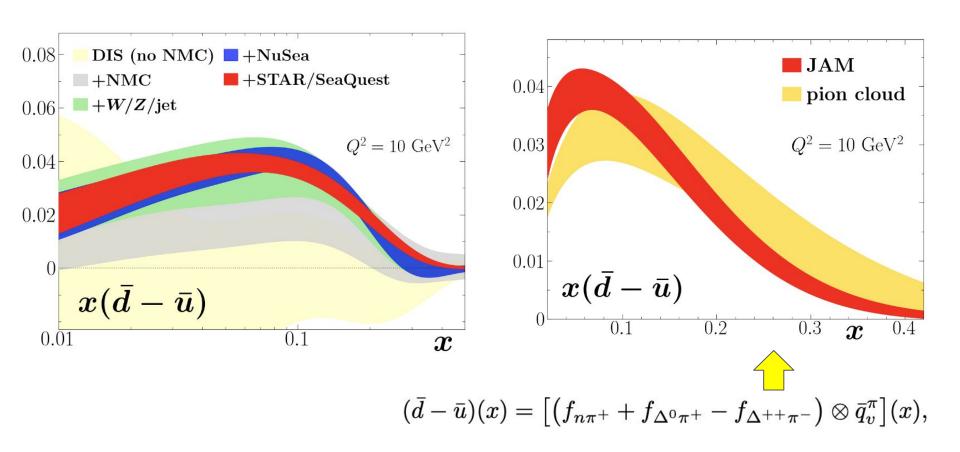
Measurements of W and Z/γ^* cross sections and their ratios in p+p collisions at RHIC

J. Adam *et al.* (STAR Collaboration) Phys. Rev. D **103**, 012001 – Published 4 January 2021


nature



Mea nons at RHIC


J. Adam et al. (STAR Collaboration)

Phys. Rev. D 103, 012001 - Published 4 January 2021

Historical progression

Helicity pdfs

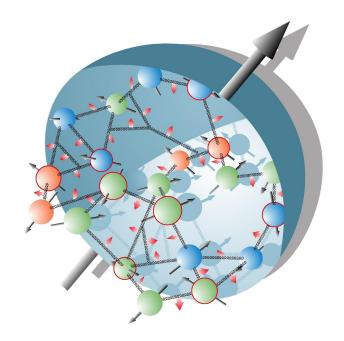
Spin physics

$$f = f_{\rightarrow} + f_{\leftarrow}$$

$$\left\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\psi_i(0)|N
ight
angle$$

$$\Delta f = f_{
ightarrow} - f_{
ightarrow}$$
Helicity distribution

$$\Delta f = f_{
ightarrow} - f_{
ightarrow} \quad \langle N | \bar{\psi}_i(0, w^-, \mathbf{0}_{\mathrm{T}}) \gamma^+ \gamma_5 \psi_i(0) | N \rangle$$

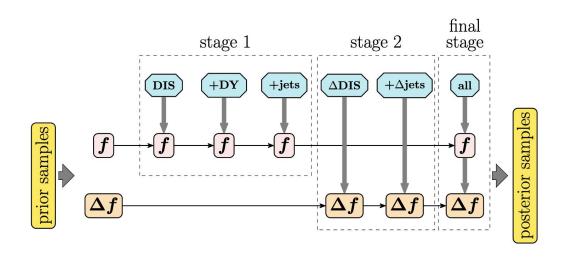


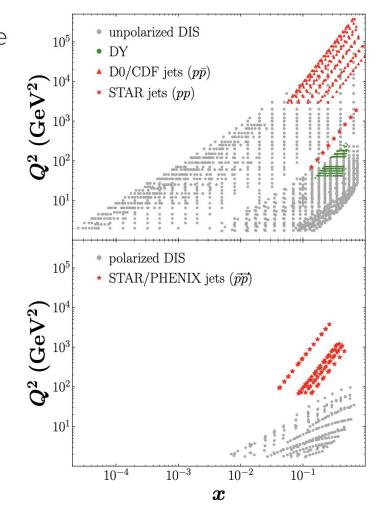
$$\delta_{
m T}f=f_{\uparrow}-f_{\downarrow}$$
 Transversity

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_{\perp}\gamma_5\psi_i(0)|N\rangle$$

"Spin crisis in the late 80's"

- Quark model of nucleon \rightarrow 3 massive quarks
- Nucleon is in the ground state (s-state) \rightarrow no OAM
- Quarks expected to carry most of the nucleon's spin

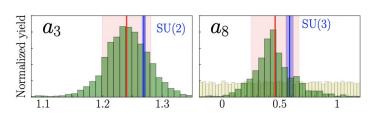

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma$$


But $\Delta\Sigma \simeq 0.28(4)$ JAM15

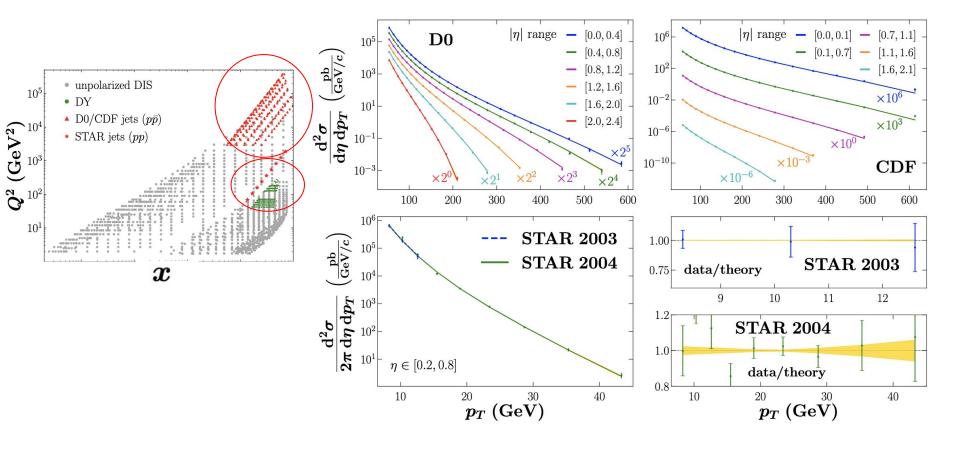
How well do we know the gluon polarization in the proton?

Y. Zhou, N. Sato, and W. Melnitchouk (Jefferson Lab Angular Momentum (JAM) Collaboration)

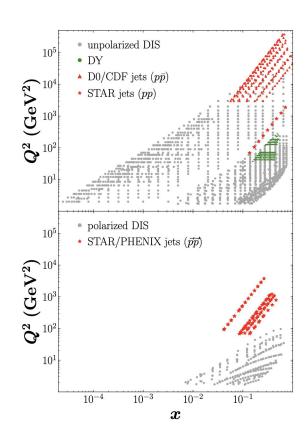
Phys. Rev. D **105**, 074022 – Published 25 April 2022

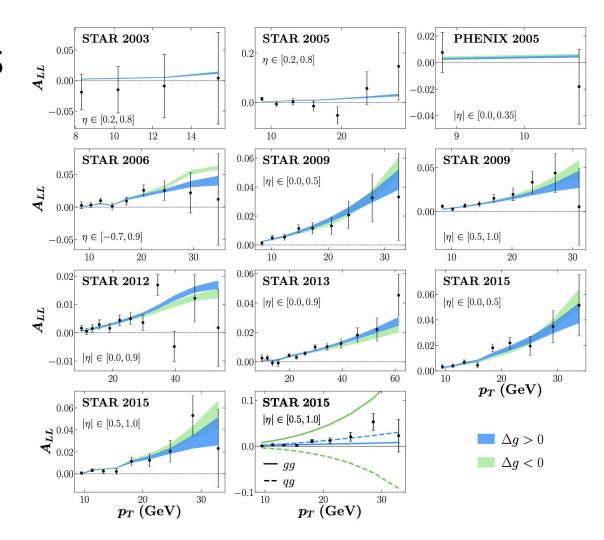


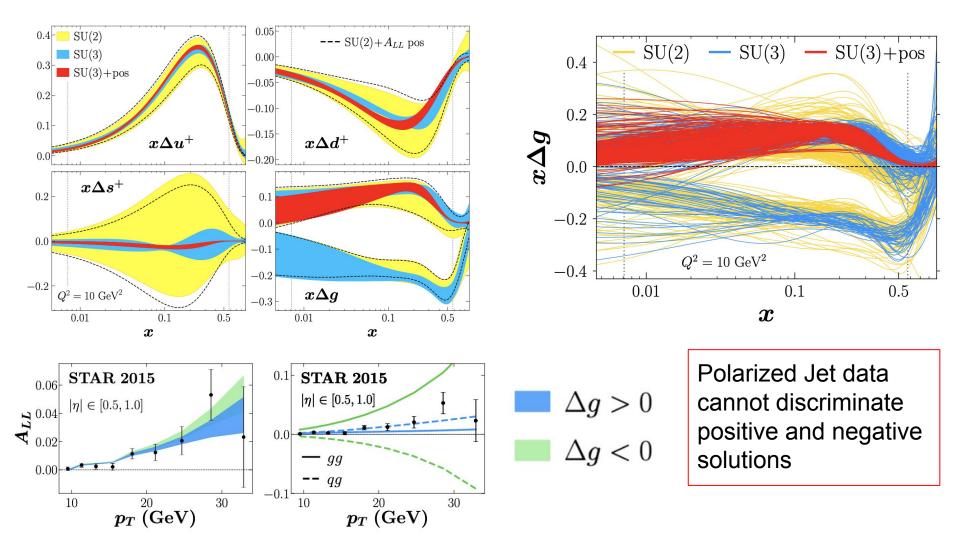
Theory biases


SU2
$$\int_0^1 \mathrm{d}x \left[\Delta u^+ - \Delta d^+\right] = g_A \qquad \text{Hyperon-beta decays}$$
 SU3
$$\int_0^1 \mathrm{d}x \left[\Delta u^+ + \Delta d^+ - 2\Delta s^+\right] = a_8, \qquad \text{Constraints from SIDIS with Kaons JAM17}$$

Positivity


$$\left|\Delta q(x,Q^2)\right| \leqslant q(x,Q^2)$$




Unpolarized Jets

Polarized Jets

pdf positivity

Regular Article - Theoretical Physics | Open Access | Published: 24 November 2020

Can MS parton distributions be negative?

<u>Alessandro Candido</u>, <u>Stefano Forte</u> ≥ & <u>Felix Hekhorn</u>

Journal of High Energy Physics 2020, Article number: 129 (2020) | Cite this article

161 Accesses 6 Citations 2 Altmetric Metrics

Positivity and renormalization of parton densities

John Collins (Penn State U.), Ted C. Rogers (Old Dominion U. and Jefferson Lab), Nobuo Sato (Jefferson Lab) (Nov 1, 2021)

Published in: *Phys.Rev.D* 105 (2022) 7, 076010 • e-Print: 2111.01170 [hep-ph]

Can MS parton distributions be negative?

<u>Alessandro Candido, Stefano Forte</u> ≥ & <u>Felix Hekhorn</u>

Journal of High Energy Physics 2020, Article number: 129 (2020) Cite this article

It is common lore that Parton Distribution Functions (PDFs) in the $\overline{\rm MS}$ factorization scheme can become negative beyond leading order due to the collinear subtraction which is needed in order to define partonic cross sections. We show that this is in fact not the case and next-to-leading order (NLO) $\overline{\rm MS}$ PDFs are actually positive in the perturbative regime. In order to prove this, we modify the subtraction prescription, and perform the collinear subtraction in such a way that partonic cross sections remain positive. This defines a factorization scheme in which PDFs are positive. We then show that positivity of the PDFs is preserved when transforming from this scheme to $\overline{\rm MS}$, provided only the strong coupling is in the perturbative regime, such that the NLO scheme change is smaller than the LO term.

Positivity and renormalization of parton densities

John Collins, Ted C. Rogers, and Nobuo Sato Phys. Rev. D **105**, 076010 – Published 14 April 2022

Track A

- Start from an operator definition for pdfs
 - Only UV divergence
 - Use renormalization
- Factorization
 - Region analysis (Libby Sterman)
 - Higher order corrections via nested subtractions

$$f_{j/H}^{\text{bare,A}}(\xi) \equiv \int \frac{\mathrm{d}w^{-}}{2\pi} e^{-i\xi p^{+}w^{-}}$$

$$\langle p | \bar{\psi}_{j,0}(0, w^{-}, \mathbf{0}_{\mathrm{T}}) \frac{\gamma^{+}}{2} W[0, w^{-}] \psi_{j,0}(0, 0, \mathbf{0}_{\mathrm{T}}) | p \rangle.$$

$$f^{\text{renorm,A}}(\xi) \equiv Z^{A} \otimes f^{\text{bare,A}}$$

$$F(Q, x_{\text{bj}}) = \mathcal{C}^{A} \otimes f^{\text{renorm,A}} + \text{error}$$

$$= \sum_{i} \int_{x_{\text{bj}}}^{1} d\xi \, \mathcal{C}_{j}^{A}(x_{\text{bj}}/\xi, \alpha_{s}(Q)) \, f_{j}^{\text{renorm,A}}(Q, \xi) + \text{error}$$

Positivity and renormalization of parton densities

John Collins, Ted C. Rogers, and Nobuo Sato Phys. Rev. D **105**, 076010 – Published 14 April 2022

"bare factorization"

Curci, Furmanski, Petronzio (1980)

Track B

- Assert(?) a factorization in terms of bare pdf.
- Isolate collinear divergences from partonic structure function.
- Reabsorb singularities inside bare pdf.

$$F(Q, x_{\rm bj}) = F^{\rm partonic} \otimes f^{\rm bare, B}$$

$$F^{
m partonic} = \mathcal{C}^B \otimes Z^B$$

$$F(Q, x_{\rm bj}) = (\mathcal{C}^B \otimes Z^B) \otimes f^{\rm bare, b}$$
$$= \mathcal{C}^B \otimes (Z^B \otimes f^{\rm bare, B})$$
$$= \mathcal{C}^B \otimes f^{\rm renorm, B},$$

Positivity argument based on track B

$$F(Q, x_{\rm bj}) = (\mathcal{C}^B \otimes Z^B) \otimes f^{\rm bare, b}$$
$$= \mathcal{C}^B \otimes (Z^B \otimes f^{\rm bare, B})$$
$$= \mathcal{C}^B \otimes f^{\rm renorm, B},$$

If Z^B is positive

If $f^{\text{bare,B}}$ is positive

then $f^{\text{renorm,B}}$ is positive

Can MS parton distributions be negative?

Alessandro Candido, Stefano Forte ≥ & Felix Hekhorn

$$f_{i}(\xi) = \frac{1}{4\pi} \int dy^{-} e^{-i\xi P^{+}y^{-}} \langle P | \bar{\psi}_{i}(0, y^{-}, \vec{0}_{T}) \gamma^{+} \mathcal{P} \exp \left[ig_{s} \int_{0}^{y^{-}} d\bar{y}^{-} A_{a}^{+}(0, \bar{y}^{-}, \vec{0}_{T}) \frac{1}{2} \lambda_{a} \right] \psi_{i}(0) | P \rangle,$$
(2)

where \mathcal{P} denotes path-ordering; P is the four-momentum of the parent hadron in light-cone components and g_s is the strong coupling, with analogous expressions for antiquarks and gluons [8]. It can be shown (see e.g. Sect. 6.7 of Ref. [10]) that the expression Eq. (2) is a number density, and as such before subtraction of divergences it is positive.

positivity of the partonic cross section at the regularized level. If all contributions which are factored away from the partonic cross section and into the PDF remain positive, then the latter also stays positive.

Track B: "bare factorization"

$$F(Q, x_{\mathrm{bj}}) = F^{\mathrm{partonic}} \otimes f^{\mathrm{bare, B}}$$

$$I^{\text{ren. BPHZ'}} = \int \frac{\mathrm{d}^{2-2\epsilon} \mathbf{k}_{\mathrm{T}}}{(2\pi)^{2-2\epsilon}} \left(\frac{1}{k_{\mathrm{T}}^2 + C(x)} - \frac{1}{k_{\mathrm{T}}^2} \right)$$

$$-\int_{k_{\mathrm{T}}<\Lambda} \frac{\mathrm{d}^{2-2\epsilon} \mathbf{k}_{\mathrm{T}}}{(2\pi)^{2-2\epsilon}} \frac{1}{k_{\mathrm{T}}^{2}} = -\int_{0}^{\Lambda^{2}} \frac{\mathrm{d}k_{\mathrm{T}}^{2}(k_{\mathrm{T}}^{2})^{-\epsilon}}{\Gamma(1-\epsilon)(4\pi)^{1-\epsilon}} \frac{1}{k_{\mathrm{T}}^{2}}$$
$$= \frac{\Lambda^{-2\epsilon}}{\epsilon \Gamma(1-\epsilon)(4\pi)^{1-\epsilon}}$$

Given that $\epsilon < 0$ to regulate the collinear divergence, the collinear divergence in the counterterm is actually negative. Therefore the supposed positivity of the "bare" track-B pdfs is actually violated.

Track A

Object	Hadron structure function, F	Partonic hard part \mathcal{C}^A	Bare hadronic pdf $f^{\mathrm{bare,A}}$	Renormalized hadronic pdf $f^{ m renorm,A}$
Ultraviolet behavior	Standard Lagrangian counterterms UV finite	Lagrangian counterterms & operator counterterms UV finite	Bare pdf, so no counterterms UV divergent	Lagrangian counterterms & operator counterterms UV finite
Collinear behavior	Non-massless, finite range theory Collinear finite	Double counting subtractions Collinear finite	Non-massless, finite range theory Collinear finite	Non-massless, finite range theory Collinear finite

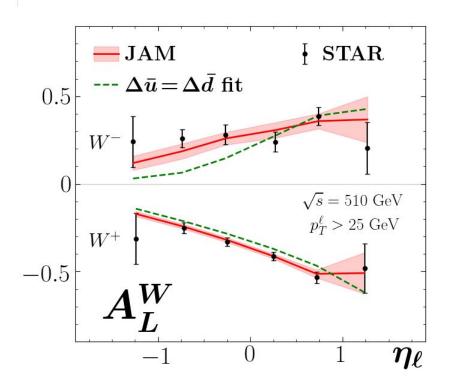
Track B

Object	Partonic structure function $F^{ m partonic}$	Partonic hard part \mathcal{C}^B	$f^{ m bare,B}$
Ultraviolet behavior	Standard Lagrangian counterterms UV finite	Lagrangian counterterms & operator counterterms UV finite	Track B bare pdf must be UV finite to be consistent with hadronic structure function UV finite
Collinear behavior	Massless partons Collinear divergent	Collinear divergence absorbed into pdf redefinition Collinear finite	Track B bare pdf must be collinear divergent to cancel collinear divergence in partonic structure function Collinear divergent

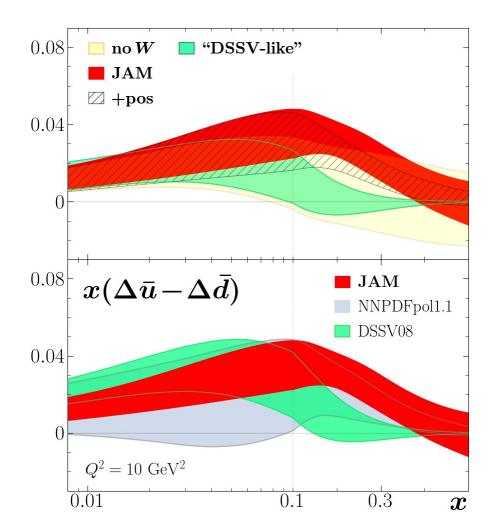
Positivity argument

$$F(Q, x_{\rm bj}) = (\mathcal{C}^B \otimes Z^B) \otimes f^{\rm bare, b}$$
$$= \mathcal{C}^B \otimes (Z^B \otimes f^{\rm bare, B})$$
$$= \mathcal{C}^B \otimes f^{\rm renorm, B},$$

If Z^B is positive


If $f^{\mathrm{bare,B}}$ is positive

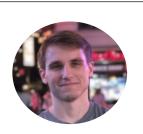
then $f^{\text{renorm,B}}$ is positive


Polarized Antimatter in the Proton from Global QCD Analysis

Jefferson Lab Angular Momentum (JAM) Collaboration • C. Cocuzza (Temple U.) et al. (Feb 7, 2022)

e-Print: 2202.03372 [hep-ph] (updated version in progress)

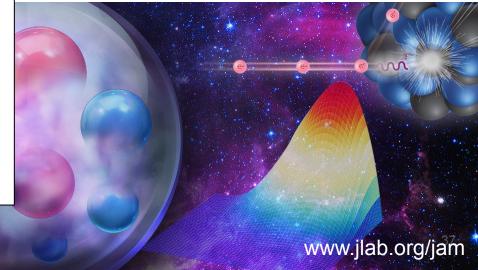
process N_{dat} polarized inclusive DIS 365	$\chi^2/N_{\rm dat}$ 0.93 0.93
inclusive DIS 365	
CIDIC (-+)	0.93
SIDIS (π^+, π^-) 64	
SIDIS (K^+, K^-) 57	0.36
SIDIS (h^+, h^-) 110	0.93
inclusive jets 83	0.81
STAR W^{\pm} 12	0.53
PHENIX W^{\pm}/Z 6	0.63
total 697	0.86
unpolarized	
inclusive DIS 3908	1.11
SIDIS (π^+, π^-) 498	0.88
SIDIS (K^+, K^-) 494	1.01
SIDIS (h^+, h^-) 498	0.52
inclusive jets 198	1.11
Drell-Yan 205	1.19
W/Z production 153	0.99
total 5954	1.03
SIA (π^{\pm}) 231	0.85
$SIA (K^{\pm}) $ 213	0.49
$SIA (h^{\pm}) $ 120	1.09
total 7215	0.99


- First ever universal analysis of pol. & upol. PDFs and fragmentation functions
- Consistent UQ for polarized antiquarks in the nucleon
- Clear evidence of an asymmetry, with opposite sign compared to unpolarized sea asymmetry

Summary/Outlook

- Track B based positivity of MS PDFs are not really supported on formal grounds
- Imposing positivity is a strong bias, e.g., cannot tell if factorization is failing or HO corrections are needed (or both) in computing observables in extreme kinematics
- Has practical consequences in spin physics, Soffer bounds, etc.

 ${\cal L}_{
m QCD} = \sum \overline{\psi}_q (i \gamma_\mu D^\mu - m_q) \psi_q - rac{1}{2} {
m Tr} [G_{\mu
u} G^{\mu
u}]$


Special thanks to

C. Cocuzza

Y. Zhou

