Polarized and unpolarized gluon distributions in the nucleon from Lattice QCD

Raza Sabbir Sufian

CFNS Workshop: High Luminosity-EIC (EIC-Phase II)

Gluon distributions and lattice QCD

Origin of proton spin : "Proton spin crisis"

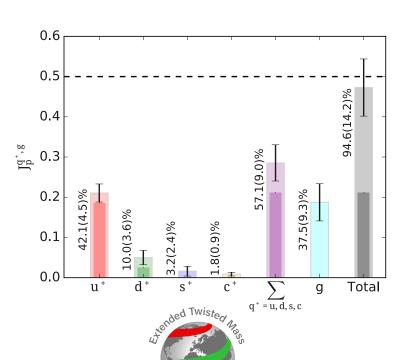
$$J = \frac{1}{2}\Delta\Sigma + L_q^{JM} + \Delta G + L_G$$

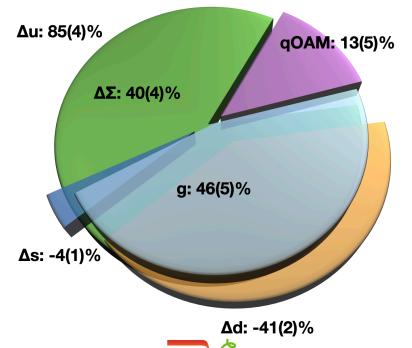
Jaffe & Manohar [NPB 1990]

Proton spin decomposition & Lattice QCD

$$J = J_q + J_G = \frac{1}{2}\Delta\Sigma + L_q^{Ji} + J_G$$

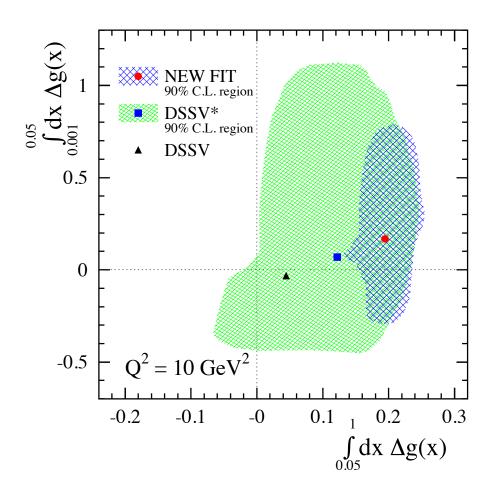
Ji [PRL 1997]

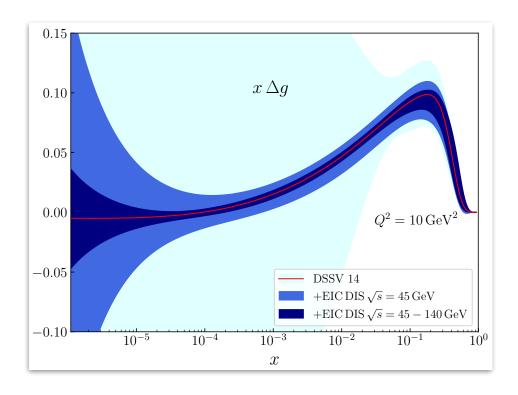




Status of gluon helicity distribution

 Gluon contribution to proton spin is not well-constrained from experimental data



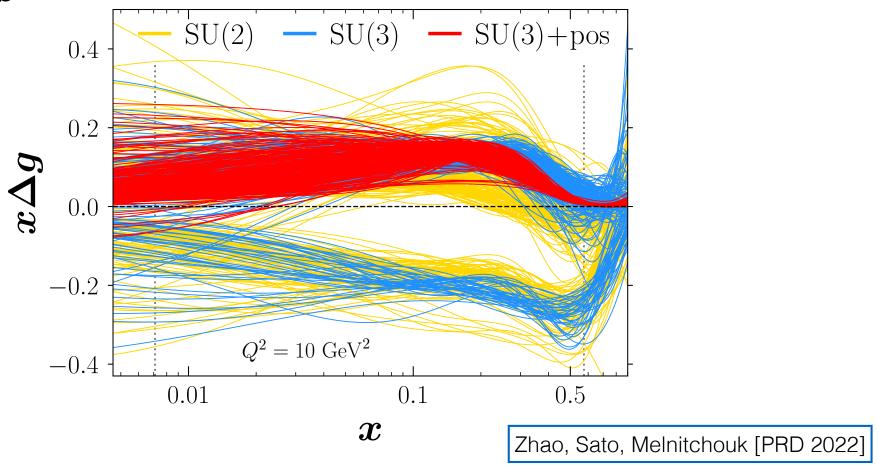


Florian et al [PRL 2014]

Impact of projected EIC data (EIC Yellow Report)

Status of gluon helicity distribution

 Recent JAM Collaboration analysis w/o positivity constraints on PDFs



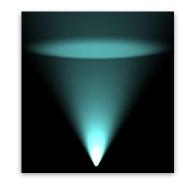
LQCD can provide stringent constraint

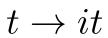
Gluon contribution to proton spin from lattice QCD

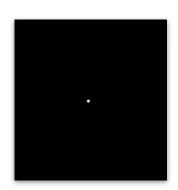
lacktriangle ΔG as the matrix element of nonlocal operator of light cone correlation (not directly calculable on the lattice):

$$\Delta G = \int dx \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} e^{-ixP^{+}\xi^{-}} \langle PS|F_{a}^{+\alpha}(\xi^{-})\mathcal{L}^{ab}(\xi^{-},0)\tilde{F}_{\alpha,b}^{+}(0)|PS\rangle$$

$$r^2 - c^2 t^2 = 0$$







LQCD determination of gluon spin from local matrix element:

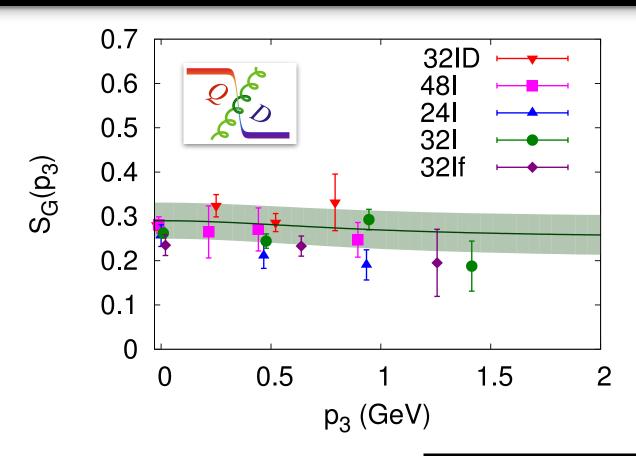
$$\vec{S}_g \to \vec{E} \times \vec{A}_{\rm phys}$$

Ji, Zhang, Zhao [PRL 2013]

Matching using Large Momentum Effective Theory (LaMET)
[Ji, Sci. China Phys 2014]

Hatta, Ji, Zhao [PRD 2014]

Lattice **QCD** determination of gluon spin



After 1-loop matching

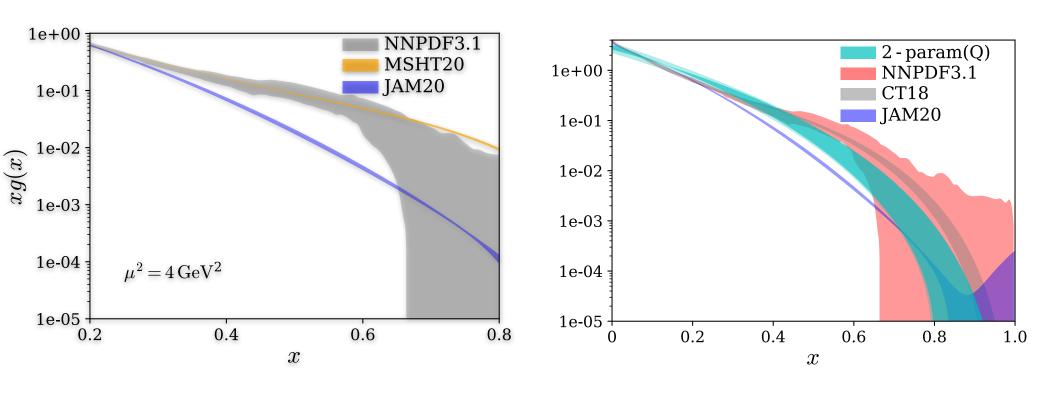
 $\Delta G(\mu^2 = 10 \,\text{GeV}^2) = 0.251(47)(16)$

RSS, Glatzmaier, et al *PoS* LATTICE(2014) Yang, RSS, et al (PRL 2017)

Highlights of the Year

Status of unpolarized gluon distribution & lattice QCD

 Gluon PDF is less explored in LQCD calculations and there is difference between PDF fits



Khan, **RSS**, et al [Hadstruc Collaboration] (PRD 2021)

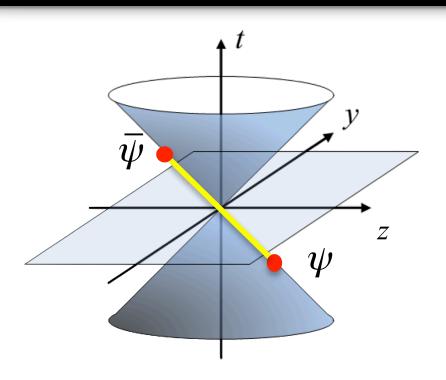
lacktriangle More on LQCD determination of unpolarized gluon PDF ...

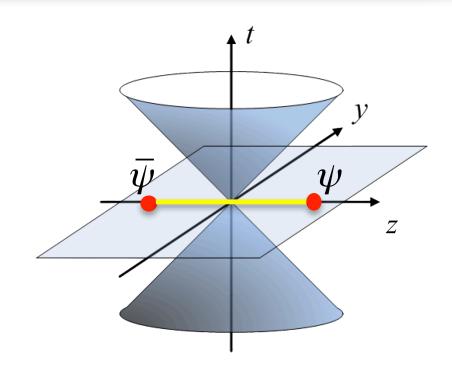
Lattice QCD formalism for calculating gluon PDFs

 Direct evaluation of light-cone correlations precluded by Euclidean metric of lattice QCD

- Lattice QCD proposals for x-dependent hadron structure:
 - 1. Hadronic tensor (Liu [PRL1994])
 - 2. Position-space correlators (Braun & Mueller [EPJ 2008])
 - 3. Quasi-PDFs (Ji [PRL 2013])
 - 4. Pseudo-PDFs (Radyushkin [PRD 2017])
 - 5. Lattice cross sections (Ma & Qiu [PRD 2018, PRL 2018]

Lattice QCD formalism from calculating gluon PDFs





On the lattice, calculate spatial correlation in coordinate space

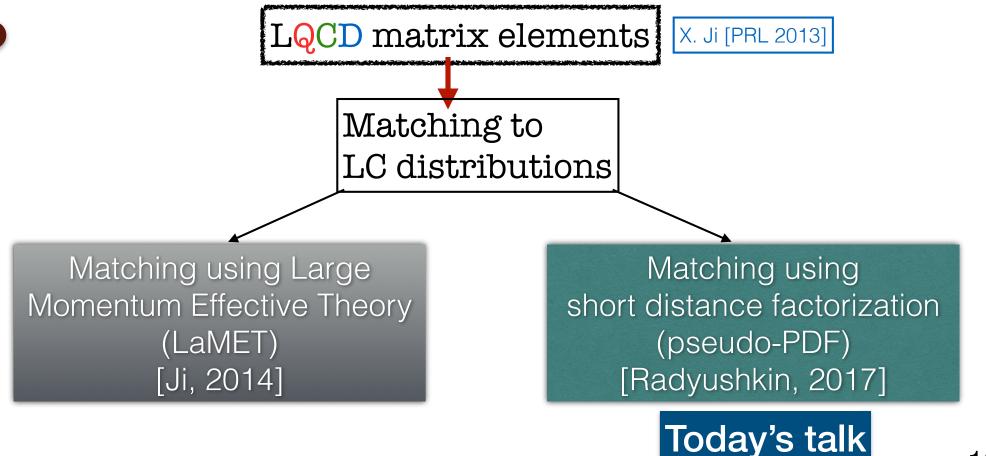
X. Ji [PRL 2013]

- lacksquare For unpolarized gluon PDF: $M_{\mulpha;\lambdaeta}(z,p)\equivra{p}\,G_{\mulpha}(z)\,W[z,0]\,G_{\lambdaeta}(0)\ket{p}$
- For polarized gluon PDF: $\widetilde{M}_{\mulpha;\lambdaeta}(z,p)\equiv\ \langle p,s|\,G_{\mulpha}(z)\,W[z,0]\,\widetilde{G}_{\lambdaeta}(0)\,|p,s
 angle$

Lattice QCD formalism for calculating gluon PDFs

 LQCD calculated spatial correlation functions for gluon distributions are shown to be multiplicatively renormalizable

> Zhang, Ji, et al [PRL 2019] Li, Ma, Qiu [PRL 2019]



Lattice QCD formalism for calculating gluon PDFs

- Write renormalized LQCD matrix elements in terms of Lorentz invariant variables
 - $\triangleright z^2$ and
 - ▶ Ioffe time, $\nu=p_zz$ (convention from Braun, et al [PRD 1995])

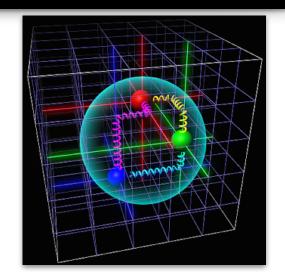
$$\mathfrak{M}(\nu,z^2) \xrightarrow{\text{perturbative}} \mathcal{I}_g(\nu,\mu^2) = \frac{1}{2} \int_{-1}^1 dx \, e^{ix\nu} \, x \, g(x,\mu^2)$$
 matching

$$\widetilde{\mathfrak{M}}(\nu,z^2) \xrightarrow{\text{perturbative}} \widetilde{\mathcal{I}}_p(\nu,\mu^2) = \frac{i}{2} \int_{-1}^1 \mathrm{d}x \, e^{-ix\nu} \, x \, \Delta g(x,\mu^2)$$
 matching

• Gluon helicity: $\Delta G(\mu^2) = \int_0^\infty \mathrm{d} \nu \; \widetilde{\mathcal{I}}_p(\nu,\mu^2) = \int_0^1 \mathrm{d} x \; \Delta g(x,\mu^2)$

Lattice QCD calculation

- Lattice size, $L \times T = 32^3 \times 64$
- Lattice spacing, $a \approx 0.094$ fm
- lacksquare Pion mass, $m_\pi=358$ MeV



- 351 configurations for unpolarized gluon distribution
- 1901 configurations for polarized gluon distribution
- Hadron boosted along z-direction, $p = \frac{2\pi n}{La} = [0, 2.46] \; \mathrm{GeV}$

Special features: optimized operators and nucleon correlator

Nucleon correlation function using "Distillation" | Peardon, et al [PRD 2009]

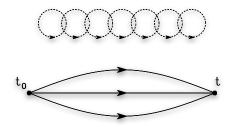
- Extended basis of operators (positive/negative parity, hybrid, ...
- Gluonic operator using "Wilson flow"

M. Luscher, JHEP 2010

Use summed generalized eigenvalue problem (sGEVP)

- $ightharpoonup C \exp(-\Delta E t/2)$ (GEVP)
- $ightharpoonup Dt\exp(-\Delta Et)$ (sGEVP)

J. Bulava, et al, JHEP 2012



Lattice QCD calculation of unpolarized gluon distribution

Matrix element for unpolarized gluon PDF

$$M_{\mu\alpha;\lambda\beta}(z,p) \equiv \langle p | G_{\mu\alpha}(z) W[z,0] G_{\lambda\beta}(0) | p \rangle$$

A proper combination on the lattice:

$$M_{0i;i0} = \langle p | G_{0i}(z) [z, 0] G_{i0}(0) | p \rangle = 2 p_0^2 \mathcal{M}_{pp} + 2 \mathcal{M}_{gg}$$

$$M_{ji;ij} = -2\mathcal{M}_{gg}$$

$$i, j \to x, y$$

$$M_{0i;i0} + M_{ji;ij} = 2p_0^2 \mathcal{M}_{pp}$$

Combination is multiplicatively renormalizable

Balitsky, et al [PLB 2020]

Lattice QCD calculation of unpolarized gluon distribution

 $\blacksquare \ \, \text{Renormalization:} \ \, \mathfrak{M}(\nu,z^2) = \left(\frac{\mathcal{M}(\nu,z^2)}{\mathcal{M}(\nu,0)|_{z=0}}\right) / \left(\frac{\mathcal{M}(0,z^2)|_{p=0}}{\mathcal{M}(0,0)|_{p=0,z=0}}\right)$

Reduced Ioffe-time distribution

Radyushkin [PLB 2017] Orginos, et al [PRD 2017]

After renormalization and perturbative matching

$$\mathcal{M}_{pp}(\nu, z^2) \rightarrow \mathcal{I}_g(\nu, \mu^2) = \int_0^1 dx \cos(x\nu) \frac{x g(x, \mu^2)}{x^2}$$

Ioffe time distribution in the zero flow time limit

Unpolarized gluon pseudo-ITD



Recall the inverse problem:

$$\mathfrak{M}(\nu,z^2) \stackrel{\text{perturbative}}{\longleftarrow} \mathcal{I}_g(\nu,\mu^2) = \frac{1}{2} \int_{-1}^1 dx \, e^{ix\nu} \, x \, g(x,\mu^2)$$

Some phenomenology

Fit NNPDF3.1 gluon PDF using ansatz

$$xg^{+}(x) = x^{\alpha} \left[A(1-x)^{4+\beta} + B(1-x)^{5+\beta} \right] \times (1 + \gamma \sqrt{x} + \delta x)$$
$$xg^{-}(x) = x^{\alpha} \left[A(1-x)^{6+\beta} + B(1-x)^{7+\beta} \right] \times (1 + \gamma \sqrt{x} + \delta x)$$

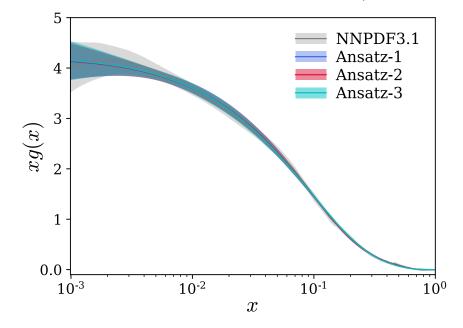
$$xg(x) \equiv xg^{+}(x) + xg^{-}(x)$$
$$x\Delta g(x) \equiv xg^{+}(x) - xg^{-}(x)$$

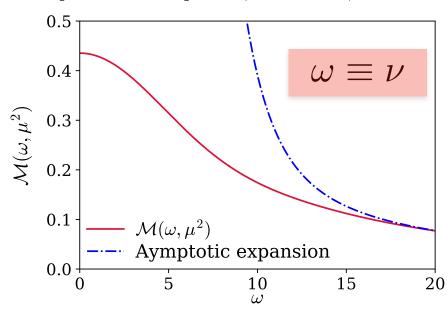
Brodsky, Burkardt, Schmidt [NPB 95]

RSS, Liu, Paul PRD 2021

Asymptotic form:

$$\mathcal{M}(\omega, \mu^{2}) = A \left[\left(C_{R}(\alpha, 4 + \beta; \omega) + \gamma C_{R}(\alpha + 1/2, 4 + \beta; \omega) + \delta C_{R}(\alpha + 1, 4 + \beta; \omega) \right) + \left(\beta \rightarrow \beta + 2 \right) \right] + B \left[\beta \rightarrow \beta + 1 \right] + \mathcal{O}(1/\omega^{a+R+1})$$





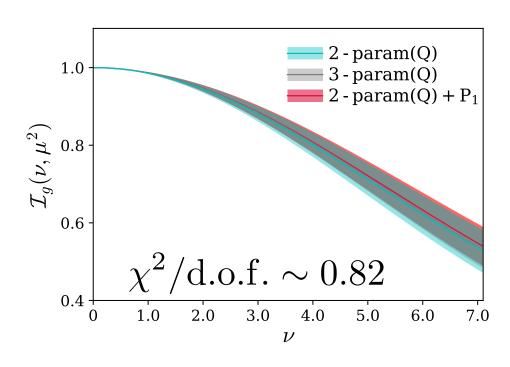
From pseudo-distribution to light-cone distribution

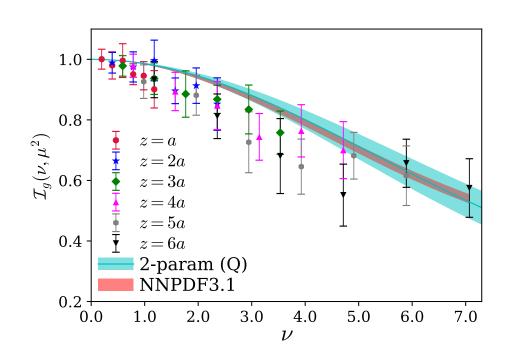
PDF fits:

2-parameter form:
$$x^{\alpha} (1-x)^{\beta}$$

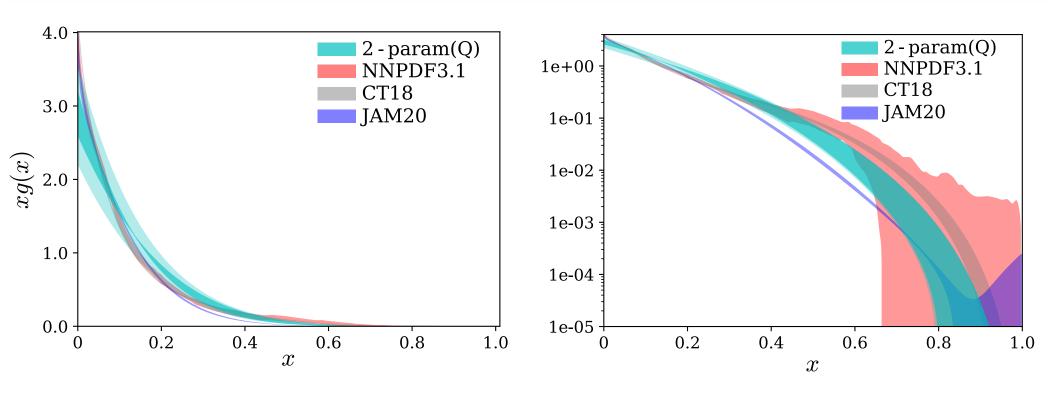
- + correction to 2-parameter form
- + discretization error

$$\mathfrak{M}(\nu, z^2) = \int_0^1 dx \, \mathcal{K}(x\nu, \mu^2 z^2) \, \frac{x^\alpha \, (1-x)^\beta}{B(\alpha+1, \beta+1)}$$





Determination of unpolarized gluon distribution



Khan, **RSS**, et al [Hadstruc Collaboration] (PRD 2021)

Lattice QCD calculation of polarized gluon distribution

Matrix element for polarized gluon distribution:

$$\widetilde{M}_{00}(z, p_z) \equiv [\widetilde{M}_{ti;ti}(z, p_z) + \widetilde{M}_{ij;ij}(z, p_z)]$$

Renormalization:

$$\widetilde{\mathfrak{M}}(z, p_z) \equiv i \frac{[\widetilde{M}_{00}(z, p_z)/p_z p_0]/Z_{\rm L}(z/a_L)}{M_{00}(z, p_z = 0)/m_p^2}$$

Balitsky, Morris, Radyushkin [JHEP 2022]

The PROBLEM:

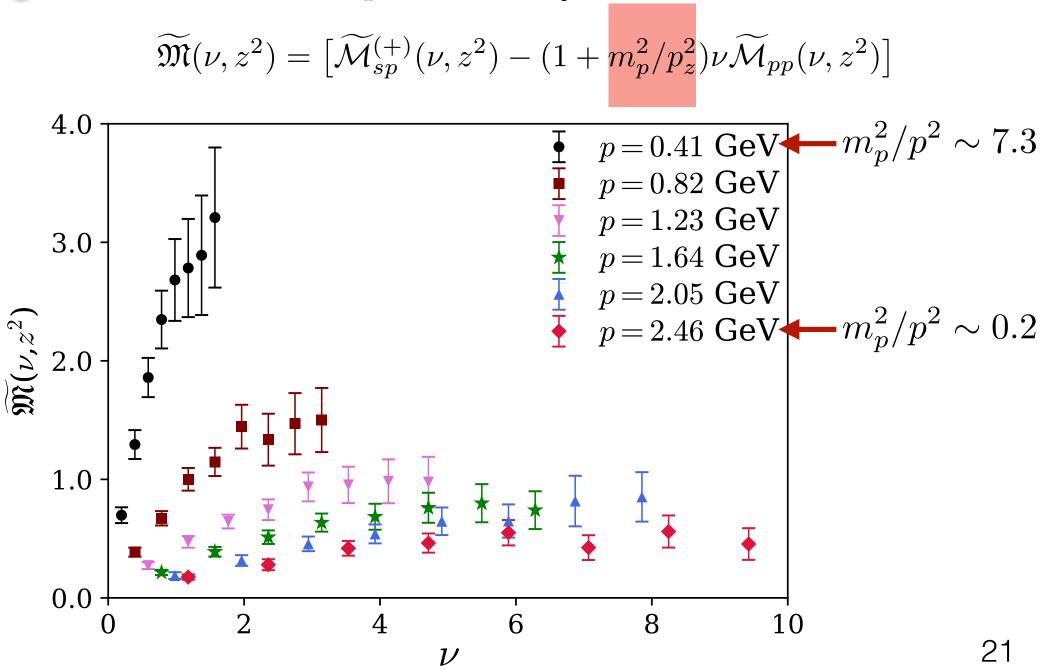
$$\widetilde{\mathfrak{M}}(\nu,z^2) = \left[\widetilde{\mathcal{M}}_{sp}^{(+)}(\nu,z^2) - (1 + m_p^2/p_z^2)\nu\widetilde{\mathcal{M}}_{pp}(\nu,z^2)\right]$$

What we want:

$$\widetilde{\mathcal{I}}_p(\nu) \equiv i \left[\widetilde{\mathcal{M}}_{ps}^{(+)}(\nu) - \nu \widetilde{\mathcal{M}}_{pp}(\nu) \right]$$

Ioffe time pseudo-distribution in the zero flow time limit

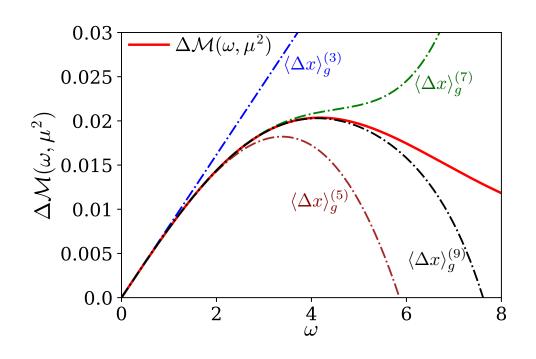
Contamination term present in LQCD matrix element dominates

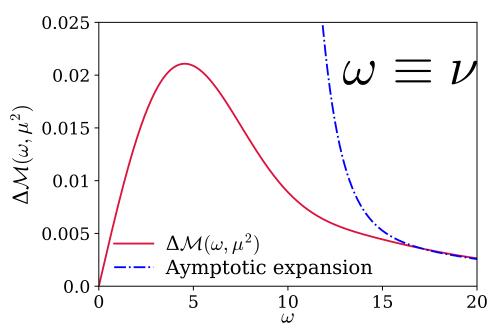


Another challenge for Lattice \mathbb{QCD} calculation of x-dependent gluon helicity distribution

- lacksquare Lattice data in a limited range of $\,
 u$
- Available lattice data is sensitive up to first few moments

RSS, Liu, Paul [PRD 2021]

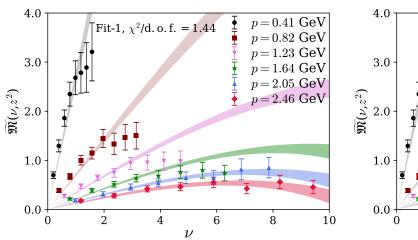


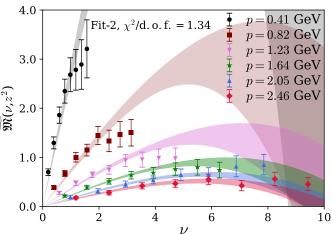


Extrapolation of Lattice QCD data

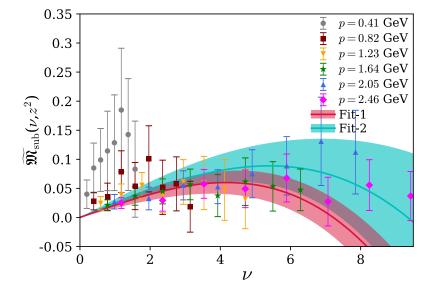
Correction through fits using moments

$$\widetilde{\mathfrak{M}}(\nu) = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)!} a_i \nu^{2i+1} + \nu \frac{m_p^2}{p^2} \sum_{j=0}^{\infty} \frac{(-1)^j}{(2j)!} b_j \nu^{2j}$$

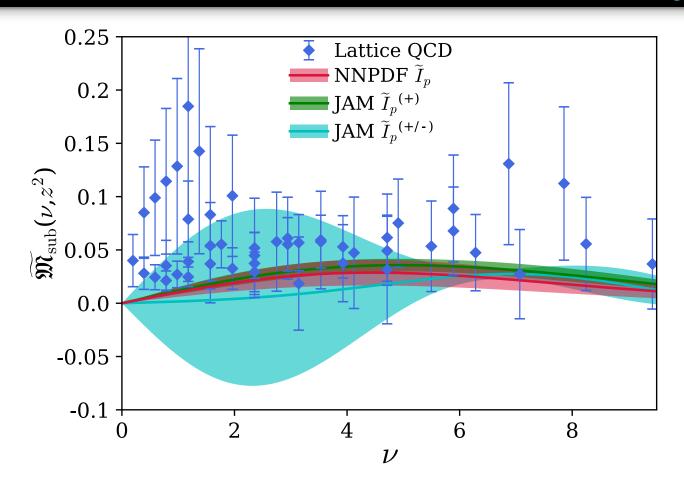




Correction by subtracting zero momentum matrix elements



Comparison with phenomenology



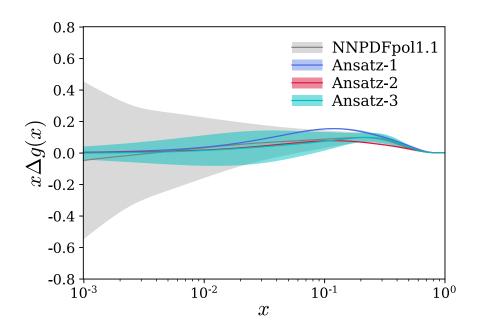
In preparation

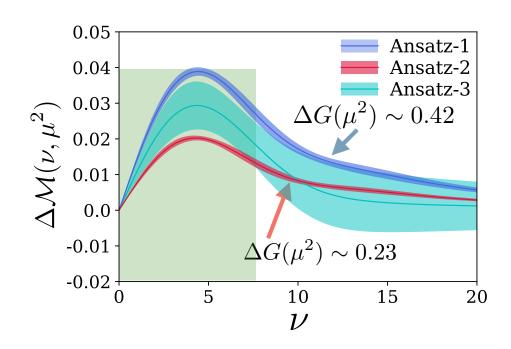
With controlled statistics, next step is factorization & matching

Prospect of Lattice QCD on gluon helicity distribution

Gluon helicity from light cone Ioff-time distribution

$$\Delta G(\mu^2) = \int_0^\infty d\nu \ \Delta \mathcal{M}_{\text{light-cone}}(\nu, \mu^2)$$





RSS, Liu, Paul [PRD 2021]

 LQCD determination of polarized gluon ITD, even at small Ioffe-time window can have important impact

Summary & Outlook

- LQCD determination of unpolarized gluon PDF looks promising!
- We have presented the first LQCD determination of polarized gluon Ioffe-time distribution
- Future calculation: With precise LQCD matrix elements,, perform factorization and obtain light-cone Ioffe-time distribution
- Challenge: many systematics to understand
- Goal: determination of gluon contribution to proton spin &x-dependent helicity distribution

Thank you!