
Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Anomalous diffusion in QCD matter

Paul Caucal

Brookhaven National Laboratory

RBRC seminar - Feb. 24th

In collaboration with Yacine Mehtar-Tani
Ref: 2109.12041, 2203.xxxx

0 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Transverse momentum broadening in QCD

Physical system: a highly energetic parton propagating through a dense QCD medium.

We compute the tranverse momentum distribution P(k⊥) of the outgoing parton.

pT pT + k⊥

L

Dense QCD medium: multiple scatterings.
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Why is this problem interesting?

”Hot QCD”: Dijet azimuthal angular distributions in heavy-ion collisions: access to the
TMB and the medium properties.

Ex: studies by Mueller, Wu, Xiao, Feng 1604.04250 & Chen, Qin, Wei, Xiao, Zhang 1607.01932.

”Cold QCD”: fast probe of gluon distribution in large nuclei L ∝ A1/3 � 1 at small-x .
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TMB at tree level (1/2)

The dipole S-matrix:

S(x⊥) = 〈V †(x⊥)V (0⊥)〉 , with V (x⊥) = Pe ig
∫∞
−∞ dx+A−(x+,x⊥)

0⊥

x⊥

Assuming independent multiple interactions, S(x⊥) exponentiates:

S(x⊥) = exp

(
−1

4
q̂(1/x2

⊥, L)Lx2
⊥

)
We take this formula as our definition of q̂.
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TMB at tree level (2/2)

Fourier transform of the dipole S-matrix

P(k⊥) =

∫
d2x⊥e−ik⊥x⊥e−

1
4 q̂(1/x2

⊥)Lx2
⊥

LO q̂ from the Fourier transform of the collision rate γ(q⊥) ∼ g4n/q4
⊥:

q̂(0)(x⊥) =
4CR

x2
⊥

∫
q⊥

(1− e iq⊥x⊥)γ(q⊥) = q̂0 ln
1

x2
⊥µ

2
+O(x2

⊥µ
2) , q̂0 ∝ α2

sn
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For an analytic expression, see e.g.
Barata, Mehtar-Tani, Soto-Ontoso,
Tywoniuk 2009.13667 .

∝ 1
k4
T

= e−k
2
T/Q

2
s (L)
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The saturation momentum Qs

Emergent scale in the dipole S-matrix S:

S(x2
⊥ = 1/Q2

s (L)) ≡ e−1/4 ⇔ q̂(L,Q2
s (L))L = Q2

s (L)

Transition between the unitarity bound S ∼ 1 and the dilute regime S � 1.

At tree-level, one finds
Q2

s (L) ' q̂0L ln(q̂0L/µ
2)

Approximate linear scaling with L.
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Outline

• The TMB distribution beyond leading order in the DLA.

• Extended geometric scaling.

• Universality of TMB distribution for large system sizes.

• Phenomenological applications.
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Transverse momentum broadening in the
double logarithmic approximation
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TMB at one loop in a dense QCD medium (1/2)

Computation at one-loop in αs(pT )� 1, but to all-orders in αsn.

0⊥

x⊥

0⊥

x⊥

Schematically one finds

P(k⊥, L) = P(0)(k⊥, L) + αsP(1)(k⊥, L) +O(α2
s )

with the NLO distribution given by Liou, Mueller, Wu, 1304.7677, Blaizot, Mehtar-Tani, 1403.2323

αsP(1)(k⊥, L) = 2αsNcRe

∫
dω

ω3

∫ L

0

dt2

∫ t2

0

dt1

∫
q1⊥,q2⊥

P(0)(k⊥ − q2⊥, L− t2)

×K(q2⊥ − q1⊥, t2, t1)P(0)(q1⊥, t1)
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TMB at one loop in a dense QCD medium (2/2)

The kernel K(l⊥, t2, t1) involves the medium 3-point function S (3).

K(l⊥, t2, t1) ≡
∫

q⊥,q′⊥

(q⊥ · q′⊥)
[
S̃ (3)(q⊥,q

′
⊥, l⊥ + q′⊥; t2, t1)− S̃ (3)(q⊥,q

′
⊥, l⊥; t2, t1)

]
S̃3 ' correlator of three in-medium propagators (x2⊥|G(t2, t1)|x1⊥).

In the ”harmonic approximation” with q̂(0) ' q̂0:

S̃ (3)(q⊥, q
′
⊥, l⊥; τ = t2 − t1) =

16π

3q̂0τ
exp

{
−4[l⊥ − (q⊥ − q′

⊥)/2]2

3q̂0τ

}
2πi

ωΩ sinh(Ωτ)

× exp

{
−i

(q⊥ + q′
⊥)2

4ωΩ coth(Ωτ/2)
− i

(q⊥ − q′
⊥)2

4ωΩ tanh(Ωτ/2)

}
with Ω2 = i q̂0/(2ω) and τ = t2 − t1.

9 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Double logarithmic enhancement (1/2)

To have an idea of the order of magnitude, let’s consider the average 〈k2
⊥〉 from P(1)(k⊥):

〈k2
⊥〉 ∼

αsNc

π

∫ L

τ0

dτ ′

τ ′

∫ p2
⊥

Q2
s (τ)

dq2
⊥

q2
⊥

q̂0

Double logarithmic enhancement, but unlike DGLAP or BFKL double log, non-linear
saturation bound: Q2

s (τ) ' q̂0τ .

Constrains the emission to be triggered by a single scattering.
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Double logarithmic enhancement (2/2)

Quenching parameter gets a τ and k⊥ dependence from radiative corrections:

q̂(1)(τ, k2
⊥) = ᾱs

∫ τ

τ0

dτ ′

τ ′

∫ k2
⊥

Q2
s (τ)

dq2
⊥

q2
⊥

q̂(0) .

Two distincts regimes:

p2
⊥ ≤ Q2

s (L)

q̂(1) = ᾱs q̂0
1

2
ln2

(
L

τ0

)

p2
⊥ ≥ Q2

s (L) Blaizot, Dominguez, 1901.01448

q̂(1) = ᾱs q̂0

[
ln

(
k2
⊥
µ2

)
ln

(
L

τ0

)
− 1

2
ln2

(
L

τ0

)]

k′ 2⊥

τ0

Q2
s (τ) = ̂q τ

τ

DL

L

Q2
s (L)

k2⊥
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Resummation of the leading radiative corrections

Resummation to all orders via the evolution equation

∂q̂(τ, k2
⊥)

∂τ
=

∫ k2
⊥

Q2
s (τ)

dk ′2⊥
k ′2⊥

ᾱs(k ′2⊥) q̂(τ, k ′2⊥)

with Q2
s (τ) ≡ q̂(τ,Q2

s (τ))τ .

Exponentiation of the double logarithmic corrections.

P(k⊥) =

∫
d2x⊥ e−ik⊥·x⊥ exp

[
−1

4

(
q̂(0) + αs q̂

(1) + ...
)
L x2
⊥

]
cf Liou, Mueller, Wu, 1304.7677, Blaizot, Mehtar-Tani, 1403.2323, Iancu 1403.1996
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Physical picture: non-locality vs quasi-locality

Quantum corrections are non-local: logarithmic phase space for gluon fluctuations.

L

τ0 ≪ τ ≪ L

τ0

However, at DLA, the exponentiation resums disconnected ”towers” of radiative
corrections, which can be seen as quasi-local.
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Extended geometric scaling
and Levy flights
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Reminder: extended geometric scaling for gluon distribution

Dipole S-matrix Sτ (r⊥) = 〈V †(r⊥)V (0⊥)〉τ related to the inclusive DIS cross-section at
small-x :

σ(τ = ln(1/x),Q2) ∝ 2

∫ 1

0

dz

∫
d2r⊥|ψ(z , r⊥,Q2)|2(1− Sτ (r⊥))

Energy (τ) dependence of Sτ (r⊥) determined from the BK equation.

For Q2 ∼ 1/r 2
⊥ � Q4

s /Λ2
QCD, the dipole S-matrix satisfies extended geometric scaling

Sτ (r⊥) ∼ f

(
1

r 2
⊥Q

2
s (τ)

)
cf Stasto, Golec-Biernat, Kwiecinski 0007192, Iancu, Itakura, McLerran 203137, etc

A similar property holds when S(L, x⊥) satisfies our non-linear DLA evolution equation
with saturation boundary.
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Asymptotic limit of TMB at fixed coupling

In terms of logarithmic variables, Y = ln(L/τ0), ρ = ln(k2
⊥/µ

2), ρs = ln(Q2
s /µ

2),

∂q̂(Y , ρ)

∂Y
= ᾱs

∫ ρ

ρs (Y )

dρ′q̂(Y , ρ′)

Let’s look for scaling solution q̂(Y , ρ) = f (x = ρ− ρs(Y ):

−ρ̇s f ′′(x) + [ρ̇s − 1] f ′(x)− ᾱs f (x) = 0

For physical initial conditions, the unique solution to this problem is ρ̇s = c and

f (x) = eβx(1 + βx)

with β = (c − 1)/(2c) and c = 1 + 2
√
ᾱs + ᾱ2

s + 2ᾱs .

=⇒ extended geometric scaling for x � ρs(Y ) or k2
⊥ � Q4

s /µ
2. PC, Mehtar-Tani 2109.12041

16 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Anomalous diffusion

ρ̇s = c =⇒ ρs(Y ) = cY

The median of the distribution scales like

M∼ L1/2+
√
ᾱs

⇒ super-diffusive behaviour. NLO
corrections yields super-diffusion in
momentum space.
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2
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m
ed

ia
n

k T
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]

ᾱs = 0.2, q̂0 = 0.1 GeV3, τ0 = 0.34 fm

tree level

resummed - numeric

resummed - analytic
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Lévy-type distribution

q̂ ' eβx at large kT .

Fourier transform of the ”stretched”
exponential exp(−[...]xγ⊥) with
γ ' 2 + 2

√
ᾱs > 2

Heavy tailed distribution

P(k⊥) ∝ 1

k4−2
√
ᾱs

T

10−1 100 101 102

x = kT/Qs

10−3

10−2

10−1

100

101

xP
(x

)

Broadening distribution - scaling property

scaling limit

Levy distrib. 2β

heavy-tail

PC, Mehtar-Tani 2109.12041
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Physical picture of quantum corrections

Leading order: random walk in momentum space. Each collision transfers a typical
momentum µ with Gaussian probability.

With radiative corrections, one can still interpret the TMB distribution as a result of local
random walk, but the ”jump” probability distribution is of Lévy type.

The non-linearity and self-similarity of overlapping multiple gluon radiations result in long
rare steps which extends over a large range of transverse momenta.

19 / 37
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Sub-asymptotic deviations and
universality
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Beyond the asymptotic limit

We have determined the limit Y →∞ of the TMB distribution.

What about the sub-asymptotic corrections?

Are they universal?

Can they be used to realistic values of Y = ln(L/τ0)?
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Wave front propagation into unstable state

We borrow techniques from front propagation
into unstable sate.
Ebert, van Saarloos, 0003181

Similar to the traveling wave interpretation of
the solutions to BK.
Munier, Peschanski, 0310357 - Beuf, 1008.0498

Typical example:
Fisher-Kolmogoroff-Petrovsky-Piscounoff eq.

∂tφ = ∂2
xφ+ φ− φk

Universality of the wave-front velocity ρ̇s :

ρ̇s = c +
b

Y
+

d

Y 2
+ ...

−10 0 10 20 30 40 50
ρ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1
−

S(
Y

,ρ
)

front interior
ρ ∼ ρs(Y) ∼ cY

leading edge

ρ− ρs(Y) ∼ Yα

Y ↗
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Front interior vs leading edge expansion (1/2)

Diffusive deviation from the asymptotic limit, with we consider.

q̂(Y , ρ) = q̂0e
ρs (Y )−Y eβx Y αG

( x

Y α

)
ρ̇s(Y ) = c + σ̇s(Y )

Diffusion power characteristics of the universality class of the evolution equation.

Homogeneity conditions fix the power α.

α = 1/2 for fixed coupling, α = 1/6 for running coupling
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Front interior vs leading edge expansion (2/2)

We then write two types of expansion: front interior and leading edge.

q̂(Y , ρ) = q̂0e
ρs (Y )−Y eβx

∑
n≥0

1

Y nα
fn(x)

q̂(Y , ρ) = q̂0e
ρs (Y )−Y eβx

∑
n≥−1

1

Y nα
Gn

( x

Y α

)
The matching of the front interior and leading edge, and the boundary condition enable
to fix all the constants, and in particular those of the development of the wave front
velocity ρ̇s .
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Universality and non-linearity

The asymptotic limit is universal = does not depend on the (tree-level) initial condition.

We demonstrate that the pre-asymptotic form of q̂(Y , ρ) and ρs(Y ) are also universal.

However, they depend on the shape of the equation of motion, in particular on the
non-linearities:

∂q̂

∂Y
= ᾱs

∫ ρ

ρs (Y )

dρ′ q̂(Y , ρ′)
∂q̂

∂Y
= ᾱs

∫ ρ

Y

dρ′ q̂(Y , ρ′)
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Effects of non-linearities

∂q̂

∂Y
= ᾱs

∫ ρ

Y

dρ′ q̂(Y , ρ′)

Analytic solutions exist, ex:

ρs(Y ) = Y + ln

(
I1(2
√
ᾱsY )√
ᾱsY

)
At large Y ,

ρs(Y ) = (1+2
√
ᾱs)Y− 3

2
ln(Y )+O(Y−1)

∂q̂

∂Y
= ᾱs

∫ ρ

ρs (Y )

dρ′ q̂(Y , ρ′)

No analytic solutions.

From the wave front analysis, we get (with
c ' 1 + 2

√
ᾱs)

ρs(Y ) = cY − 3c

(1 + c)
ln(Y )

− 6c
√

2π(c − 1)

(1 + c)2

1√
Y

+O(Y−1)

Back-reaction of the quantum evolution on ρs(Y )
induces corrections of order

√
ᾱs ln(Y ) (larger than

single log).
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Results for fixed coupling

For fixed coupling, we find the pre-asymptotic behaviour

q̂(Y , x)L

Q2
s (L)

=

exp
(
βx − βx2

4cY

) [
1 + βx − 3x

c(1+c)Y

(
1 + β(c+4)x

6

)
+O

(
1
Y 2

)]
if x ≥ 0

exp
(

2βx − 3
c(1+c)

x
Y +O

(
1
Y 2

))
if x < 0 .

(1)

with

ρs(Y ) = cY − 3c

(1 + c)
ln(Y )− 6c

√
2π(c − 1)

(1 + c)2

1√
Y

+O(Y−1)

PC, Mehtar-Tani 2109.12041
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Some plots

10 20 30 40
Y

1.0

1.5

2.0

2.5

3.0

d
ρ

s
dY

ρ̇s = c

ρ̇s = c + b
Y

analytic - full

numeric

10−2 100 102

k2
T/Q2

s

10−3

10−2

10−1

100

1
−
S(

k2 T
)

Y = 5, analytic

Y = 5, numeric

Y → ∞, analytic

Sub-asymptotic corrections enable one to have a good agreement with the numeric.

Analytic results can be systematically improved.

28 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Running αs : proof of the Iancu & Triantafyllopoulos conjecture

The large Y development of ρs(Y ) for the rc-evolution has been found numerically in
Iancu, Triantafyllopoulos 1405.3525

With the TW technique, we can prove and improve their results

ρs(Y ) = Y + 2
√

4b0Y + 3ξ1(4b0Y )1/6 +

(
1

4
−2b0

)
ln(Y ) + κ+

7ξ2
1

180

1

(4b0Y )1/6

+ ξ1

(
5

108
+18b0

)
1

(4b0Y )1/3
+ b0 (1− 8b0)

ln(Y )√
4b0Y

+ O
(
Y−1/2

)
However, the development is divergent at moderate values of Y =⇒ divergent series.

PC, Mehtar-Tani, to appear
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Front velocity of the rc equation

50 100 150 200 250 300
Y

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

d
ρ

s
dY

ρ̇s = 1 + 2
√

b0Y−1/2

ρ̇s = 1 + 2
√

b0Y−1/2 + δ1Y−5/6

ρ̇s = 1 + 2
√

b0Y−1/2 + δ1Y−5/6 + δ2Y−1

analytic - full

numeric

Excellent agreement at large Y .

At small Y , the asymptotic development fails to converge.
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Phenomenology
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Analytic formulas at small Y

Solution: drop the terms which make the series divergent.

0 5 10 15 20 25 30
Y

0

10

20

30

40

50

60

ρ
s(

Y
)

numeric - non-linear

numeric - linear

analytic - non-linear

analytic - linear

Use this analytic form for ρs(Y ) to compute q̂(Y , ρ) as a Taylor series around ρs :

q̂(Y , x) = q̂0 e
ρs (Y )−Y

[
1 +

ρ̇s − 1

ρ̇s
x +

1

2

((
ρ̇s − 1

ρ̇s

)2

+
ρ̈s
ρ̇3
s

− ᾱs(ρs)

ρ̇s

)
x2 +O(x2)

]
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Final result

10−3 10−2 10−1 100 101

kT/Qs(L)

10−3

10−2

10−1

100

101

102

Q
s(

L)
k T
P

(k
T

,L
)

tree level

numeric - YL = 4

analytic - YL = 4

Very good agreement over several orders of magnitude.

Shape driven by the universality, and not by the initial condition.

PC, Mehtar-Tani, to appear

33 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

Initial conditions for BK evolution

Analytic formulas for the TMB or the dipole
S-matrix S that resum to all orders gluon
fluctuations enhanced by αs ln2(A1/3).

Down to Y ∼ 2, the shape of S is driven by the
universal behaviour of the traveling front.

Physically motivated new initial condition for the
BK-JIMWLK evolution equations.
see also Dumitru, Mantysaari, Paatelainen, 2103.11682
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k T
P
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T
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)

tree level

numeric - YL = 4

analytic - YL = 4

34 / 37



Introduction TMB in DLA Extended geometric scaling and Levy flights Sub-asymptotic behaviour: traveling waves Phenomenology Conclusion

pT -broadening in heavy-ion collisions

〈k2
⊥〉 responsible for the dijet azimuthal

decorrelation related to the ”renormalized” value
of ρs .

For realistic values of Y , enhancement factor of
order 2− 6 compared to a tree-level estimation!

Need to include single log corrections to reach
greater precision.

1 2 3 4 5
Y
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Q
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Y
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Q
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)
s

(Y
)

numeric

analytic
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Summary

Study of the effect of radiative corrections on transverse momentum broadening in a
dense QCD medium for large system sizes.

TMB satisfies extended geometric scaling.

Radiative corrections yield super-diffusive behaviour in momentum space, and a heavy tail
with power index smaller than the typical Rutherford behaviour.

The DLA non-linear evolution equations share similar mathematical properties as
equations for wave front propagation into unstable states.

Enable to compute the universal behaviour of the TMB distribution, valid down to
realistic values of the system size.
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THANK YOU!
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