Twist-3 PDFs from Lattice QCD with a Phenomenological component

Shohini Bhattacharya

BNL

23 June 2022

In Collaboration with:

Krzysztof Cichy (Adam Mickiewicz U.)
Martha Constantinou (Temple U.)
Andreas Metz (Temple U.)
Aurora Scapellato (Temple U.)
Fernanda Steffens (Bonn U.)

CFNS Workshop:

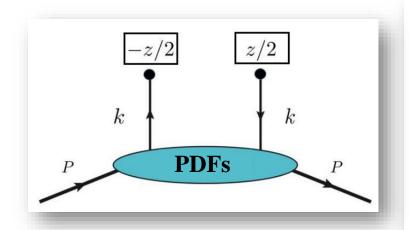
High Luminosity-EIC (EIC-Phase II)

Stony Brook University

21-24 June 2022 Online

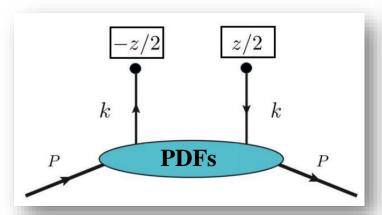
Outline

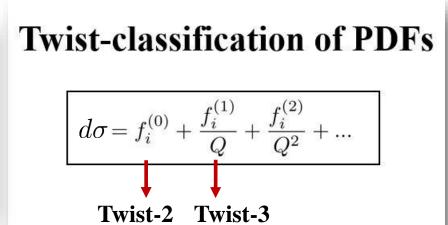
- Brief overview of twist-3 PDFs
- Essence of the quasi-PDF approach
- Complications in the "Matching" for the twist-3 PDFs
- Lattice QCD results for twist-3 PDFs
- Summary



Twist-classification of PDFs

$$d\sigma = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} + \dots$$





Q: Hard scale for a process

Twist-2 PDFs			Twi	st-3 PDFs	
Order of contribution: $\mathcal{O}(1)$		Order of con	Order of contribution: $\mathcal{O}(1/\mathrm{Q})$		
Jaffe, Ji (PRL 67			67, 552)/	Jaffe, Ji (Nucl. Phys. B	375, 527)
PDFs	Dirac structure		PDFs	Dirac structure	
$f_1(x)$	$\Gamma = \gamma^+$		e(x)	$\Gamma = 1$	
$g_1(x)$	$\Gamma = \gamma^+ \gamma_5$		$g_T(x)$	$\Gamma = \gamma_{\perp}^{i} \gamma_{5}$	
$h_1(x)$	$\Gamma = i\sigma^{i+}\gamma_5$		$h_L(x)$	$\Gamma = i\sigma^{+-}\gamma_5$	
Density interpr $f_1(x)$	Density interpretation: $f_{\star}(x)$ Nucleon spin quark spin		nterpreta	tion:	
$g_1(x)$	→	Burkardt (ar Σ)		589) → ⊥ force	
$h_1(x)$	($\int c$	$dx x^2 e(x)$	ightarrow ot force	

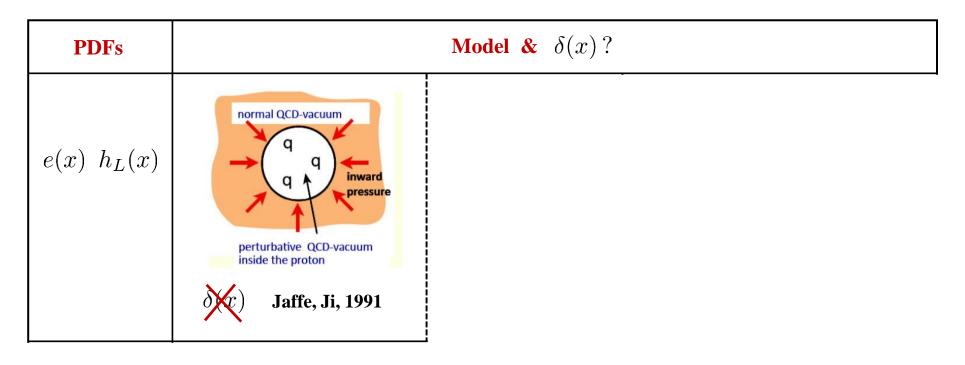
Fig. courtesy: M. Constantinou

PDFs	Processes	Data
$g_T(x)$	e Q P X	For instance: Hall A, 2016/ Hall C, 2018

PDFs	Processes	Data
$g_T(x)$	e Q P X	For instance: Hall A, 2016/ Hall C, 2018
e(x)	e p_1 p_2 p_2 p_2	For instance: CLAS12 (2021)

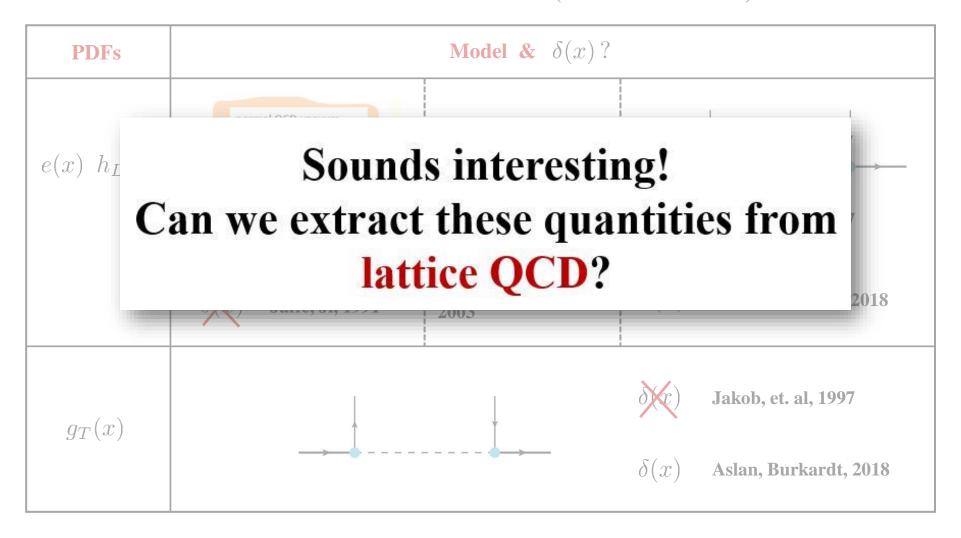
PDFs	Processes	Data
$g_T(x)$	e Q P X	For instance: Hall A, 2016/ Hall C, 2018
e(x)	p_1 p_2 p_2 p_2 p_3 p_4 p_4 p_4 p_4	For instance: CLAS12 (2021)
$h_L(x)$	H_{a} X_{b} X_{b} X_{a}	None

PDFs Model & $\delta(x)$?	
----------------------------	--



PDFs		Model & $\delta(x)$?	
$e(x) h_L(x)$	perturbative QCD-vacuum inside the proton Jaffe, Ji, 1991	$\chi \mathbf{QSM}$ $e(x) \sim \delta(x)$ Ohnishi, Wakamatsu, 2003	

PDFs	Model & $\delta(x)$?			
$e(x) h_L(x)$	perturbative QCD-vacuum inside the proton Jaffe, Ji, 1991	$\chi \mathbf{QSM}$ $e(x) \sim \delta(x)$ Ohnishi, Wakamatsu, 2003		o, et. al, 1997 , Burkardt, 2018
$g_T(x)$				o, et. al, 1997 , Burkardt, 2018



Light-cone (standard) correlator

$$F^{[\Gamma]}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{+} = \vec{z}_{\perp} = 0}$$

• Time dependence :
$$z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$$

• <u>Cannot</u> be computed on Euclidean lattice

Light-cone (standard) correlator

$$F^{[\Gamma]}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{+} = \vec{z}_{\perp} = 0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- Cannot be computed on Euclidean lattice

Correlator for quasi-PDFs (Ji, 2013)

$$F_{\mathbf{Q}}^{[\Gamma]}(x; P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^0 = \vec{z}_{\perp} = 0}$$

- Non-local correlator depending on position z^3
- Can be computed on Euclidean lattice

Quasi-PDF approach made it possible to directly extract light-cone PDFs from lattice QCD

Light-cone (standard) correlator

$$F^{[\Gamma]}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{+} = \vec{z}_{\perp} = 0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- Cannot be computed on Euclidean lattice

Correlator for quasi-PDFs (Ji, 2013)

$$F_{\mathbf{Q}}^{[\Gamma]}(x; P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{0} = \vec{z}_{\perp} = 0}$$

- Non-local correlator depending on position z^3
- Can be computed on Euclidean lattice

- Quasi-PDF approach made it possible to directly extract light-cone PDFs from lattice QCD
- By now, enormous progress has taken place: See previous talks by Constantia, Nikhil, Raza & Krzysztof

Light-cone (standard) correlator

$$F^{[\Gamma]}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{+} = \vec{z}_{\perp} = 0}$$

- Time dependence : $z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z^-$
- Cannot be computed on Euclidean lattice

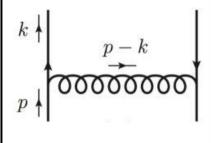
Correlator for quasi-PDFs (Ji, 2013)

$$F_{\mathbf{Q}}^{[\Gamma]}(x; P^{3}) = \frac{1}{2} \int \frac{dz^{3}}{2\pi} e^{ik \cdot z} \times \langle p | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}_{\mathbf{Q}}(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p \rangle \Big|_{z^{0} = \vec{z}_{\perp} = 0}$$

- Non-local correlator depending on position z^3
- Can be computed on Euclidean lattice

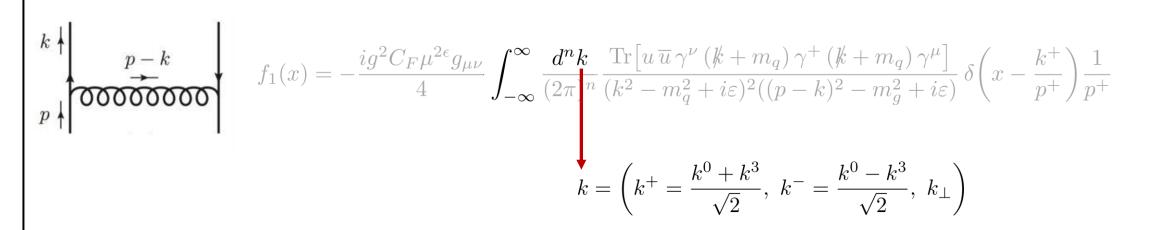
- Quasi-PDF approach made it possible to directly extract light-cone PDFs from lattice QCD
- By now, enormous progress has taken place: See previous talks by Constantia, Nikhil, Raza & Krzysztof
- Other Euclidean approaches: Pseudo-PDF (Radyushkin, 2017), current-current correlators (Ma, Qiu, 2014) ...

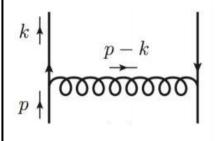
21



$$p \downarrow 00000000$$

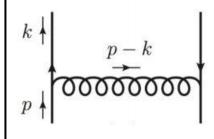
$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \overline{u} \gamma^{\nu} \left(\cancel{k} + m_q\right) \gamma^{+} \left(\cancel{k} + m_q\right) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^+}{p^+}\right) \frac{1}{p^+}$$





$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\mathrm{Tr} \left[u \, \overline{u} \, \gamma^{\nu} \left(\not k + m_q \right) \, \gamma^{+} \left(\not k + m_q \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \, \delta \left(x - \frac{k^+}{p^+} \right) \frac{1}{p^+}$$

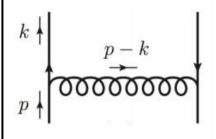
$$-\int dk^- \rightarrow \text{ Residue theorem}$$



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\mathrm{Tr} \left[u \, \overline{u} \, \gamma^{\nu} \left(\cancel{k} + \cancel{m_q} \right) \gamma^{+} \left(\cancel{k} + \cancel{m_q} \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \, \delta \left(x - \frac{k^+}{p^+} \right) \frac{1}{p^+}$$

$$\bullet \int dk^- \rightarrow \text{ Residue theorem}$$

$$\bullet \text{ Perform } \int d^2 k_\perp$$



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \,\overline{u} \,\gamma^{\nu} \left(\cancel{k} + \cancel{m_q}\right) \gamma^{+} \left(\cancel{k} + \cancel{m_q}\right) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \,\delta\left(x - \frac{k^+}{p^+}\right) \frac{1}{p^+}$$

- $\int dk^- o ext{Residue theorem}$ Perform $\int d^2k_\perp$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathcal{P}_{\mathbf{UV}} + \ln \frac{\mu^2}{x m_g^2} - 2}{1 + \ln 4\pi - \gamma_E} \right)$$

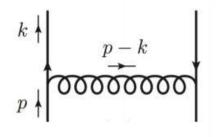
$$0 < x < 1$$

$$\int_0^\infty dk_\perp$$

$$\mathcal{P}_{\mathrm{UV}} = \frac{1}{\epsilon_{\mathrm{UV}}} + \ln 4\pi - \gamma_{E}$$

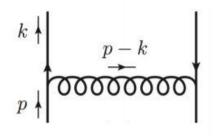
Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \overline{u} \gamma^{\nu} (\not k + \not m_q) \gamma^3 (\not k + m_q) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^3}{p^3}\right) \frac{1}{p^3}$$

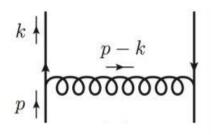
Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\operatorname{Tr}\left[u \overline{u} \gamma^{\nu} (\not k + \not n_q) \gamma^3 (\not k + m_q) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^3}{p^3}\right) \frac{1}{p^3}$$

$$\bullet \quad k \to (k^0, \, k_\perp, \, k^3)$$

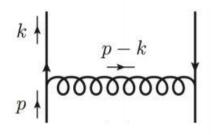
Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \overline{u} \gamma^{\nu} (\not k + \not m_q) \gamma^3 (\not k + m_q) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{\cancel{k^3}}{\cancel{p^3}}\right) \frac{1}{\cancel{p^3}}$$

- $k \to (k^0, k_\perp, k^3)$ $\int dk^0 \to \text{Residue theorem}$

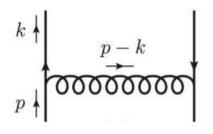
Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \overline{u} \gamma^{\nu} (\not k + \not m_q) \gamma^3 (\not k + m_q) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^3}{p^3}\right) \frac{1}{p^3}$$

- $k \to (k^0, k_\perp, k^3)$ $\int dk^0 \to \text{Residue theorem}$ Take $p^3 \to \infty$ Perform $\int d^2k_\perp$

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



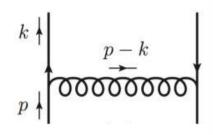
$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\operatorname{Tr}\left[u \,\overline{u} \,\gamma^{\nu} \left(\cancel{k} + \cancel{m_q}\right) \gamma^3 \left(\cancel{k} + m_q\right) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \,\delta\left(x - \frac{\mathbf{k^3}}{\mathbf{p^3}}\right) \frac{1}{\mathbf{p^3}}$$

- $k \to (k^0, k_\perp, k^3)$ $\int dk^0 \to \text{Residue theorem}$ Take $p^3 \to \infty$ Perform $\int d^2k_\perp$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2} - 2}{x m_g^2} \right)$$

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 in the Infinite Momentum Frame (IMF)?



$$f_1(x) = -\frac{ig^2 C_F \mu^{2\epsilon} g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u \overline{u} \gamma^{\nu} (k + m_q) \gamma^3 (k + m_q) \gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \delta\left(x - \frac{k^3}{p^3}\right) \frac{1}{p^3}$$

•
$$k \rightarrow (k^0, k_\perp, k^3)$$

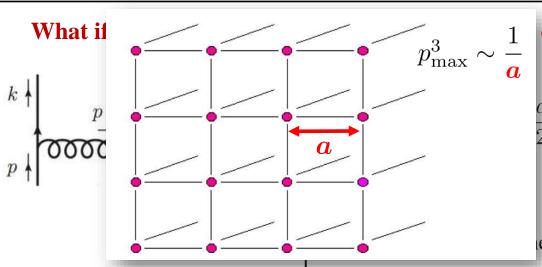
- $k \to (k^0, k_\perp, k^3)$ $\int dk^0 \to \text{Residue theorem}$ Take $p^3 \to \infty$ Perform $\int d^2k_\perp$

• Perform
$$\int d^2k_{\perp}$$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2}}{-2} \right)$$

Unfortunately, this cannot be calculated on lattice

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)



correlator & with γ^3 in the Infinite Momentum Frame (IMF)?

$$\frac{d^{n}k}{2\pi)^{n}} \frac{\operatorname{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(\cancel{k}+\cancel{m_{q}}\right)\gamma^{3}\left(\cancel{k}+m_{q}\right)\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}((p-k)^{2}-m_{q}^{2}+i\varepsilon)}\,\delta\left(x-\frac{\mathbf{k^{3}}}{\mathbf{p^{3}}}\right)\frac{1}{\mathbf{p^{3}}}$$

eorem

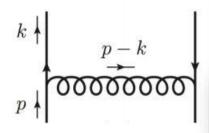
- Take $p^3 o \infty$ Perform $\int d^2k_\perp$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2}}{-2} \right)$$

Unfortunately, this cannot be calculated on lattice

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 in the Infinite Momentum Frame (IMF)?



$$f_{1}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{\sqrt{2}} \int_{-\sqrt{2}}^{\infty} \frac{d^{n}k}{\sqrt{2}} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\,(\cancel{k}+\cancel{n_{q}})\,\gamma^{3}\,(\cancel{k}+m\cancel{q})\,\gamma^{\mu}\right]}{\sqrt{2}} \delta\left(x-\frac{\cancel{k^{3}}}{p^{3}}\right) \frac{1}{p^{3}}$$
What if I keep p^{3} finite & repeat this calculation?

- $\int dk^0 \rightarrow$ Residue theorem

• Take
$$p^3 \to \infty$$

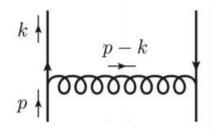
• Perform $\int d^2k_{\perp}$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2}}{-2} \right)$$

Unfortunately, this cannot be calculated on lattice

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?



$$f_{1}(x) = -\frac{ig^{2}C_{F}\mu^{2\epsilon}g_{\mu\nu}}{4} \int_{-\infty}^{\infty} \frac{d^{n}k}{(2\pi)^{n}} \frac{\mathrm{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(k+m_{q}\right)\gamma^{3}\left(k+m_{q}\right)\gamma^{\mu}\right]}{(k^{2}-m_{q}^{2}+i\varepsilon)^{2}\left((p-k)^{2}-m_{g}^{2}+i\varepsilon\right)} \,\delta\left(x-\frac{k^{3}}{p^{3}}\right) \frac{1}{p^{3}}$$

$$\bullet \quad \text{Keeping} \quad p^{3} \quad \text{finite, perform} \quad \int d^{2}k_{\perp}$$

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases}$$

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?

Support outside "physical" region
$$0 < x < 1$$

Support outside "physical" region
$$0 < x < 1$$

$$\int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(\cancel{k}+\cancel{m_q}\right)\gamma^3\left(\cancel{k}+m_q\right)\gamma^{\mu}\right]}{(k^2-m_q^2+i\varepsilon)^2((p-k)^2-m_g^2+i\varepsilon)}\,\delta\left(x-\frac{\pmb{k^3}}{\pmb{p^3}}\right)\frac{1}{\pmb{p^3}}$$

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1\\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1\\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases}$$

Sample calculations for twist-2 PDF f_1 in Quark Target Model (QTM)

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?

Support outside "physical" region
$$0 < x < 1$$

Support outside "physical" region
$$0 < x < 1$$

$$\int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(\cancel{k} + \cancel{m_q}\right)\gamma^3\left(\cancel{k} + m_q\right)\gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2((p-k)^2 - m_g^2 + i\varepsilon)} \,\delta\!\left(x - \frac{\pmb{k^3}}{\pmb{p^3}}\right) \frac{1}{\pmb{p^3}}$$

$$f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases} \xrightarrow{\int_0^\infty dk_\perp}$$

IR singularities of quasi-PDFs & light-cone PDFs are same

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?

Support outside "physical" region
$$0 < x < 1$$

Support outside "physical" region
$$0 < x < 1$$

$$\int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\mathrm{Tr} \left[u \, \overline{u} \, \gamma^{\nu} \left(\cancel{k} + \cancel{m_q} \right) \gamma^3 \left(\cancel{k} + m_q \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \, \delta \left(x - \frac{k^3}{p^3} \right) \frac{1}{p^3}$$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P}_{UV} + \ln \frac{\mu^2}{x m_g^2}}{-2} \right)$$

$$f_{1}(x) = \frac{\alpha_{s}C_{F}}{2\pi}(1-x)\left(\frac{\mathcal{P}_{UV} + \ln\frac{\mu^{2}}{xm_{g}^{2}}}{-2}\right)$$

$$f_{1}(x, p^{3}) = \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} (1-x)\ln\frac{x}{x-1} + 1 & x > 1 \\ (1-x)\ln\frac{4(1-x)p_{3}^{2}}{m_{g}^{2}} + x & 0 < x < 1 \\ (1-x)\ln\frac{x-1}{x} - 1 & x < 0 \end{cases}$$

IR singularities of quasi-PDFs & light-cone PDFs are same

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?

Support outside "physical" region
$$0 < x < 1$$

Support outside "physical" region
$$0 < x < 1$$

$$\int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\text{Tr}\left[u\,\overline{u}\,\gamma^{\nu}\left(\cancel{k} + \cancel{m_q}\right)\gamma^3\left(\cancel{k} + m_q\right)\gamma^{\mu}\right]}{(k^2 - m_q^2 + i\varepsilon)^2((p-k)^2 - m_g^2 + i\varepsilon)} \,\delta\left(x - \frac{\pmb{k^3}}{\pmb{p^3}}\right) \frac{1}{\pmb{p^3}}$$

$$f_1(x) = \frac{\alpha_s C_F}{2\pi} (1 - x) \left(\frac{\mathbf{P_{UV}} + \ln \frac{\mu^2}{x m_g^2}}{-2} \right)$$

$$f_{1}(x) = \frac{\alpha_{s}C_{F}}{2\pi}(1-x)\left(\frac{\mathcal{P}_{UV} + \ln\frac{\mu^{2}}{xm_{g}^{2}}}{2\pi} - 2\right)$$

$$f_{1}(x, p^{3}) = \frac{\alpha_{s}C_{F}}{2\pi}\left\{(1-x)\ln\frac{x}{x-1} + 1 & x > 1 \\ (1-x)\ln\frac{4(1-x)p_{3}^{2}}{m_{g}^{2}} + x & 0 < x < 1 \\ (1-x)\ln\frac{x-1}{x} - 1 & x < 0 \right\}$$

$$UV-finite!$$

IR singularities of quasi-PDFs & light-cone PDFs are same

What if I calculate f_1 , with, a completely spatial correlator & with γ^3 & keeping p^3 finite?

Support outside "physical" region
$$0 < x < 1$$

$$\int_{-\infty}^{\infty} \frac{d^n k}{(2\pi)^n} \frac{\mathrm{Tr} \left[u \, \overline{u} \, \gamma^{\nu} \left(\cancel{k} + \cancel{m_q} \right) \gamma^3 \left(\cancel{k} + m_q \right) \gamma^{\mu} \right]}{(k^2 - m_q^2 + i\varepsilon)^2 ((p - k)^2 - m_g^2 + i\varepsilon)} \, \delta \left(x - \frac{k^3}{p^3} \right) \frac{1}{p^3}$$

Divergences will manifest after we integrate over
$$x$$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Matching formula:

$$q_{\mathbf{Q}}(x; P_3) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)$$

(Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/...)

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Matching formula:

$$q_{\mathbf{Q}}(x; P_3) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)$$

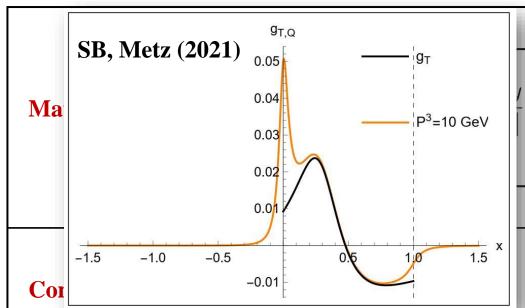
(Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/...)

Contributions in a nutshell:

• Derived the one-loop matching coefficient for the twist-3 PDFs $\ (g_T(x),\, e(x),\, h_L(x))$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens



$$\frac{{}^{\prime}C\left(\frac{x}{y}\right)q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)}{\text{(Scale dependence omitted)}}$$

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/ ...)

- Derived the one-loop matching coefficient for the twist-3 PDFs $\ (g_T(x),\, e(x),\, h_L(x))$
- Provided the necessary theoretical tools to deal with complications due to singular zero-mode contributions

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Matching formula:

$$q_{\mathbf{Q}}(x; P_3) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)$$

(Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/...)

Contributions in a nutshell:

- Derived the one-loop matching coefficient for the twist-3 PDFs $\ (g_T(x),\, e(x),\, h_L(x))$
- Provided the necessary theoretical tools to deal with complications due to singular zero-mode contributions
- These contributions led to the first-ever extraction of $\ (g_T(x),h_L(x))$ from lattice QCD

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Matching formula:

$$q_{\mathbf{Q}}(x; P_3) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)$$

(Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/...)

Contributions in a nutshell:

- Derived the one-loop matching coefficient for the twist-3 PDFs $(g_T(x),\,e(x),\,h_L(x))$
- Provided the necessary theoretical tools to deal with complications due to singular zero-mode contributions
- These contributions led to the first-ever extraction of $\ (g_T(x),h_L(x))$ from lattice QCD

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

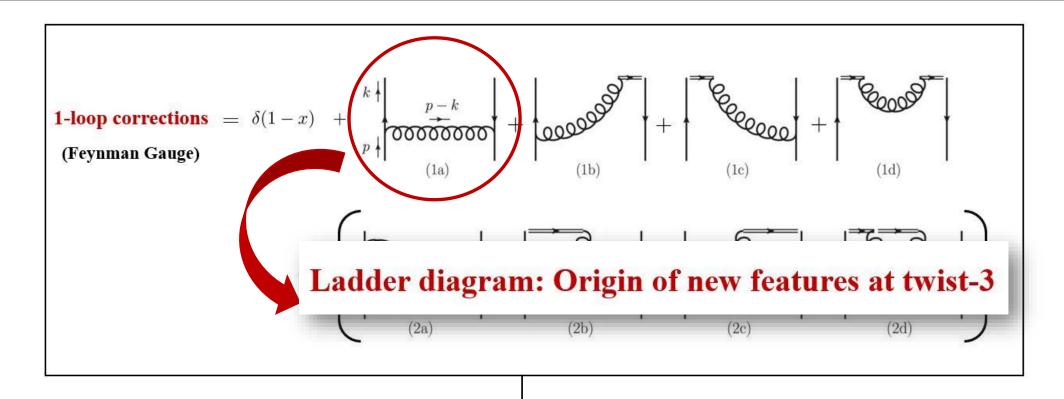
Set-up for our calculation

Ultra-violet: $\int_{-\infty}^{\infty} d^2k_{\perp} \longrightarrow \epsilon_{\rm UV}$

IR: $\int_0 d^2k_\perp \longrightarrow m_{q,g} \neq 0, \ \epsilon_{\rm IR}$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Set-up for our calculation



Ultra-violet: $\int_{-\infty}^{\infty} d^2k_{\perp} \longrightarrow \epsilon_{\rm UV}$

IR: $\int_0^\infty d^2k_\perp \longrightarrow m_{q,q} \neq 0, \ \epsilon_{\rm IR}$

Light-cone PDF	Features
Example: $h_{L(\mathrm{s})}^{(1a)}(x)\big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1\right)$	• Zero modes are unavoidable

Light-cone PDF	Features
Example: $h_{L(\mathbf{s})}^{(1a)}(x)\big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(\boldsymbol{x}) \left(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right)$	Zero modes are unavoidable ID dependent profestor of zero modes
	IR-dependent prefactor of zero modes

Light-cone PDF	Features
Example: $h_{L(\mathbf{s})}^{(1a)}(x)\big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1\right)$	 Zero modes are unavoidable IR-dependent prefactor of zero modes
Quasi-PDF	Features
Example: $h_{L,Q(\mathbf{s})}^{(1a)}(x)\Big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \sqrt{\frac{p^3}{\sqrt{x^2 p_3^2 + m_q^2}}}$	Seemingly different looking IR pole structure

Light-cone PDF	Features
Example: $h_{L(\mathbf{s})}^{(1a)}(x)\big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln\frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1\right)$	 Zero modes are unavoidable IR-dependent prefactor of zero modes
Quasi-PDF	Features
Example: $h_{L,Q(\mathbf{s})}^{(1a)}(x)\Big _{m_q} = -\frac{\alpha_s C_F}{2\pi} \sqrt{\frac{p^3}{\sqrt{x^2 p_3^2 + m_q^2}}}$	 Seemingly different looking IR pole structure Do quasi-PDFs and LC PDFs share same IR physics?

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD 102 (2020)

Treatment of IR singularity for quasi-PDFs (non-zero quark mass)

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}}$$
 where, $\eta^2 = \frac{m_q^2}{p_3^2} - 1 < x < 1$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD 102 (2020)

Treatment of IR singularity for quasi-PDFs (non-zero quark mass)

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}}$$
 where, $\eta^2 = \frac{m_q^2}{p_3^2} - 1 < x < 1$

$$h_{L,Q(s)}^{(1a)}(x) \approx -\frac{\alpha_s C_F}{2\pi} \left(\frac{1}{x}\right)$$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD 102 (2020)

Treatment of IR singularity for quasi-PDFs (non-zero quark mass)

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}}$$
 where, $\eta^2 = \frac{m_q^2}{p_3^2} - 1 < x < 1$

Recall:

$$h_{L(\mathrm{s})}^{(1a)}(x)\big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right)$$

$$h_{L,Q(s)}^{(1a)}(x) \approx -\frac{\alpha_s C_F}{2\pi} \left(\frac{1}{x}\right)$$

 Doing a twist-expansion before we calculate the matching coefficient gives rise to an <u>incorrect</u> <u>conclusion</u> of mismatch in the IR between quasi & LC PDFs!

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/ PRD 102 (2020)

Treatment of IR singularity for quasi-PDFs (non-zero quark mass)

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}}$$
 where, $\eta^2 = \frac{m_q^2}{p_3^2} - 1 < x < 1$

Recall:

$$h_{L(\mathrm{s})}^{(1a)}(x)\big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{\mathrm{UV}} + \ln \frac{\mu_{\mathrm{UV}}^2}{m_q^2} - 1 \right)$$

Matching formula:

$$q_{\mathbf{Q}}(x; P_3) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_3^2}\right)$$

(Scale dependence omitted)

(<u>Xiong</u>, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, <u>Jin</u>, Stewart, Zhao, 2018/ ...)

matching coefficient gives rise to an <u>incorrect</u> <u>conclusion</u> of mismatch in the IR between quasi & LC PDFs!

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD 102 (2020)

	Treatment of IR singu	larity for	quasi-PDFs (non-zero	quark mass)
--	-----------------------	------------	----------------------	-------------

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}} \qquad \text{where,} \quad \eta^2 = \frac{m_q^2}{p_3^2} \qquad h_{L(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \delta(x) \left(\mathcal{P}_{UV} + \ln \frac{\mu_{UV}^2}{m_q^2} - 1\right)$$

Incorrect approach

Correct approach

$$h_{L,Q(s)}^{(1a)}(x) \approx -\frac{\alpha_s C_F}{2\pi} \left(\frac{1}{x}\right)$$

$$\int_{-1}^{1} dx \, \frac{f(x)}{\sqrt{x^2 + \eta^2}} = \int_{-1}^{1} dx \, f(x) \delta(x) \left(\ln \frac{4}{\eta^2} \right)$$

$$+ \int_{-1}^{1} dx \, f(x) \left[\frac{1}{|x|} \right]_{+[0]} + \mathcal{O}(\eta^2)$$

- Doing a twist-expansion before we calculate the matching coefficient gives rise to an incorrect conclusion of mismatch in the IR between quasi & LC PDFs!
- By convoluting with a well-behaved test-function, it is possible to isolate singularity at x=0
- Agreement in the IR poles between quasi & LC PDFs: Matching possible for e(x), $h_L(x)$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD 102 (2020)

Treatment of IR singularity for quasi-PDFs (non-zero quark mass)

$$h_{L,Q(s)}^{(1a)}(x)\Big|_{m_q} = -\frac{\alpha_s C_F}{2\pi} \frac{1}{\sqrt{x^2 + \eta^2}}$$
 where, $\eta^2 = \frac{m_q^2}{p_3^2} - 1 < x < 1$

Point x = 0 is extremely delicate for quasi-PDFs!

• Doing a twist-expansion before we calculate the matching coefficient gives rise to an incorrect conclusion of mismatch in the IR between quasi & LC PDFs! • Agreement in the IR poles between quasi & LC PDFs: Matching possible for $e(x)$, $h_L(x)$		$+ \int_{-1} dx f(x) \left[\frac{1}{ x } \right]_{+[0]} + \mathcal{O}(\eta^2)$
	matching coefficient gives rise to a conclusion of mismatch in the IR b	to isolate singularity at $x=0$ ween quasi • Agreement in the IR poles between quasi & LC PDFs:

SB, Cichy, Constantinou, Metz, Scapellato, Steffens

Matching formula:

$$q_{Q}(x; P_{3}) = \int_{-1}^{+1} \frac{dy}{|y|} C\left(\frac{x}{y}\right) q(y) + \mathcal{O}\left(\frac{1}{P_{3}^{2}}\right)$$

(Scale dependence omitted)

(Xiong, Ji, Zhang, Zhao, 2013/ Stewart, Zhao, 2017/ Izubuchi, Ji, Jin, Stewart, Zhao, 2018/...)

Contributions in a nutshell:

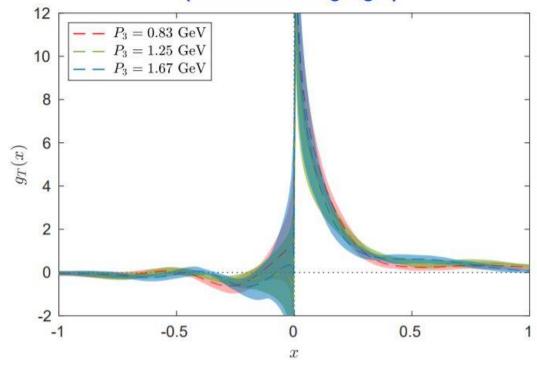
- Derived the one-loop matching coefficient for the twist-3 PDFs $\ (g_T(x), \ e(x), \ h_L(x))$
- Provided the necessary theoretical tools to deal with complications due to singular zero-mode contributions
- These contributions led to the first-ever extraction of $\ (g_T(x),h_L(x))$ from lattice QCD

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD Rapid 102 (2020)

Ensemble:

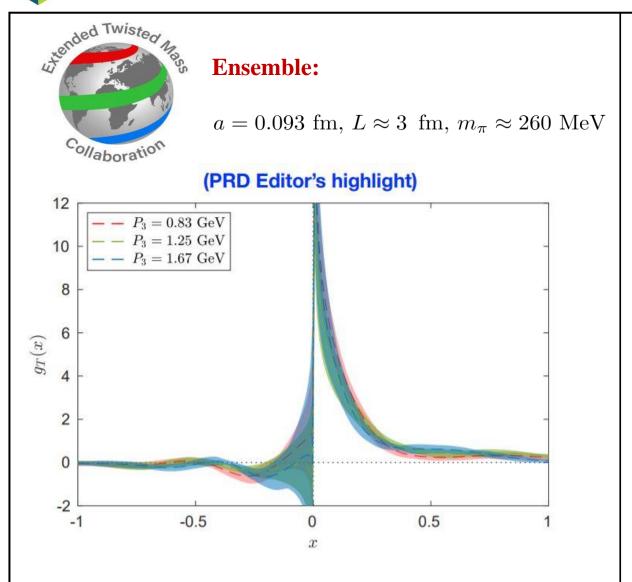
 $a = 0.093 \text{ fm}, L \approx 3 \text{ fm}, m_{\pi} \approx 260 \text{ MeV}$

(PRD Editor's highlight)



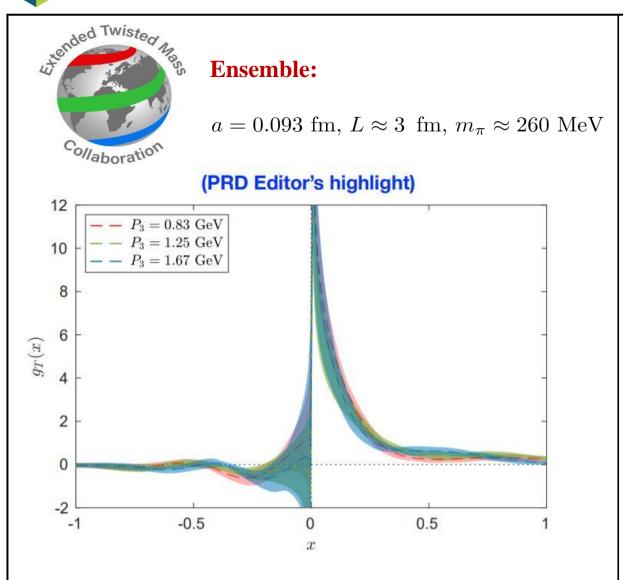
Lattice QCD results for $g_T^{\mathrm{u-d}}(x)$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/PRD Rapid 102 (2020)



Check of WW approximation

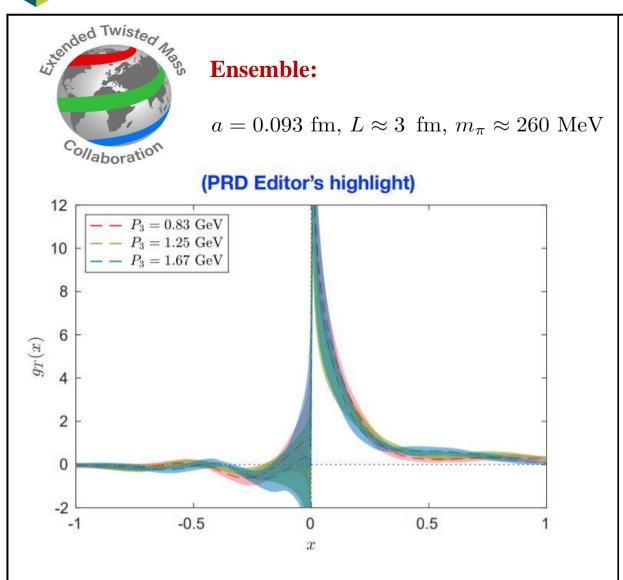
SB, Cichy, Constantinou, Metz, Scapellato, Steffens/ PRD Rapid 102 (2020)



Check of WW approximation

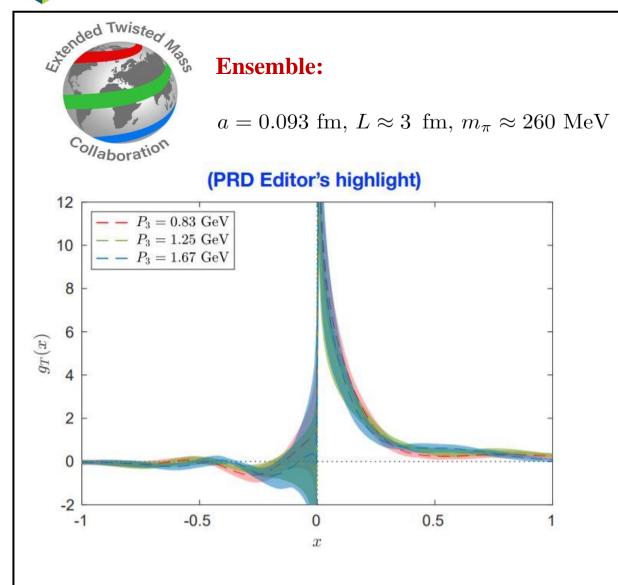
$$g_T(x) = \int_x^1 \frac{dy}{y} g_1(y) + \widetilde{g}_T(x)$$

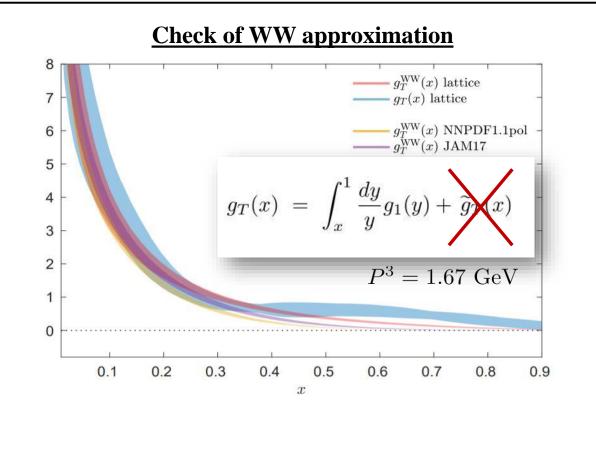
SB, Cichy, Constantinou, Metz, Scapellato, Steffens/ PRD Rapid 102 (2020)



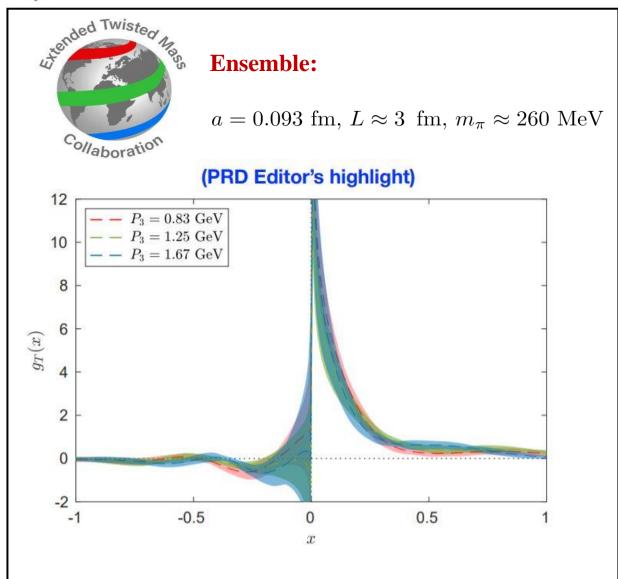
Check of WW approximation

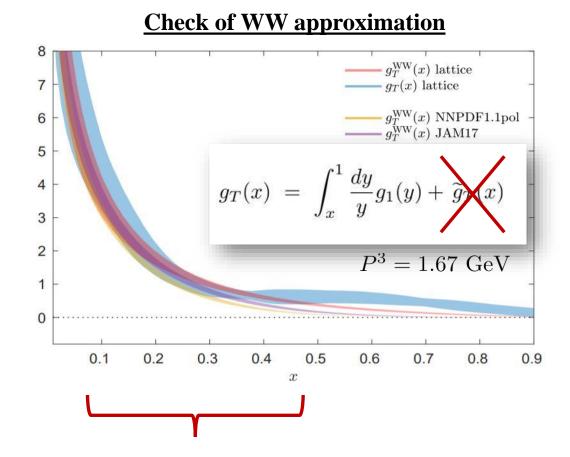
$$g_T(x) = \int_x^1 \frac{dy}{y} g_1(y) + \widetilde{g}_T(x)$$





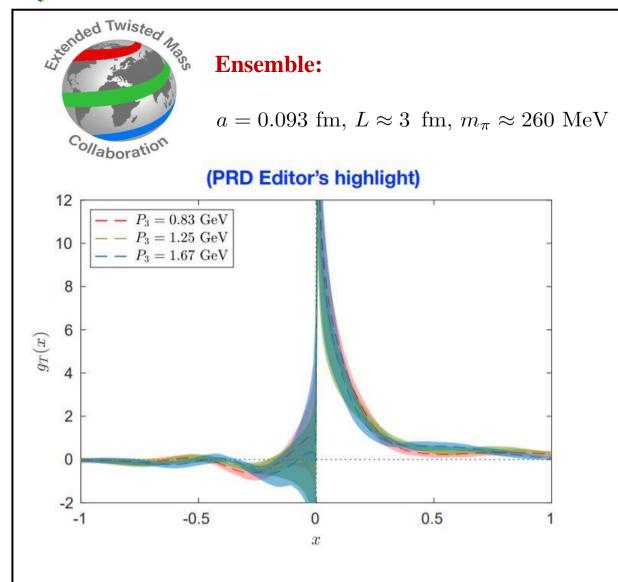
SB, Cichy, Constantinou, Metz, Scapellato, Steffens/ PRD Rapid 102 (2020)

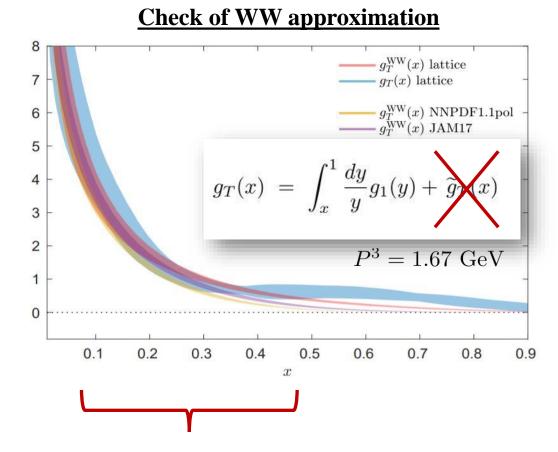




Good agreement between $g_T(x)$ & $g_T^{WW}(x)$

SB, Cichy, Constantinou, Metz, Scapellato, Steffens/ PRD Rapid 102 (2020)

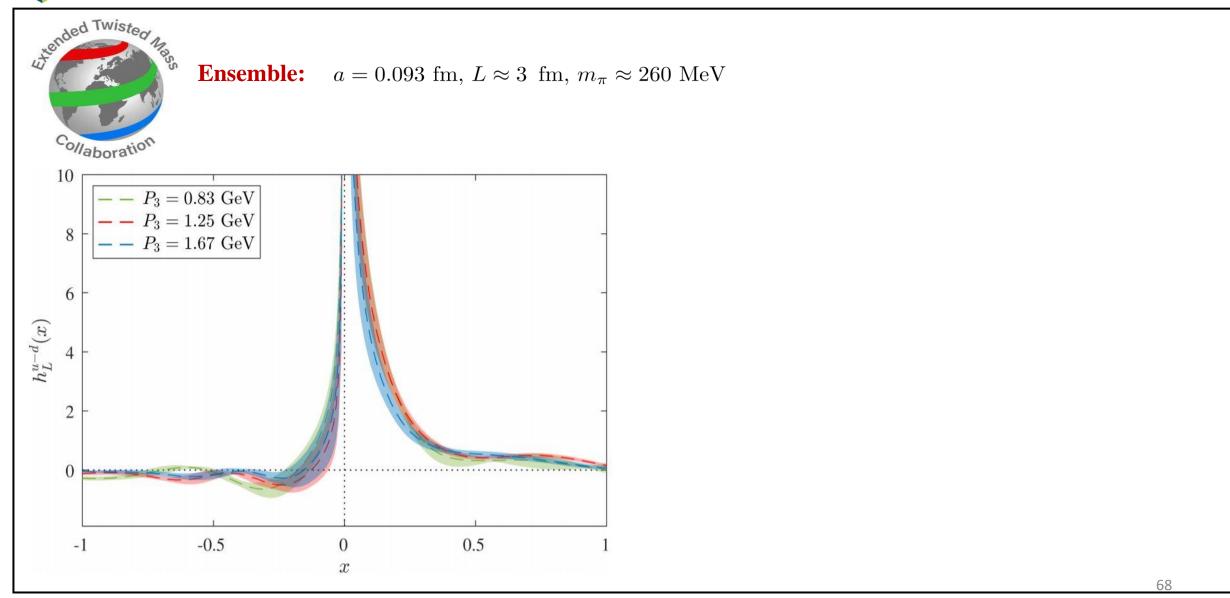




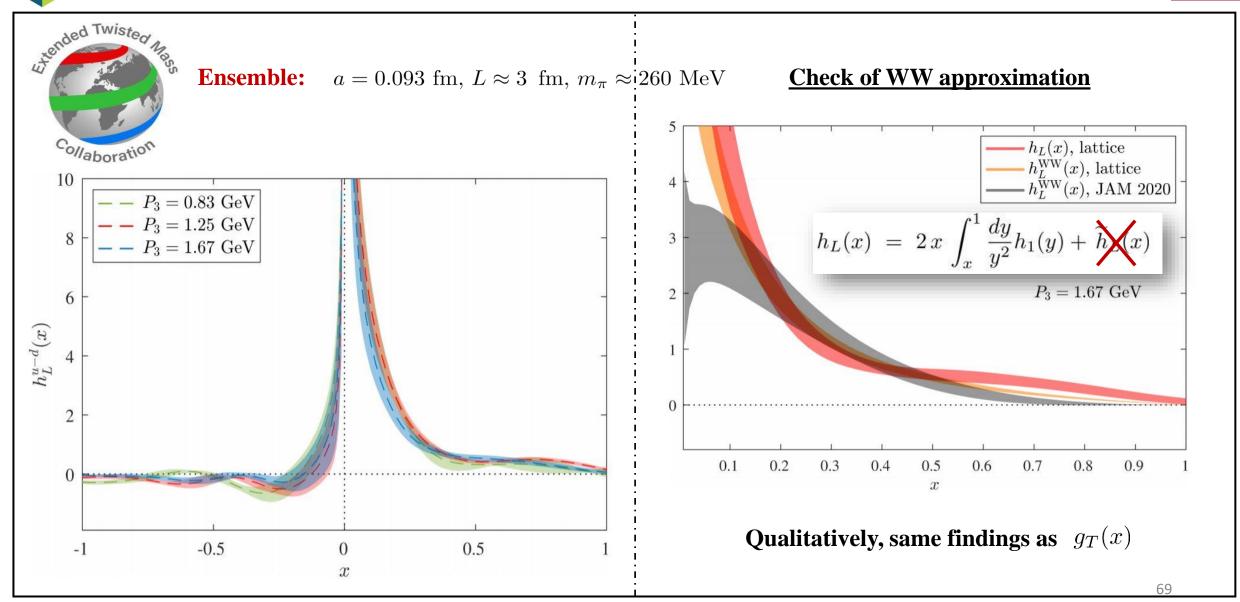
Good agreement between $g_T(x)$ & $g_T^{WW}(x)$

Still, possible violation of up to 30% - 40% perceivable

Matching for twist-3 PDF $h_L(x)$



Matching for twist-3 PDF $h_L(x)$



Summary

- Euclidean-correlator approaches have made it possible to directly access PDFs from lattice QCD
- Extracted matching coefficient for the twist-3 PDFs for the first time
- Presence of singular zero-modes in perturbative results makes the extraction of matching coefficient non-trivial
- We laid the necessary theoretical foundation to deal with zero-modes in matching
- We provided the first lattice results of $g_T(x)$ and $h_L(x)$