Machine Learning for LHC Theory

Particle Physics Seminars at BNL

Anja Butter

ITP, Universität Heidelberg / LPNHE, Paris

Performance boosts and new developments for many applications

 $\leftarrow \mathsf{Top} \ \mathsf{tagging}$

Anomaly detection \rightarrow

$\leftarrow \mathsf{Detector}\ \mathsf{simulation}$

Precision simulations with limited resources

Speed = Precision

1. Generate phase space points

2. Calculate event weight

 $w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots, p_n) \times J(p_i(r))^{-1}$

3. Unweighting \rightarrow optimal for $w \approx 1$

... or training directly on event samples

Event generation

- Generating 4-momenta
- → Phase space sampling, data compression, interpolation, ...

[1901.00875] Otten et al. VAE & GAN [1901.05282] Hashemi et al. GAN [1903.02433] Di Sipio et al. GAN [1903.02556] Lin et al. GAN [1907.03764, 1912.08824] Butter et al. GAN [1912.02748] Martinez et al. GAN [2001.11103] Alanazi et al. GAN [2011.13445] Stienen et al. NF [2012.07873] Backes et al. GAN

Detector simulation

- Jet images
- Fast calorimeter simulation

[1701.05927] de Oliveira et al. GAN [1705.02355, 1712.10321] Paganini et al. GAN [1802.03325, 1807.01954] Erdmann et al. GAN [1805.00850] Musella et al. GAN [1805.00850] Musella et al. GAN [1909.01359] Carazza and Dreyer GAN [1909.01359] Carazza and Dreyer GAN [1912.06794] Belayneh et al. GAN [2005.05334] Buhmann et al. VAE [2009.03796] Diefenbacher et al. GAN [2009.1017] Lu et al.

NO claim to completeness!

Invertible networks

+ Tractable Jacobian
 + Enable correction for perfect precision
 + Fast evaluation in both directions

$$\begin{pmatrix} \mathsf{v}_1\\ \mathsf{v}_2 \end{pmatrix} = \begin{pmatrix} u_1 \cdot \mathsf{s}_2(u_2) + t_2(u_2)\\ u_2 \end{pmatrix}$$

Invertible networks

 $+ \ {\sf Tractable} \ {\sf Jacobian}$

+ Enable correction for perfect precision

+ Fast evaluation in both directions

$$\begin{pmatrix} \mathsf{v}_1\\ \mathsf{v}_2 \end{pmatrix} = \begin{pmatrix} u_1 \cdot \mathsf{s}_2(u_2) + t_2(u_2)\\ u_2 \end{pmatrix}$$

Many alternative implementations, eg. cubic splines

Machine Learning for LHC Theory

Training on density Sherpa [2001.05478, 2001.10028]

•
$$z \sim \mathcal{N} \rightarrow \text{ NN } \rightarrow x \sim p_x$$

- $p_x(x) = p_z(z) \cdot J_{NN}$
- Given target density t(x)
- \rightarrow Train NN to minimize log($p_z(z) \cdot J_{\text{NN}}/t(x)$)
 - Problem: Calculate f(x) each time

Training on samples

A.B., T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rousselot, S. Vent [arXiv:2110.13632]

•
$$x \sim p_{\text{samples}} \rightarrow \text{NN} \rightarrow z$$

- ightarrow Train NN to ensure $z \sim \mathcal{N}$
 - Loss: Maximize posterior over network weights:

$$egin{aligned} -\log(p(heta|x)) &= -\log(p(x| heta)) - \log(p(heta)) + ext{const.} \ &= -\log(p(z| heta)) - \log(J) - \log(p(heta)) + ext{const.} \end{aligned}$$

Naive INN results

- INN easy trainable, powerful baseline
- Challenges:

Naive INN results

- INN easy trainable, powerful baseline
- Challenges:
 - Variable number of jets

Naive INN results

- INN easy trainable, powerful baseline
- Challenges:
 - Variable number of jets
 - Topological holes

Reweighting

Discriminator

$$\begin{split} \mathcal{L} &= -\sum_{x \sim p_{data}} \log(D(x)) - \sum_{x \sim p_{INN}} \log(1 - D(x)) \\ &= -\int \mathrm{d}x \; p_{data}(x) \log(D(x)) + p_{inn}(x) \log(1 - D(x)) \end{split}$$

From variation we obtain

$$0 = \frac{p_{data}(x)}{D(x)} - \frac{p_{inn}(x)}{1 - D(x)}$$
$$\Rightarrow \frac{p_{data}(x)}{p_{inn}(x)} = \frac{D(x)}{1 - D(x)}$$

- Reweighted results show significant improvement
- Include discriminator information to improve training

- Reweighted results show significant improvement
- Include discriminator information to improve training

$$\mathcal{L}_{\text{DiscFlow}} = \sum_{i=1}^{B} w_D(x_i)^{\alpha} \left(\frac{\psi(x_i; c_i)^2}{2} - \log J(x_i) \right)$$
$$\approx \int dx \underbrace{w_D(x)^{\alpha} P(x)}_{\text{reweighted truth}} \left(\frac{\psi(x; c)^2}{2} - \log J(x) \right)$$

- Reweighted results show significant improvement
- Include discriminator information to improve training
- Discflow + Reweighting

Addressing uncertainties

$$\mathcal{L} = \mathcal{L}_{\textit{INN}} + \textit{KL}_{\textit{prior}}$$

BINN results

 \Rightarrow BINN uncertainty captures convergence of the network \checkmark \Rightarrow BINN uncertainty does NOT capture where network fails

Overview on uncertainties

Machine Learning for LHC Theory

INNs can ..

 \rightarrow learn event distributions and correlations

 \rightarrow achieve higher precision through reweighting and Discflow

 \rightarrow be extended to BINN to assign uncertainties

Targeting loop amplitudes

 p_1

 p_2

m

- Neural networks can learn amplitudes
- \rightarrow Precision?
 - Feynman integrals often contain singularities
 - Solved by contour deformation due to Cauchy's theorem
 - Parametrize with NN
 - Minimize variance of the integral

 p_3

Can we invert the simulation chain?

Inverting detector effects

multi-dimensional \checkmark bin independent \checkmark statistically well defined ?

Asking the right question

Given an event x_d , what is the probability distribution at parton level? \rightarrow event generation conditioned on x_d

$$X_p \xleftarrow{g(x_p, f(x_d))}{\longleftarrow \text{ unfolding: } \bar{g}(r, f(x_d))} I$$

Minimizing the posterior

$$L = \left\langle 0.5 || \bar{g}(x_{p}, f(x_{d})) ||_{2}^{2} - \log |J| \right\rangle_{x_{p} \sim P_{p}, x_{d} \sim P_{d}} - \log p(\theta)$$

Inverting the full event

multi-dimensional $\checkmark~$ bin independent $\checkmark~$ statistically well defined $\checkmark~$

Machine Learning for LHC Theory

Condition INN on detector data [2006.06685]

Application to MEM

current work in progress with T. Martini, T. Heimel, S. Peitzsch, T. Plehn

- Single top production in association with Higgs
- Measure CP-phase in the top Yukawa coupling

We can use neural networks ...

... to improve precision simulations in forward direction ... to achieve **precision** with discriminators

... to estimate the corresponding uncertainties

... to learn and calculate loop amplitudes

... to **invert** the simulation chain statistically

It doesn't always have to be a neural network

Can we learn theory from data?

Let's try...

arXiv:2109.10414 Johann Brehmer, A.B., Tilman Plehn, Nathalie Soybelman

What is the optimal observable to measure θ ?

- Experiments measure high-dimensional data x_{reco}
- 1D representation (p_T, m_{jj}) looses information

What is the optimal observable to measure θ ?

- Experiments measure high-dimensional data x_{reco}
- 1D representation (p_T, m_{jj}) looses information
- Starting point: likelihood

$$p(x_{reco}|\theta) = \frac{1}{\sigma(\theta)} \frac{\mathrm{d}\sigma(x_{reco}|\theta)}{\mathrm{d}x_{reco}}$$

Optimal observable

$$\mathcal{O}_{i}^{\mathsf{opt}}(x) = \left. \frac{\partial \log p(x|\theta)}{\partial \theta_{i}} \right|_{\theta_{0}} \equiv t(x|\theta_{0}) \quad (\rightarrow score)$$

 $\rightarrow\,$ contains all information on $\theta \rightarrow \textit{sufficient statistics}$

What is the optimal observable to measure θ ?

- Experiments measure high-dimensional data x_{reco}
- 1D representation (p_T, m_{jj}) looses information
- Starting point: likelihood

$$p(x_{reco}|\theta) = \frac{1}{\sigma(\theta)} \frac{\mathrm{d}\sigma(x_{reco}|\theta)}{\mathrm{d}x_{reco}}$$

Optimal observable

$$\mathcal{O}_{i}^{\mathsf{opt}}(x) = \left. \frac{\partial \log p(x|\theta)}{\partial \theta_{i}} \right|_{\theta_{0}} \equiv t(x|\theta_{0}) \quad (\rightarrow score)$$

- $\rightarrow\,$ contains all information on $\theta \rightarrow \textit{sufficient statistics}$
 - Problem: $p(x_{reco}|\theta)$ is untractable

$$p(x_{reco}|\theta) = \int dz \ p(x_{reco}|z_{det}) p(z_{det}|z_{shower}) p(z_{shower}|z_{parton}) p(z_{parton}|\theta)$$

How to compute the optimal observable

• Solution:

• Consider *joint score* \rightarrow NO integral

$$\begin{split} t(x, z|\theta) &= \nabla_{\theta} \log p(x, z|\theta) \\ &= \frac{\nabla_{\theta} |\mathcal{M}(z|\theta)|^2}{|\mathcal{M}(z|\theta)|^2} - \frac{\nabla_{\theta} \sigma_{\text{tot}}(\theta))}{\sigma_{\text{tot}}(\theta)} \qquad \text{using } p(z|\theta) = \frac{1}{\sigma(\theta)} \frac{\mathrm{d}\sigma(z|\theta)}{\mathrm{d}z} \end{split}$$

Optimal observable is given by

$$t(x|\theta) = \operatorname*{arg\,min}_{g(x)} \mathcal{E}_{x,z \sim p(x,z|\theta)} |g(x) - t(x,z|\theta)|^2$$

- Option 1: Minimization with NN ightarrow SALLYJ. Brehmer, et al. [1805.12244]
- *new* Option 2: Learn *analytic* formula to minimize g(x)

Symbolic regression with PySR Miles Cranmer, et al.

$$\begin{array}{l} \text{pysr score} = \frac{\sum_{\textit{data}} (g(x) - t(x, z | \theta))^2}{\text{baseline}} + \text{parsimony} \cdot \text{complexity} \\ \rho_{\text{accept}} = \exp \left(- \frac{\text{score}_{\text{new}} - \text{score}_{\text{old}}}{\text{alpha} \cdot T \cdot \text{score}_{\text{old}}} \right) & \leftarrow \text{ modified wrt. original PySR} \end{array}$$

Machine Learning for LHC Theory

WBF Higgs production with CP violation

Test VVH vertex in WBF Higgs production

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{f_{W\widetilde{W}}}{\Lambda^2} \mathcal{O}_{W\widetilde{W}} \quad \text{with} \quad \mathcal{O}_{W\widetilde{W}} = -(\phi^{\dagger}\phi) \widetilde{W}_{\mu\nu}^k W^{\mu\nu k}$$

$$t(p_{T,j_1}, p_{T,j_2}, \Delta\phi, \Delta\eta | f_{W\widetilde{W}} = 0) = -p_{T,j_1} \left(p_{T,j_2} + c \right) (a - b\Delta\eta) \sin(\Delta\phi + a)$$
with $a = 1.086(11)$ $b = 0.10241(19)$ $c = 0.24165(20)$ $d = 0.00662(32)$

Machine Learning for LHC Theory

Including detector effects

(optimal) observable	MSE all	reach 1σ 2σ	
$ap_{T1}p_{T2}$	0.1576	[-0.86,0.86]	
$a \sin \phi$	0.0885	[-0.38,0.36]	
$a \sin \phi p_{T1}p_{T2}$	0.0217	[-0.28,0.28]	
SR complexity 16	0.0145	[-0.26,0.26]	
SALLY	0.0129	[-0.26,0.26]	
SALLY full	0.0048	[-0.26,0.26]	

A closer look at the uncertainties

$$\begin{split} \sigma_{\rm tot}^2 &== \langle (n - \langle n \rangle)^2 \rangle = \sigma_{\rm stoch}^2 + \sigma_{\rm pred}^2 \\ \sigma_{\rm stoch}^2 &= \int d\theta \; q(\theta) \left[\langle n^2 \rangle_{\theta} - \langle n \rangle_{\theta}^2 \right] = \langle n \rangle \\ \sigma_{\rm pred}^2 &= \int d\theta \; q(\theta) \left[\langle n \rangle_{\theta} - \langle n \rangle \right]^2 \;, \end{split}$$

Machine Learning for LHC Theory