Introduction 000000 A Extended geometric scaling and Levy flights 000000

Sub-asymptotic behaviour: traveling waves

Phenomenology 00000 Conclusion 00

Anomalous diffusion in QCD matter

Paul Caucal

Brookhaven National Laboratory

RBRC seminar - Feb. 24th

In collaboration with Yacine Mehtar-Tani Ref: 2109.12041, 2203.xxxx

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Co
00000					

Transverse momentum broadening in QCD

- Physical system: a highly energetic parton propagating through a dense QCD medium.
- We compute the tranverse momentum distribution $\mathcal{P}(k_{\perp})$ of the outgoing parton.

• Dense QCD medium: multiple scatterings.

nclusion

Introduction ○●○○○○	TMB in DLA	Extended geometric scaling and Levy flights 000000	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
Why is	this prol	blem interesting?			

- "Hot QCD": Dijet azimuthal angular distributions in heavy-ion collisions: access to the TMB and the medium properties.
- Ex: studies by Mueller, Wu, Xiao, Feng 1604.04250 & Chen, Qin, Wei, Xiao, Zhang 1607.01932.

• "Cold QCD": fast probe of gluon distribution in large nuclei $L \propto A^{1/3} \gg 1$ at small-x.

Introduction 000000	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
TMB a	at tree le	vel (1/2)			

• The dipole S-matrix:

• Assuming independent multiple interactions, $S(\mathbf{x}_{\perp})$ exponentiates:

$$\mathcal{S}(\mathbf{x}_{\perp}) = \exp\left(-\frac{1}{4}\hat{q}(1/\mathbf{x}_{\perp}^2, L)L\mathbf{x}_{\perp}^2\right)$$

• We take this formula as our definition of \hat{q} .

Introduction 0000●0	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
The sa	turation	momentum Q_s			

• Emergent scale in the dipole S-matrix S:

$$\mathcal{S}(\mathbf{x}_{\perp}^2 = 1/Q_s^2(L)) \equiv e^{-1/4} \Leftrightarrow \hat{q}(L, Q_s^2(L))L = Q_s^2(L)$$

 $\bullet\,$ Transition between the unitarity bound ${\cal S}\sim 1$ and the dilute regime ${\cal S}\ll 1.$

• At tree-level, one finds

$$Q_s^2(L)\simeq \hat{q}_0 L \ln(\hat{q}_0 L/\mu^2)$$

• Approximate **linear** scaling with *L*.

Introduction 00000●	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
Outline	3				

- The TMB distribution beyond leading order in the DLA.
- Extended geometric scaling.
- Universality of TMB distribution for large system sizes.
- Phenomenological applications.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Conclusio
	•000000				

Transverse momentum broadening in the double logarithmic approximation

• Computation at one-loop in $\alpha_s(p_T) \ll 1$, but to all-orders in $\alpha_s n$.

• Schematically one finds

$$\mathcal{P}(\mathbf{k}_{\perp}, L) = \mathcal{P}^{(0)}(\mathbf{k}_{\perp}, L) + \alpha_{s} \mathcal{P}^{(1)}(\mathbf{k}_{\perp}, L) + \mathcal{O}(\alpha_{s}^{2})$$

with the NLO distribution given by Liou, Mueller, Wu, 1304.7677, Blaizot, Mehtar-Tani, 1403.2323

$$\begin{split} \alpha_{s}\mathcal{P}^{(1)}(\boldsymbol{k}_{\perp},\boldsymbol{L}) &= 2\alpha_{s}N_{c}\mathfrak{Re}\int\frac{d\omega}{\omega^{3}}\int_{0}^{\boldsymbol{L}}dt_{2}\int_{0}^{t_{2}}dt_{1}\int_{\boldsymbol{q}_{1\perp},\boldsymbol{q}_{2\perp}}\mathcal{P}^{(0)}(\boldsymbol{k}_{\perp}-\boldsymbol{q}_{2\perp},\boldsymbol{L}-t_{2}) \\ &\times\mathcal{K}(\boldsymbol{q}_{2\perp}-\boldsymbol{q}_{1\perp},t_{2},t_{1})\mathcal{P}^{(0)}(\boldsymbol{q}_{1\perp},t_{1}) \end{split}$$

8/37

TMB at one loop in a dense QCD medium (2/2)

Extended geometric scaling and Levy flights

TMB in DLA

000000

Introduction

• The kernel $\mathcal{K}(I_{\perp}, t_2, t_1)$ involves the medium 3-point function $S^{(3)}$.

$$\mathcal{K}(m{l}_{\perp},t_2,t_1)\equiv\int_{m{q}_{\perp},m{q}_{\perp}'}(m{q}_{\perp}\cdotm{q}_{\perp}')\left[ilde{S}^{(3)}(m{q}_{\perp},m{q}_{\perp}',m{l}_{\perp}+m{q}_{\perp}';t_2,t_1)- ilde{S}^{(3)}(m{q}_{\perp},m{q}_{\perp}',m{l}_{\perp};t_2,t_1)
ight]$$

Sub-asymptotic behaviour: traveling waves

• $\tilde{S}_3 \simeq$ correlator of three in-medium propagators $(\mathbf{x}_{2\perp}|\mathcal{G}(t_2,t_1)|\mathbf{x}_{1\perp}).$

• In the "harmonic approximation" with $\hat{q}^{(0)}\simeq\hat{q}_{0}$:

$$\begin{split} \tilde{S}^{(3)}(\boldsymbol{q}_{\perp},\boldsymbol{q}_{\perp}',\boldsymbol{l}_{\perp};\tau=t_2-t_1) &= \frac{16\pi}{3\hat{q}_0\tau} \exp\left\{-\frac{4[\boldsymbol{l}_{\perp}-(\boldsymbol{q}_{\perp}-\boldsymbol{q}_{\perp}')/2]^2}{3\hat{q}_0\tau}\right\} \frac{2\pi i}{\omega\Omega\sinh(\Omega\tau)} \\ &\times \exp\left\{-i\frac{(\boldsymbol{q}_{\perp}+\boldsymbol{q}_{\perp}')^2}{4\omega\Omega\coth(\Omega\tau/2)} - i\frac{(\boldsymbol{q}_{\perp}-\boldsymbol{q}_{\perp}')^2}{4\omega\Omega\tanh(\Omega\tau/2)}\right\} \end{split}$$

with $\Omega^2 = i \hat{q}_0/(2\omega)$ and $\tau = t_2 - t_1$.

Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion oc

• To have an idea of the order of magnitude, let's consider the average $\langle \boldsymbol{k}_{\perp}^2 \rangle$ from $\mathcal{P}^{(1)}(\boldsymbol{k}_{\perp})$:

$$\langle \boldsymbol{k}_{\perp}^2
angle \sim rac{lpha_s \mathcal{N}_c}{\pi} \int_{ au_0}^L rac{d au'}{ au'} \int_{\boldsymbol{Q}_s^2(au)}^{\boldsymbol{P}_{\perp}^2} rac{d \, \boldsymbol{q}_{\perp}^2}{\boldsymbol{q}_{\perp}^2} \hat{q}_0$$

- Double logarithmic enhancement, but unlike DGLAP or BFKL double log, non-linear saturation bound: Q²_s(τ) ≃ q̂₀τ.
- Constrains the emission to be triggered by a single scattering.

• Quenching parameter gets a au and ${m k}_\perp$ dependence from radiative corrections:

 TMB in DLA
 Extended geometric scaling and Levy flights

 00000
 0000000

Sub-asymptotic behaviour: traveling waves

Phenomenology 00000

Resummation of the leading radiative corrections

• Resummation to all orders via the evolution equation

$$\frac{\partial \hat{\boldsymbol{q}}(\tau, \boldsymbol{k}_{\perp}^2)}{\partial \tau} = \int_{Q_s^2(\tau)}^{\boldsymbol{k}_{\perp}^2} \frac{d\boldsymbol{k}_{\perp}^{\prime 2}}{\boldsymbol{k}_{\perp}^{\prime 2}} \bar{\alpha}_s(\boldsymbol{k}_{\perp}^{\prime 2}) \; \hat{\boldsymbol{q}}(\tau, \boldsymbol{k}_{\perp}^{\prime 2})$$

with $Q_s^2(au)\equiv \hat{q}(au,Q_s^2(au)) au.$

• Exponentiation of the double logarithmic corrections.

$$\mathcal{P}(\boldsymbol{k}_{\perp}) = \int \mathrm{d}^{2}\boldsymbol{x}_{\perp} \, e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{x}_{\perp}} \, \exp\left[-\frac{1}{4}\left(\hat{q}^{(0)} + \alpha_{s}\hat{q}^{(1)} + ...\right) \, L \, \boldsymbol{x}_{\perp}^{2}\right]$$

cf Liou, Mueller, Wu, 1304.7677, Blaizot, Mehtar-Tani, 1403.2323, Iancu 1403.1996

Introduction 000000	TMB in DLA oooooo●	Extended geometric scaling and Levy flights 000000	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
Physica	l picture	: non-locality vs quasi-	locality		

• Quantum corrections are non-local: logarithmic phase space for gluon fluctuations.

• However, at DLA, the exponentiation resums disconnected "towers" of radiative corrections, which can be seen as quasi-local.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Conclu
		●00000			

Extended geometric scaling and Levy flights

Introduction TMB in DLA **Extended geometric scaling and Levy flights** Sub-asymptotic behaviour: traveling waves

Phenomenology 00000

Conclusion

Reminder: extended geometric scaling for gluon distribution

• Dipole S-matrix $S_{\tau}(\mathbf{r}_{\perp}) = \langle V^{\dagger}(\mathbf{r}_{\perp})V(\mathbf{0}_{\perp}) \rangle_{\tau}$ related to the inclusive DIS cross-section at small-x:

$$\sigma(\tau = \ln(1/x), Q^2) \propto 2 \int_0^1 dz \int d^2 \boldsymbol{r}_\perp |\psi(z, \boldsymbol{r}_\perp, Q^2)|^2 (1 - S_\tau(\boldsymbol{r}_\perp))$$

- Energy (au) dependence of $S_{ au}(\mathbf{r}_{\perp})$ determined from the BK equation.
- For $Q^2 \sim 1/r_\perp^2 \ll Q_s^4/\Lambda_{
 m QCD}^2$, the dipole S-matrix satisfies extended geometric scaling

$$S_{ au}(oldsymbol{r}_{\perp}) \sim f\left(rac{1}{oldsymbol{r}_{\perp}^2 Q_s^2(au)}
ight)$$

cf Stasto, Golec-Biernat, Kwiecinski 0007192, Iancu, Itakura, McLerran 203137, etc

• A similar property holds when $S(L, \mathbf{x}_{\perp})$ satisfies our non-linear DLA evolution equation with saturation boundary.

 Introduction
 TMB in DLA
 Extended geometric scaling and Levy flights

 000000
 0000000
 000000

Sub-asymptotic behaviour: traveling waves

Phenomenology Conclusion

Asymptotic limit of TMB at fixed coupling

• In terms of logarithmic variables, $Y = \ln(L/\tau_0)$, $\rho = \ln(k_{\perp}^2/\mu^2)$, $\rho_s = \ln(Q_s^2/\mu^2)$,

$$\frac{\partial \hat{q}(\boldsymbol{Y}, \boldsymbol{\rho})}{\partial \boldsymbol{Y}} = \bar{\alpha}_{s} \int_{\boldsymbol{\rho}_{s}(\boldsymbol{Y})}^{\boldsymbol{\rho}} d\boldsymbol{\rho}' \hat{q}(\boldsymbol{Y}, \boldsymbol{\rho}')$$

• Let's look for scaling solution $\hat{q}(Y, \rho) = f(x = \rho - \rho_s(Y))$:

$$-\dot{\rho}_s f''(x) + \left[\dot{\rho}_s - 1\right] f'(x) - \bar{\alpha}_s f(x) = 0$$

• For physical initial conditions, the unique solution to this problem is $\dot{
ho}_{s}=c$ and

$$f(x) = e^{\beta x} (1 + \beta x)$$

with $\beta = (c-1)/(2c)$ and $c = 1 + 2\sqrt{\bar{\alpha}_s + \bar{\alpha}_s^2} + 2\bar{\alpha}_s$.

 \implies extended geometric scaling for $x \ll
ho_s(Y)$ or $k_\perp^2 \ll Q_s^4/\mu^2$. PC, Mehtar-Tani 2109.12041

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	C

Anomalous diffusion

•
$$\dot{\rho}_s = c \Longrightarrow \rho_s(Y) = cY$$

• The median of the distribution scales like

 $\mathcal{M} \sim L^{1/2 + \sqrt{ar{lpha}_{s}}}$

 → super-diffusive behaviour. NLO corrections yields super-diffusion in momentum space.

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00
1.7					

Lévy-type distribution

- $\hat{q} \simeq e^{\beta x}$ at large k_T .
- Fourier transform of the "stretched" exponential $\exp(-[...]\boldsymbol{x}_{\perp}^{\gamma})$ with $\gamma \simeq 2 + 2\sqrt{\bar{\alpha}_s} > 2$
- Heavy tailed distribution

$$\mathcal{P}(m{k}_{\perp}) \propto rac{1}{k_{T}^{4-2\sqrt{ar{lpha}_{s}}}}$$

PC, Mehtar-Tani 2109.12041

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights 00000●	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusio 00
- · · · ·					

Physical picture of quantum corrections

- Leading order: random walk in momentum space. Each collision transfers a typical momentum μ with Gaussian probability.
- With radiative corrections, one can still interpret the TMB distribution as a result of local random walk, but the "jump" probability distribution is of Lévy type.
- The non-linearity and self-similarity of overlapping multiple gluon radiations result in long rare steps which extends over a large range of transverse momenta.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Conclusio
			000000000		

Sub-asymptotic deviations and universality

Introduction 000000	TMB in DLA	Extended geometric scaling and Levy flights 000000	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion
Beyond	the asy	mptotic limit			

- We have determined the limit $Y \to \infty$ of the TMB distribution.
- What about the sub-asymptotic corrections?
- Are they universal?
- Can they be used to realistic values of $Y = \ln(L/\tau_0)$?

itroduction	TMB in DLA	Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves

Phenomenology

Wave front propagation into unstable state

• We borrow techniques from front propagation into unstable sate.

Ebert, van Saarloos, 0003181

• Similar to the traveling wave interpretation of the solutions to BK.

Munier, Peschanski, 0310357 - Beuf, 1008.0498

• Typical example: Fisher-Kolmogoroff-Petrovsky-Piscounoff eq.

$$\partial_t \phi = \partial_x^2 \phi + \phi - \phi^k$$

• Universality of the wave-front velocity $\dot{\rho}_s$:

$$\dot{
ho}_s=c+rac{b}{Y}+rac{d}{Y^2}+...$$

Extended geometric scaling and Levy flights 0000000000

Sub-asymptotic behaviour: traveling waves

Front interior vs leading edge expansion (1/2)

• Diffusive deviation from the asymptotic limit, with we consider.

$$\hat{q}(Y,\rho) = \hat{q}_0 e^{\rho_s(Y) - Y} e^{\beta x} Y^{\alpha} G\left(\frac{x}{Y^{\alpha}}\right)$$
$$\dot{\rho}_s(Y) = c + \dot{\sigma}_s(Y)$$

- Diffusion power characteristics of the universality class of the evolution equation.
- Homogeneity conditions fix the power α .
- $\alpha = 1/2$ for fixed coupling, $\alpha = 1/6$ for running coupling

troduction TMB in DLA Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves

Phenomenology 00000 Conclusior

Front interior vs leading edge expansion (2/2)

• We then write two types of expansion: front interior and leading edge.

$$\begin{split} \hat{q}(Y,\rho) &= \hat{q}_0 e^{\rho_s(Y) - Y} e^{\beta x} \sum_{n \ge 0} \frac{1}{Y^{n\alpha}} f_n(x) \\ \hat{q}(Y,\rho) &= \hat{q}_0 e^{\rho_s(Y) - Y} e^{\beta x} \sum_{n \ge -1} \frac{1}{Y^{n\alpha}} G_n\left(\frac{x}{Y^{\alpha}}\right) \end{split}$$

• The matching of the front interior and leading edge, and the boundary condition enable to fix all the constants, and in particular those of the development of the wave front velocity $\dot{\rho}_s$.

Introduction 000000	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion		
Univers	Universality and non-linearity						

- The asymptotic limit is universal = does not depend on the (tree-level) initial condition.
- We demonstrate that the pre-asymptotic form of $\hat{q}(Y, \rho)$ and $\rho_s(Y)$ are also universal.
- However, they depend on the shape of the equation of motion, in particular on the non-linearities:

$$\frac{\partial \hat{q}}{\partial Y} = \bar{\alpha}_s \int_{\rho_s(Y)}^{\rho} d\rho' \ \hat{q}(Y, \rho') \qquad \qquad \frac{\partial \hat{q}}{\partial Y} = \bar{\alpha}_s \int_{Y}^{\rho} d\rho' \ \hat{q}(Y, \rho')$$

ntroduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub
			000

Sub-asymptotic behaviour: traveling waves

henomenology 0000

Effects of non-linearities

$$rac{\partial \hat{q}}{\partial Y} = ar{lpha}_s \int_Y^
ho d
ho' \; \hat{q}(Y,
ho')$$

• Analytic solutions exist, ex:

$$ho_{s}(Y) = Y + \ln\left(rac{\mathrm{I}_{1}(2\sqrt{ar{lpha}_{s}}Y)}{\sqrt{ar{lpha}_{s}}Y}
ight)$$

• At large Y,

$$\rho_{s}(Y) = (1 + 2\sqrt{\bar{\alpha}_{s}})Y - \frac{3}{2}\ln(Y) + \mathcal{O}(Y^{-1})$$

$$\frac{\partial \hat{q}}{\partial Y} = \bar{\alpha}_s \int_{\rho_s(Y)}^{\rho} d\rho' \ \hat{q}(Y, \rho')$$

- No analytic solutions.
- From the wave front analysis, we get (with $c\simeq 1+2\sqrt{ar{lpha_s}})$

$$egin{aligned}
ho_s(Y) &= cY - rac{3c}{(1+c)} \ln(Y) \ &- rac{6c \sqrt{2\pi(c-1)}}{(1+c)^2} rac{1}{\sqrt{Y}} + \mathcal{O}(Y^{-1}) \end{aligned}$$

• Back-reaction of the quantum evolution on $\rho_s(Y)$ induces corrections of order $\sqrt{\bar{\alpha}_s} \ln(Y)$ (larger than single log).

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion
Results	for fixed	coupling			

• For fixed coupling, we find the pre-asymptotic behaviour

$$\frac{\hat{q}(Y,x)L}{Q_{s}^{2}(L)} = \begin{cases} \exp\left(\frac{\beta x - \frac{\beta x^{2}}{4cY}}{4cY}\right) \left[1 + \frac{\beta x - \frac{3x}{c(1+c)Y}}{(1+c)Y}\left(1 + \frac{\beta(c+4)x}{6}\right) + \mathcal{O}\left(\frac{1}{Y^{2}}\right)\right] & \text{if } x \ge 0\\ \exp\left(\frac{2\beta x - \frac{3}{c(1+c)}\frac{x}{Y}}{Y} + \mathcal{O}\left(\frac{1}{Y^{2}}\right)\right) & \text{if } x < 0. \end{cases}$$

$$(1)$$

with

$$\rho_s(Y) = cY - \frac{3c}{(1+c)} \ln(Y) - \frac{6c\sqrt{2\pi(c-1)}}{(1+c)^2} \frac{1}{\sqrt{Y}} + \mathcal{O}(Y^{-1})$$

PC, Mehtar-Tani 2109.12041

C	1				
Introduction 000000	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion 00

Some plots

• Sub-asymptotic corrections enable one to have a good agreement with the numeric.

• Analytic results can be systematically improved.

Introduction TMB in DLA Extended geometric scaling and Levy flights

Phenomenology 00000 Conclusion

Running α_s : proof of the lancu & Triantafyllopoulos conjecture

- The large Y development of $\rho_s(Y)$ for the rc-evolution has been found numerically in lancu, Triantafyllopoulos 1405.3525
- With the TW technique, we can prove and improve their results

$$\rho_{s}(Y) = Y + 2\sqrt{4b_{0}Y} + 3\xi_{1}(4b_{0}Y)^{1/6} + \left(\frac{1}{4} - 2b_{0}\right)\ln(Y) + \kappa + \frac{7\xi_{1}^{2}}{180}\frac{1}{(4b_{0}Y)^{1/6}} \\ + \xi_{1}\left(\frac{5}{108} + 18b_{0}\right)\frac{1}{(4b_{0}Y)^{1/3}} + b_{0}\left(1 - 8b_{0}\right)\frac{\ln(Y)}{\sqrt{4b_{0}Y}} + O\left(Y^{-1/2}\right)$$

• However, the development is divergent at moderate values of $Y \Longrightarrow$ divergent series. PC, Mehtar-Tani, to appear troduction TMB in DLA Extended geometric scaling and Levy flights

Sub-asymptotic behaviour: traveling waves

Phenomenology 00000

Front velocity of the rc equation

- Excellent agreement at large Y.
- At small Y, the asymptotic development fails to converge.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Conclusio
				●0000	

Phenomenology

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 0●000	Conclusion 00	
Analyti	Analytic formulas at small Y					

• Solution: drop the terms which make the series divergent.

• Use this analytic form for $\rho_s(Y)$ to compute $\hat{q}(Y, \rho)$ as a Taylor series around ρ_s :

$$\hat{q}(Y,x) = \hat{q}_0 e^{\rho_s(Y) - Y} \left[1 + \frac{\dot{\rho}_s - 1}{\dot{\rho}_s} x + \frac{1}{2} \left(\left(\frac{\dot{\rho}_s - 1}{\dot{\rho}_s} \right)^2 + \frac{\ddot{\rho}_s}{\dot{\rho}_s^3} - \frac{\bar{\alpha}_s(\rho_s)}{\dot{\rho}_s} \right) x^2 + \mathcal{O}(x^2) \right]_{32/37}$$

Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclus

Final result

- Very good agreement over several orders of magnitude.
- Shape driven by the universality, and not by the initial condition.

ntroduction	TMB in DLA	Extended geometric scaling and Levy flights	
00000			

Sub-asymptotic behaviour: traveling waves

Phenomenology 000●0 Conclusion 00

Initial conditions for BK evolution

- Analytic formulas for the TMB or the dipole S-matrix S that resum to all orders gluon fluctuations enhanced by $\alpha_s \ln^2(A^{1/3})$.
- Down to Y ~ 2, the shape of S is driven by the universal behaviour of the traveling front.
- Physically motivated new initial condition for the BK-JIMWLK evolution equations.

see also Dumitru, Mantysaari, Paatelainen, 2103.11682

ntroduction	TMB in DLA	Extended geometric scaling and Levy flights	

Sub-asymptotic behaviour: traveling waves 0000000000

Phenomenology 0 0000● 0

p_T -broadening in heavy-ion collisions

- $\langle k_{\perp}^2 \rangle$ responsible for the dijet azimuthal decorrelation related to the "renormalized" value of ρ_s .
- For realistic values of Y, enhancement factor of order 2 6 compared to a tree-level estimation!
- Need to include single log corrections to reach greater precision.

Introduction 000000	TMB in DLA 0000000	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology 00000	Conclusion ●0
Summa	iry				

- Study of the effect of radiative corrections on transverse momentum broadening in a dense QCD medium for large system sizes.
- TMB satisfies extended geometric scaling.
- Radiative corrections yield super-diffusive behaviour in momentum space, and a heavy tail with power index smaller than the typical Rutherford behaviour.
- The DLA non-linear evolution equations share similar mathematical properties as equations for wave front propagation into unstable states.
- Enable to compute the universal behaviour of the TMB distribution, valid down to realistic values of the system size.

Introduction	TMB in DLA	Extended geometric scaling and Levy flights	Sub-asymptotic behaviour: traveling waves	Phenomenology	Conclusic
					00

THANK YOU!

'n