Computing Feynman Integrals Numerically & ZH Production via Gluon Fusion

Stephen Jones IPPP, Durham / Royal Society URF

In collaboration with: Chen, Heinrich, Kerner, Klappert, Schlenk + Jahn, Langer, Magerya, Põldaru, Villa + Davies, Mishima, Steinhauser

TBA[22XX.XXX]pySecDec Release[2108.10807]JHEP 03 (2021) 125 [2011.12325]

THE ROYAL SOCIETY

The Standard Model

The Standard Model and Beyond

Higgs Couplings

Incredible progress has been made in establishing properties of the Higgs Boson

Higgs Production & Decay

ATLAS-CONF-2021-053

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$ $m_H = 125.09 \text{ GeV}$ $p_{SM} = 79\%$		Total Stat. Syst. SM
ggF үү	1.02	Total Stat. Syst. +0.11 (+0.08 +0.07 -0.11 (-0.08 , -0.07
ggF ZZ	0.95	$^{+0.11}_{-0.11}$ ($^{+0.10}_{-0.10}$, $^{+0.04}_{-0.03}$)
ggF WW	1.13	
ggF ττ 🚔	0.87	
ggF+ttH μμ I	0.52	
VBF γγ	1.47	$ \begin{array}{c} + 0.27 \\ - 0.24 \end{array} \left(\begin{array}{c} + 0.21 \\ - 0.20 \end{array} \right. \begin{array}{c} + 0.17 \\ - 0.14 \end{array} \right) $
VBF ZZ	1.31	$ \begin{array}{c} + \ 0.51 \\ - \ 0.42 \end{array} \left(\begin{array}{c} + \ 0.50 \\ - \ 0.42 \end{array} \right. + \begin{array}{c} 0.11 \\ - \ 0.42 \end{array} \right) $
VBFWW	1.09	$ \begin{array}{c} + \ 0.19 \\ - \ 0.17 \end{array} \left(\begin{array}{c} + \ 0.15 \\ - \ 0.14 \end{array} \right. + \begin{array}{c} 0.11 \\ - \ 0.10 \end{array} \right) $
VBF ττ 🖷	0.99	$^{+0.20}_{-0.18}$ ($^{+0.14}_{-0.14}$, $^{+0.15}_{-0.12}$)
VBF+ggF bb	0.98	
VBF+VH μμ 💻	2.33	$ \begin{array}{c} + 1.34 \\ - 1.26 \end{array} \left(\begin{array}{c} + 1.32 \\ - 1.24 \end{array} \right. \begin{array}{c} + 0.20 \\ - 0.23 \end{array} \right) $
VH γγ -	1.33	$ \begin{array}{c} + \ 0.33 \\ - \ 0.31 \end{array} \left(\begin{array}{c} + \ 0.32 \\ - \ 0.30 \end{array} \right. + \begin{array}{c} 0.10 \\ - \ 0.08 \end{array} \right) $
VH ZZ	1.51	$ \begin{array}{c} + 1.17 \\ - 0.94 \end{array} \left(\begin{array}{c} + 1.14 \\ - 0.93 \end{array} \right. \begin{array}{c} + 0.24 \\ - 0.16 \end{array} \right) $
	0.98	
WH bb	1.04	$ \begin{array}{c} + \ 0.28 \\ - \ 0.26 \end{array} \left(\begin{array}{c} + \ 0.19 \\ - \ 0.19 \end{array} \right. \begin{array}{c} + \ 0.20 \\ - \ 0.18 \end{array} \right) $
ZH bb	1.00	$ \begin{array}{c} + \ 0.24 \\ - \ 0.22 \end{array} \left(\begin{array}{c} + \ 0.17 \\ - \ 0.17 \end{array} \right. \begin{array}{c} + \ 0.17 \\ - \ 0.14 \end{array} \right) $
ttH+tH γγ	0.93	$ \begin{array}{c} + \ 0.27 \\ - \ 0.25 \end{array} \left(\begin{array}{c} + \ 0.26 \\ - \ 0.24 \end{array} \right. + \begin{array}{c} 0.08 \\ - \ 0.06 \end{array} \right) $
ttH+tH WW	1.64	$ \begin{array}{c} + \ 0.65 \\ - \ 0.61 \end{array} \left(\begin{array}{c} + \ 0.44 \\ - \ 0.43 \end{array} \right. + \begin{array}{c} 0.48 \\ - \ 0.43 \end{array} \right) $
ttH+tH ZZ	1.69	$ \begin{array}{c} + 1.69 \\ - 1.10 \end{array} \left(\begin{array}{c} + 1.65 \\ - 1.09 \end{array} \right. \begin{array}{c} + 0.37 \\ - 0.16 \end{array} \right) $
ttH+tH ττ F	1.39	
ttH+tH bb	0.35	$^{+0.34}_{-0.33}$ ($^{+0.20}_{-0.20}$, $^{+0.28}_{-0.27}$)
4 -2 0 2 4	<u> </u>	6 8
σ.	×Bn	ormalised to SM

Experiments: Recent Progress

Measurement of $gg \rightarrow H(\rightarrow \gamma \gamma)$

$$\sigma_{\text{fid}}^{\text{exp}} = 67 \pm 7 \text{ fb}$$

 $\sigma_{\text{fid}}^{\text{th}} = 64 \pm 4 \text{ fb}$

Also with differential fiducial cross sections (to high $p_T^{\gamma\gamma}$!) CERN-EP-2021-227

Direct constraint on y_b/y_c from $VH(\rightarrow c\bar{c})$

 $|\kappa_b/\kappa_c| < 4.5 < m_b/m_c$ @ 95% CL

Result implies that the Higgs coupling to charm quarks is smaller than the coupling to bottom quarks (as predicted by SM)

CERN-EP-2021-251

Future Experiments: HL-LHC

HIL-LHC PROJECT

HL-LHC construction underway ~10x integrated luminosity of LHC (LHC 0.3 ab⁻¹, HL-LHC: 3 ab⁻¹)

Theory uncertainty is expected to dominate HL-LHC Higgs physics

Plot shown assumes reduction by factor 2 of today's uncertainties

Outline

Motivation & Background

Higgs precision, why corrections to $gg \rightarrow ZH$ are interesting

Numerical calculation of Feynman integrals

Numerically evaluating amplitudes with pySecDec Expansion by regions

Virtual Results & Comparisons

Motivation: Higher Order Computations

$$d\sigma = \int dx_a dx_b f(x_a) f(x_b) d\hat{\sigma}_{ab}(x_a, x_b) F_J + \mathcal{O}\left((\Lambda/Q)^m\right)$$
Parton Distribution
Hard Scattering
Functions (PDFs)
Non-perturbative
effects ~ few %

With $\alpha_s \sim 0.1$, expect NLO ~ 10% correction, NNLO ~ 1% correction

However, there are important exceptions:

- Higgs production (NLO ~100%, NNLO ~10%, N3LO ~ 2%)
- New partonic channels can open at higher-orders (e.g. $gg \rightarrow ZH$)
- Distributions can be modified substantially (even if $\sigma_{\rm tot}$ is stable)

Overview of $pp \rightarrow ZH$ (I)

Consider the matrix element for $pp \rightarrow ZH$ with QCD corrections

Various channels contribute: $q\bar{q} \rightarrow ZH$ and $gg \rightarrow ZH$

The $gg \rightarrow ZH$ channel is **loop-induced** (i.e. LO in this channel is 1-loop)

Overview of $pp \rightarrow ZH$ (II)

The $gg \rightarrow ZH$ channel contributes to $pp \rightarrow ZH$ starting at NNLO in QCD

However due the large gluon-gluon luminosity at the LHC it contributes significantly (~10%) to the total cross section

Overview of $pp \rightarrow ZH$ (III)

Gluon-fusion piece

b b

bb piece (NNLO known) Ahmed, Ajjath, Chen, Dhani, Mukherjee, Ravindran 19

Drell-Yan piece (NNLO known) Gluo Brein, Djouadi, Harlander 03; Ferrera, Grazzini, Tramontano 14; See also: Kumara, Mandal, Ravindran 14 + $q\bar{q}$ piece with closed top loops (1-3%)

Available in various codes:

HAWK (NLO QCD + NLO EW) Denner, Dittmaier, Kallweit, Mück 14 vh@nnlo (NNLO QCD + NLO EW) Harlander, Klappert, Liebler, Simon 18; Brein, Harlander, Zirke 12

MCFM (NNLO QCD) Campbell, Ellis, Williams 16

GENEVA (NNLL'+NNLO with PS) Alioli, Broggio, Kallweit, Lim, Rottoli 19

Why Calculate $gg \rightarrow ZH$?

The practical reason ...

~10% of total cross section

~100% scale uncertainty (and underestimated?)

Signal		
Cross-section (scale)	0.7% (qq), 25% (gg)	
$H \rightarrow b\bar{b}$ branching fraction	1.7%	
Scale variations in STXS bins	$3.0\%-3.9\% (qq \rightarrow WH), 6.7\%-12\% (qq \rightarrow ZH), 37\%-100\% (gg \rightarrow ZH)$	
PS/UE variations in STXS bins	1%–5% for $qq \rightarrow VH$, 5%–20% for $gg \rightarrow ZH$	
PDF+ $\alpha_{\rm S}$ variations in STXS bins	$1.8\%-2.2\% (qq \rightarrow WH), 1.4\%-1.7\% (qq \rightarrow ZH), 2.9\%-3.3\% (gg \rightarrow ZH)$	
m_{bb} from scale variations	M+S $(qq \rightarrow VH, gg \rightarrow ZH)$	
m_{bb} from PS/UE variations	M+S	
m_{bb} from PDF+ $\alpha_{\rm S}$ variations	M+S	
$p_{\rm T}^V$ from NLO EW correction	M+S	

ATLAS 2007.02873

Philipp Windischhofer / ATLAS (LHCXSWG Meeting 9/11/2020)

Why Calculate $gg \rightarrow ZH$? (II)

And another reason...

Provides new and interesting challenges:

Amplitude depends on large number of scales $s, t, m_Z^2, m_H^2, m_T^2$ Feynman Integrals appearing are non-trivial (internal masses, elliptic...)

Can test our techniques to breaking point then develop new approaches! Can we find a basis of integrals with simple coefficients? How can we obtain a reduction to a finite basis (many dots/numerators)? Can we improve numerical performance near thresholds? ...

ZH in Gluon Fusion

Full leading order (loop induced) Dicus, Kao 88; Kniehl 90 NLO in the limit of $m_t \rightarrow \infty$ ($K \approx 2$) (asymptotic expansion) Altenkamp, Dittmaier, Harlander, H. Rzehak, Zirke 12

Virtual Corrections:

Expansion around large top quark mass ($1/m_t^8$) + Padé approx Hasselhuhn, Luthe, Steinhauser 17

Expansion around small top quark mass ($1/m_t^{10} \& m_t^{32}$) + Padé approx Davies, Mishima, Steinhauser 20

Expansion around small p_T up to p_T^4 Alasfar, Degrassi, Giardino, Gröber, Vitti 21

Full numerical result

Chen, Heinrich, SPJ, Kerner, Klappert, Schlenk 20

NLO result: Expansion around small m_z , m_h Wang, Xu, Xu, Yang 21 (2107.08206)

Setup & Amplitudes

Diagrams: $gg \rightarrow ZH$

Leading Order (1-loop) Diagrams

NLO (2-loop) Virtual Diagrams

Amplitudes

Schematically:

00000 $\mathcal{M}^{\mu\nu\rho}\sim$ 00000000 $\mathscr{M}^{\mu\nu\rho} = \sum A_i T_i^{\mu\nu\rho}, \qquad A_i = \sum C_{i,k} I_k$ **Rational functions Feynman integrals** Large num. terms/ high degree Analytically: Involved special functions Handled with specialist symbolic (Polylogs, Elliptic...) manipulation programs In this work, we will compute them numerically

18

Dealing with the Integrals

Feynman Integrals

Feynman integrals have many faces, each make different properties manifest... Switching the representation of our integrals allows us to understand/simplify/ complete the calculation

Feynman Parametrisation

pySecDec

pySecDec: a program for numerically evaluating dimensionally regulated parameter integrals on CPU or GPU (written in python, FORM, c++, CUDA)

Vermaseren 00; Kuipers, Ueda, Vermaseren 13; Ruijl, Ueda, Vermaseren 17

Publicly available (Github)

Extensive tests (CI) and documentation

Install with:

python3 -m pip install --user --upgrade pySecDec

New: Expansion by Regions & Amplitude Evaluation Heinrich, Jahn, SPJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21

Computing Integrals Numerically

Other Sector Decomposition Tools

Several other codes implement sector decomposition

Public:

- sector_decomposition + CSectors (uses GiNaC) https://particlephysics.uni-mainz.de/weinzierl/sector_decomposition/ Bogner, Weinzierl 07; Gluza, Kajda, Riemann, Yundin 10
- FIESTA (uses Mathematica, C)
 https://bitbucket.org/feynmanIntegrals/
 Supports integration on GPUs
 A. Smirnov, V. Smirnov, Tentyukov 08, 09, 13, 15; Smirnov 16, 21

(Currently) Private:

- FORM & Python Implementations Fujimoto, Kaneko and Ueda 08, 10
- NIFT

Zhao (in preparation)

First to implement expansion by regions

New Feature 1: Amplitude Evaluation

New release: can evaluate entire amplitudes **(used in our ZH calculation)** Let's see how this works in a simple example 1-loop 4-photon amp.

Step 1: Define Integrals

```
import pySecDec as psd
### Integral definitions ###
I = [
    # one loop bubble (u)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [[0,[1,2]],[0,[2,1]]],
    external_lines = [['p1',1],['p2',2]],
    replacement_rules = [('p1*p1', 'u'),('p2*p2', 'u'),('p1*p2', 'u')]),
    # one loop bubble (t)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [[0,[1,2]],[0,[2,1]]],
    external_lines = [['p1',1],['p2',2]],
    replacement_rules = [('p1*p1', 't'),('p2*p2', 't'),('p1*p2', 't')]),
    # one loop box (in 6 dimensions)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [['0', [1,2]], [0, [2,3]], [0, [3,4]], [0, [4,1]]],
    external_lines = [['p1',1],['p2',2],['p3',3],['p4',4]],
    replacement_rules = [
                            ('p1*p1', 0), ('p2*p2', 0),
                            ('p3*p3', 0), ('p4*p4', 0),
                            ('p3*p2', 'u/2'), ('p1*p2', 't/2'),
                            ('p1*p4', 'u/2'), ('p1*p3', '-u/2-t/2'),
                            ('p2*p4', '-u/2-t/2'), ('p3*p4', 't/2')
                       ],
    dimensionality= '6-2*eps'
    ),
    # one loop box (in 8 dimensions)
    # ...
                                 Usual pySecDec Syntax
```

Step 2: Define Coefficients

Supports:

Multiple regulators & variables Coeffs with poles in regulators Multiple amplitudes at once

Amplitude Evaluation (II)

Step 3: Generate

Step 4: Integrate

Step 5: Generate, Compile, Run, ..., Profit!

New Feature 2: Expansion by Regions

One option for dealing with numerically unstable high-energy/threshold regions is expansion by regions (not used in our ZH calculation)

Beneke, Smirnov 98; Rakhmetov, Pak, Jantzen, Semenova, Becher, Neubert, Broggio, Ferroglia,... (See e.g. Jantzen 11 for an introduction)

Idea: expand integrals around some small parameter, e.g. m^2/p^2

$$(hard): \qquad = \mu^{2e} \int dk \, \frac{1}{(k+p)^2(k^2 - m^2)^2}$$

$$(hard): \qquad |k^2| \gg m^2, \qquad \frac{1}{(k+p)^2(k^2 - m^2)^2} \to \frac{1}{(k+p)^2(k^2)^2} \left(1 + 2\frac{m^2}{k^2} + \dots\right)$$

$$(soft): \qquad |k^2|, |k \cdot p| \ll p^2, \qquad \frac{1}{(k+p)^2(k^2 - m^2)^2} \to \frac{1}{p^2(k^2 - m^2)^2} \left(1 - \frac{k^2 + 2p \cdot k}{p^2} + \dots\right)$$

Integrate expanded integrals over full integration range, sum over all regions Concept can be systematically applied also in Feynman parameter space Implemented in tools such as FIESTA/ ASY/ ASY2 and now in pySecDec Smirnov 15; Smirnov, Smirnov, Tentyukov 09;

Feynman Integrals: Feynman Parametrisation

Introducing Feynman parameters and integrating over momenta, we obtain

$$G = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_0^{\infty} \prod_{j=1}^{N} \mathrm{d}x_j \ x_j^{\nu_j - 1} \delta(1 - \sum_{i=1}^{N} x_i) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\mathbf{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\mathbf{x}, s_{ij})}$$

$$L - \text{ # loops in Feynman integral, } N_{\nu} = \sum_{i=1}^{N} \nu_i \text{ - sum of propagator powers}$$

 $\mathscr{U}, \mathscr{F} \text{ are homogenous polynomials in the Feynman parameters } x_i$ $\mathscr{U}(\mathbf{x}) \text{ is degree } L$ $\mathscr{F}(\mathbf{x}) \text{ is degree } L + 1$ $\mathscr{F}(\mathbf{x}, s_{ij}) = \mathscr{F}_0(\mathbf{x}, s_{ij}) + \mathscr{U}(\mathbf{x}) \sum_{i=1}^N x_i m_i^2 \quad \leftarrow \text{ internal masses}$

Both $\mathcal{U}, \mathcal{F}_0$ are linear in each Feynman parameter

It is straightforward to construct \mathcal{U}, \mathcal{F} from a loop integral or graphically

Feynman Integrals: Lee-Pomeransky Representation

The Lee-Pomeransky representation is given by Lee, Pomeransky 13

$$G = \frac{\Gamma(D/2)}{\Gamma\left((L+1)D/2 - N_{\nu}\right)\prod_{j=1}^{N}\Gamma(\nu_j)} \int_{0}^{\infty} \prod_{j=1}^{N} \mathrm{d}x_j \ x_j^{\nu_j - 1} \left(\mathscr{G}(\mathbf{x}, s_{ij})\right)^{-D/2}$$
$$\mathscr{G}(\mathbf{x}, s_{ij}) = \mathscr{U}(\mathbf{x}) + \mathscr{F}(\mathbf{x}, s_{ij})$$

Inserting $1 = \int ds \,\delta(s - \sum x)$ and scaling $x \to sx$ we recover Feynman's formula In this representation, we need to consider integrals of the form

$$G = \int_0^\infty \frac{\mathrm{d}\mathbf{x}}{\mathbf{x}} \mathbf{x}^{\nu} \left[\sum_{i=1}^m c_i \, \mathbf{x}^{\mathbf{p}_i} \right]^{-2}, \quad \text{where} \quad \mathbf{x}^{\mathbf{a}} = \prod_{j=1}^N x_j^{a_j}$$

This is useful for two reasons:

1) $\mathcal{U} + \mathcal{F}$ is typically simpler than $\mathcal{U} \times \mathcal{F}$

2) Many of the arguments can apply to a more general ${\mathscr G}$

Semenova, A. Smirnov, V. Smirnov 18

Geometric Method: Set-up

In Feynman parameter space, there is a **geometric method** for finding regions Pak, Smirnov 10

Each region will be defined by a **region vector** $\mathbf{v} = (v_1, ..., v_N, 1)$, in each region we will perform a change of variables $x_i \rightarrow t^{v_i} x_i$ and series expand about t = 0

Let us start by considering some polynomial (could be $\mathcal{U} + \mathcal{F}$ or something more general):

$$P(\mathbf{x}, t) = \sum_{i=1}^{m} c_i x_1^{p_{i,1}} \cdots x_N^{p_{i,N}} t^{p_{i,N+1}}$$

 c_i - non-negative coefficients

 x_i - integration variables

t - small parameter

$$\mathbf{p}'_i = (p_{i,1}, \dots, p_{i,N+1}) \in \mathbb{N}^{N+1}$$
 - exponent vectors

Geometric Method: Determining the Regions

Ignoring, for now, the coefficients c_i we can introduce a simple but useful picture for such polynomials:

- For each variable x_i or t draw an orthogonal axis
- For each monomial, draw a dot at position \mathbf{p}'_i

Example: $P(x, t) = t + x + x^2$ has exponent vectors $\mathbf{p}'_1 = (0,1), \mathbf{p}'_2 = (1,0), \mathbf{p}'_3 = (2,0)$

Geometric Method: Determining the Regions (II)

We may also define a **Newton polytope** of the polynomial, this is the convex hull of the exponent vectors:

$$\Delta = \text{convHull}(\mathbf{p}'_1, \mathbf{p}'_2, \ldots) = \left\{ \sum_j \alpha_j \mathbf{p}'_j | \alpha_j \ge 0 \land \sum_j \alpha_j = 1 \right\}$$

Example: $P(x, t) = t + x + x^2$ has exponent vectors $\mathbf{p}'_1 = (0,1), \mathbf{p}'_2 = (1,0), \mathbf{p}'_3 = (2,0)$

Geometric Method: Determining the Regions (III)

Alternatively, this polytope can also be described as the intersection of half spaces:

$$\Delta' = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N+1} \mid \langle \mathbf{m}, \mathbf{v}_f \rangle + a_f \ge 0 \right\}$$

F - set of polytope facets, $a_f \in \mathbb{Z}$

 \mathbf{v}_{f} - inward-pointing normal vectors for each facet

Several public tools exist for computing Newton polytopes/convex hulls and their representation in terms of facets exist, e.g. **Normaliz** and **Qhull**

Geometric Method: Determining the Regions (IV)

Next, let us define a vector **u** such that $x_i = t^{u_i}$ and a vector $\mathbf{u}' = (\mathbf{u}, 1)$, for each point **x** in the integration domain, we can write:

$$P(t^{\mathbf{u}}, t) = \sum_{i=1}^{m} c_i t^{\langle \mathbf{p}'_i, \mathbf{u}' \rangle}$$

Since $t \ll 1$, the largest term in the polynomial has the smallest $\langle \mathbf{p}'_i, \mathbf{u}' \rangle$ Note that we can have several points with the same projection on \mathbf{u}' , i.e. we can have several largest terms

Example: $P(x, t) = t + x + x^2$ with $\mathbf{u}' = (3, 1)$ gives $P(t^{\mathbf{u}}, t) = \underline{t} + t^3 + t^6$

Geometric Method: Determining the Regions (V)

Next, let us define a vector **u** such that $x_i = t^{u_i}$ and a vector $\mathbf{u}' = (\mathbf{u}, 1)$, for each point **x** in the integration domain, we can write:

$$P(t^{\mathbf{u}}, t) = \sum_{i=1}^{m} c_i t^{\langle \mathbf{p}'_i, \mathbf{u}' \rangle}$$

Since $t \ll 1$, the largest term in the polynomial has the smallest $\langle \mathbf{p}'_i, \mathbf{u}' \rangle$ Note that we can have several points with the same projection on \mathbf{u}' , i.e. we can have several largest terms

Example: $P(x, t) = t + x + x^2$ with $\mathbf{u}' = (1, 1)$ gives $P(t^{\mathbf{u}}, t) = t + t + t^2$

Geometric Method: Determining the Regions (VI)

Rewrite our polynomial as: $P(\mathbf{x}) = Q(\mathbf{x}) + R(\mathbf{x})$

With $Q(\mathbf{x})$ defined such that it contains all of the lowest order terms in t

Then, binomial expansion of

$$P(\mathbf{x})^m = Q(\mathbf{x})^m \left(1 + \frac{R(\mathbf{x})}{Q(\mathbf{x})}\right)^m \text{ converges for } \mathbf{x} = t^{\mathbf{u}} \text{ if } R(\mathbf{x})/Q(\mathbf{x}) < 1$$

Some observations:

- An expansion with region vector v converges at a point u^\prime if the lowest order terms along the direction v contain the lowest order terms along the direction u^\prime
- For any direction u' the vertices with the smallest < p'_i, u' > must be part of some facet F of the polytope
- Since u_{N+1} > 0, the lowest order terms for any u' must lie on a facet whose inwards pointing normal vector has a positive (N + 1)-th component, let us call the set of such facets F⁺

Geometric Method: Determining the Regions (VII)

How do we choose the regions?

The region vectors may be chosen as the facets whose inwards pointing normal vector has a positive (N + 1) component

Our original integral G may then be approximated as $G = \sum_{f \in F^+} G^{(f)} + \dots$

Where $G^{(f)}$ are the series expanded integrals integrated over the whole domain

The ``+..." terms are overlap contributions/ multiple expansions, for sufficiently regulated Feynman integrals (dim reg + analytic regulators) these terms are usually scaleless (=0 in dim reg) and can be neglected
Expansion by Regions

Consider a 2-loop form factor integral, plot the ratio of the finite $\mathcal{O}(\epsilon^0)$ piece of our numerical result R_n to the analytic result R_a

Where we have a large ratio of scales (m^2/s) the EBR result is much **faster** & **easier** to integrate

Results $gg \rightarrow ZH$

Finite Virtual Correction

Schematically,

$$\begin{split} \hat{\sigma} &= \hat{\sigma}^{\text{LO}} + \hat{\sigma}^{\text{NLO}} \\ \hat{\sigma}^{\text{LO}} &= \int_{n} d\sigma^{\text{B}} \\ \hat{\sigma}^{\text{NLO}} &= \int_{n} d\sigma^{\text{V}} + \int_{n+1} d\sigma^{\text{R}} + \int_{n} d\sigma^{\text{C}} \end{split}$$

Virtual part ($\mathrm{d}\sigma^V$) and real part ($\mathrm{d}\sigma^R$) not separately finite for $\epsilon o 0$

However, we can define a finite virtual contribution as follows: 1) UV renormalize: α_s in \overline{MS} & top quark mass in OS scheme 2) IR structure well known at NLO, subtract divergences

$$\mathcal{A}_{i}^{(0),\text{fin}} = \mathcal{A}_{i}^{(0),\text{UV}}, \qquad I_{1} = I_{1}^{\text{soft}} + I_{1}^{\text{coll}},
\mathcal{A}_{i}^{(1),\text{fin}} = \mathcal{A}_{i}^{(1),\text{UV}} - I_{1}\mathcal{A}_{i}^{(0),\text{UV}}, \qquad I_{1}^{\text{soft}} = -\frac{e^{\epsilon\gamma_{E}}}{\Gamma(1-\epsilon)} \left(\frac{\mu_{R}^{2}}{s}\right)^{\epsilon} \left(\frac{1}{\epsilon^{2}} + \frac{i\pi}{\epsilon}\right) 2C_{A},
I_{1}^{\text{coll}} = -\frac{\beta_{0}}{\epsilon} \left(\frac{\mu_{R}^{2}}{s}\right)^{\epsilon}.$$

A Few Conventions

We present results for the Born and Born-Virtual interference helicity amplitudes

Expand the helicity amplitudes in α_S

$$\mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{\text{fin}} = \left(\frac{\alpha_s}{4\pi}\right) \mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{(0),\text{fin}} + \left(\frac{\alpha_s}{4\pi}\right)^2 \mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{(1),\text{fin}} + \dots$$

Compute the square/interference

$$\mathscr{B} = \frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_3} |\mathscr{A}^{(0), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3}|^2,$$

$$\mathscr{V} = \frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_3} 2 \operatorname{Re} \left(\mathscr{A}^{*(0), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3} \mathscr{A}^{(1), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3} \right)$$

Renormalization scale set to $\mu_R^2 = s$ Electroweak coupling $e^2 = 4\pi\alpha = 1$ (can easily vary couplings/scales) $2 \rightarrow 2$ amplitude depends on two kinematic variables (after fixing masses)

Choose:

$$s = (p_1 + p_2)^2$$

 θ_z - angle in c.o.m frame between p_2 -axis and p_3

Evaluation of the Amplitude

Again, $2 \rightarrow 2$ amplitude depends on two kinematic variables (after fixing masses) $\beta_t = \frac{s - 4m_t^2}{s + 4m_t^2 - (2m_z + m_h)^2}, \qquad \begin{array}{l} \theta_z \text{ - angle in c.o.m frame} \\ \text{between } p_2\text{-axis and Z-boson } (p_3) \end{array}$

Sample grid of 20×20 points +80 extra top threshold/high-energy points in range: $-0.99 < \beta_t < 0.99$ and $-0.99 < \cos(\theta_z) < 0.99$

Amplitude Result

 $\sim 2 \times$

Observe that modes with longitudinally polarised Z boson dominate total

Ratio between Born squared amplitude and Born-Virtual interference not flat

Reminder: plot missing real contribution (so plot is not NLO/LO `K-factor')

Comparison to Large m_t Expansion

The amplitude has been expanded around large- m_t and computed analytically Hasselhuhn, Luthe, Steinhauser 17; Davies, Mishima, Steinhauser 20

Let us compare our result to the Born

$$\mathcal{V}_n = rac{\mathcal{B}}{\mathcal{B}_n} \widetilde{\mathcal{V}}_n + \mathcal{V}^{1\mathrm{PR}}$$

Per mille level agreement far below top quark threshold: $\mathcal{V}_4/\mathcal{V}=0.9989$

Expansion breaks down at threshold, observe that it differs from our result

Observation: n = 1 apparently worse than n = 0

Comparison to Small m_t Expansion

The amplitude has also been expanded around small m_t , m_h , m_z

Davies, Mishima, Steinhauser 20; Mishima 18

Agreement with Padé improved expanded result $\mathcal{O}(m_z^2, m_h^2, m_t^{32})$ ~2% level for $p_T \gtrsim 225$ ~10% level for $150 < p_T < 225$

Consistent with Padé/full at LO level

Not all points agreeing well even for large \sqrt{s}

Convergence of the Padé result depends on $m_T \ll s, |t|, |u|$ can have small |t| even for large s (if p_T is small)

Comparison to Small m_t Expansion (II)

Can the Padé result be improved by including terms of order m_z^4 , m_h^4 ?

Comparison to Small m_t Expansion (II)

Can the Padé result be improved by including terms of order m_z^4 , m_h^4 ?

Now find **excellent** agreement for $p_T \ge 200 \text{ GeV}$

Comparison to Expansion (Small m_h, m_z)

Can expand in only m_h , m_z and retain full m_t dependence Wang, Xu, Xu, Yang 21 Integrals appearing in the expansion (scales s, t, m_t^2) are known

Caron-Huot, Henn 14; Becchetti, Bonciani 18; Xu, Yang 18; Wang, Wang, Xu, Xu, Yang 20;

Expansion shows good agreement with numerical result in most (all?) phase-space regions

No breakdown near top threshold

$\hat{\epsilon}/m^2$	\hat{u}/m^2	$\mathcal{V}_{\mathrm{fin}}^{\prime}$			
S/m_t	a/m_t	pySecDec	$\mathcal{O}(m^0)$	${\cal O}(m^2)$	${\cal O}(m^4)$
1.707133657190554	-0.441203767016323	35.429092(6)	35.9823	35.5530	35.4478
3.876056604162662	-1.616287256345735	4339.045(1)	4319.37	4336.63	4338.73
4.130574250302561	-1.750372271104745	6912.361(3)	6870.47	6906.92	6911.64
4.130574250302561	-2.595461551488002	6981.09(2)	6979.28	6980.14	6980.85
134.5142052093564	-70.34125943305149	-153.9(4)	-154.543	-154.458	-154.460
134.5142052093564	-105.1770655376327	527(4)	524.585	525.958	525.965
			I		

Authors published NLO results for $gg \rightarrow ZH$ Virtuals: small m_h, m_z expansion Reals: GoSam Cullen et al.

Gives stable invariant mass distribution, sizeable corrections ~LO (as expected)

Conclusion

We have entered the precision Higgs era

- Over coming years, expect greater demand for precise theory predictions (required to exploit experimental measurements)
- Detailed searches for deviations, e.g: differential measurements, constraining EFT couplings, off-shell measurements, ...

I have presented a calculation which underscores the usefulness of

• Numerical methods for solving Feynman integrals (new pySecDec out now!)

Next steps...

- Put the pieces together in order to obtain complete NLO results
- Incorporate into public tools for $pp \rightarrow ZH$ (?)

Thank you for listening!

Backup

Helicity Amplitudes

We can produce precise results for all helicity amplitudes also in kinematic limits!

Decomposition: $gg \rightarrow ZH$

Idea: construct projectors for linearly polarised amplitudes in c.o.m frame, directly compute polarised amplitudes Chen 19

Polarisation vectors can be expressed (up to normalisation factors \mathcal{N}_i) in terms of external momenta:

$$\begin{split} \varepsilon_x^{\mu} = &\mathcal{N}_x \ (-s_{23} p_1^{\mu} - s_{13} p_2^{\mu} + s_{12} p_3^{\mu}) \\ \varepsilon_y^{\mu} = &\mathcal{N}_y \ \left(\epsilon_{\mu_1 \ \mu_2 \ \mu_3}^{\mu} \ p_1^{\mu_1} \ p_2^{\mu_2} \ p_3^{\mu_3}\right) \\ \varepsilon_T^{\mu} = &\mathcal{N}_T \ \left(\left(-s_{23}(s_{13} + s_{23}) + 2m_z^2 s_{12}\right) p_1^{\mu} + s_{12}(-s_{13} + s_{23}) p_3^{\mu}\right) \\ \varepsilon_l^{\mu} = &\mathcal{N}_l \ \left(-2m_z^2 \ (p_1^{\mu} + p_2^{\mu}) + (s_{13} + s_{23}) \ p_3^{\mu}\right) \end{split}$$

Projectors are just products of pol. vecs.

 $\mathcal{P}_{1}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}} \qquad \mathcal{P}_{2}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}, \\ \mathcal{P}_{3}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}} \qquad \mathcal{P}_{4}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}, \\ \mathcal{P}_{5}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}} \qquad \mathcal{P}_{6}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}}.$

Cross checked with conventional form factor decomposition at LO and at NLO with expansions Davies, Mishima, Steinhauser 20

Dimensional Regularisation & γ_5

Z-Fermion Vertex

Contains vector ~ $v_t \gamma_{\mu}$ and axial-vector ~ $a_t \gamma_{\mu} \gamma_5$:

$$\mathcal{V}_{\mu}^{Vf\bar{f}} = i \frac{e}{2\sin\theta_W \cos\theta_W} \gamma_{\mu} \left(v_t + a_t \gamma_5 \right)$$

We use dimensional regularisation ($d = 4 - 2\epsilon$) to regulate divergences appearing in loop integrals, however, one can't retain all properties of γ_5 in $d \neq 4$ dimensions

Larin Scheme (ZH, ZZ)

Sacrifice anti-commuting property of γ_5

$$J_{\mu}^{5} = Z_{5,ns} J_{\mu,B}^{5} = Z_{5,ns} \left[\frac{i}{3!} \epsilon_{\mu\nu\rho\sigma} \bar{\psi} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \bar{\psi} \right]$$
$$P^{5} = Z_{5,p} P_{B}^{5} = Z_{5,p} \left[\frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \bar{\psi} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \bar{\psi} \right]$$

Fix Ward identities/ABJ anomaly:

$$Z_{5,ns} = 1 + \alpha_s(-4C_F) + \dots$$

$$Z_{5,p} = 1 + \alpha_s(-8C_F) + \dots$$

Larin, Vermaseren 91; Larin 93

Alternative schemes exist e.g:

Kreimer Scheme (ZZ)

Retain $\{\gamma_5, \gamma^{\mu}\} = 0$, but, sacrifice cyclicity of traces involving γ_5

Define `reading point' and carefully manipulate all traces Kreimer 90; Korner, Kreimer, Schilcher 92

Used in our calculation of $gg \rightarrow ZZ$ Agarwal, SPJ, von Manteuffel 20

Reduction

Integration by parts Identities: $\int d^{d}k_{1} \cdots d^{d}k_{l} \frac{\partial}{\partial k_{i}^{\mu}} \left[v^{\mu} I(k_{1}, \dots, k_{l}; p_{1}, \dots, p_{m}) \right] = 0$

Produce linear relations between integrals Tkachov 81; Chetyrkin 81

Can perform e.g. Gaussian elimination on system of equations Relate integrals to a smaller set (**basis**) of **Master integrals**

The choice of basis impacts:

1) Complexity of the coefficients in the amplitude

2) Difficulty of computing the integrals

Always possible to pick a basis of finite integrals using:

- Dimension Shifts Tarasov 96; Lee 10
- Dots
- Numerator Insertions (optional, not used for $gg \rightarrow ZH$)

The finite basis greatly improves numerical performance

Panzer 14; von Manteuffel, Panzer, Schabinger 15

Reduction (II)

Need tools to actually solve these systems of equations...

ZZ Computation	ZH Computation			
FinRed von Mantueffel (Private) + Syzygy Solver Agarwal, von Mantueffel	Kira 2 + FireFly Maierhöfer, Usovitsch, Uwer 18; Klappert, Lange, P. Maierhöfer, Usovitsch 20; Klappert, Lange 20; Klappert, Klein, Lange 20			
Master Integrals: 264	Master Integrals: 452			

Both toolchains extensively rely on the use of finite fields See e.g: von Mantueffel, Schabinger 14; Peraro 16

Even with these tools, still too difficult to obtain fully symbolic amplitudes

Fix mass ratios ZZ:
$$\frac{m_z^2}{m_t^2} = \frac{5}{18}$$
 and ZH: $\frac{m_z^2}{m_t^2} = \frac{23}{83}, \frac{m_H^2}{m_t^2} = \frac{12}{23}$

Master Integral Basis ($gg \rightarrow ZH$)

To select our master integrals, we took the following pragmatic approach:

1) Consider quasi-finite integrals (prefer finite integrals)

$$I = \frac{I_{-2}}{\epsilon^2} + \frac{I_{-1}}{\epsilon} + I_0 + \dots \quad \rightarrow \quad I' = I'_0 + \dots$$

2) Choose a basis in which the *d*-dependence of denominators factorises from the kinematic dependence (in practice we achieve this by brute force neglecting subsectors, public tools are available Smirnov, Smirnov 20; Usovitsch 20)

$$\frac{N(s,t,d)}{D(s,t,d)}I + \dots \rightarrow \frac{N'(s,t,d)}{D'_1(d)D'_2(s,t)}I' + \dots$$

- 3) Prefer simple denominator factors
- 4) Prefer computing fewer orders in epsilon for each master (found a basis in which all 7-propagator integrals start contributing only at e^{-1})
- 5) Prefer simpler numerators (check number of terms/file size)

See also: Matthias Kerner, Loops and Legs Proceedings 2018

Steps 2-5 reduced the size of amplitude by factor of 5 Largest coefficient (double-tadpole) 150 MB \rightarrow 5 MB

Amplitude Evaluation (IV)

A peak behind the curtain (enabled by setting verbose=True)

Compute a first estimate of each integral (n: 50789 x 32 samples of integral) # Note: each order of each sector is computed separately (and can be known to a different precision) computing integrals to satisfy mineval 50000 integral 1/16: bubble_u_sector_1_order_0, time: 0.0 s res: (0,0) +/- (0,0) -> (1,0) +/- (8.89904e-17,0), n: 0 -> 50789 integral 2/16: bubble_u_sector_1_order_1, time: 0.0 s res: (0,0) +/- (0,0) -> (2.22314,0) +/- (1.9927e-15,0), n: 0 -> 50789 integral 3/16: bubble_t_sector_1_order_0, time: 0.0 s res: (0,0) +/- (0,0) -> (1,0) +/- (9.00691e-17,0), n: 0 -> 50789 integral 4/16: bubble_t_sector_1_order_1, time: 0.0 s res: (0,0) +/- (0,0) -> (1.73764,0) +/- (2.19938e-15,0), n: 0 -> 50789 • • • # Estimate amplitude(s) using integral results amplitude0 = + ((0,0) + (2.41174e-16,0)) + ((-28.4316, -1.6741e-09) + (4.06609e-09, 2.39249e-09)) + 0(eps)# Examine contribution of each integral to err. of amp. and estimate how many samples we need (n: known -> required) # Note: not all sectors will be recomputed, different sectors will be computed to different precisions sum: sum_eps^0, term: WINTEGRAL, integral 5: box_6_sector_1_order_0, current integral result: (0.478203,4.5158e-11) +/-(2.31205e-10,4.72335e-11), contribution to sum error: 2.0946e-09, increase n: 50789 -> 968960972 sum: sum_eps^0, term: WINTEGRAL, integral 15: box_8_sector_5_order_0, current integral result: (0.0173611,-5.39441e-13) +/-(3.16251e-12,1.29608e-12), contribution to sum error: 1.64054e-10, increase n: 50789 -> 193374172 # Iterate until we obtain the desired precision # Note: reason for iteration is printed (long running/run away jobs can be debugged straightforwardly) run further refinements: true computing integrals to satisfy error goals on sums: epsrel 1e-14, epsabs 1e-14 • • •

Evaluation of the Amplitude (Timing)

Each phase-space point evaluated with 2 x Nvidia Tesla V100 GPUs Precision goal set to 0.3% for each (linearly polarised) amplitude

Timing/ point:

Min: 45 mins, Max: 24 hr (wall-clock), ~65 hr (high-energy), Median: 3.5 hr

Worst performance near to ZH, $t\bar{t}$ thresholds, high-energy and forward scattering

Expansion by Regions: Momentum Space

Expansion by Regions: Bubble Example

Let us consider the large momentum limit $|p|^2 \gg m^2$ of some integral, we therefore want to expand in the small dimensionless ratio m^2/p^2

Example: (finite) 1-loop bubble integral Jantzen 2011 $D = 4 - 2\epsilon$ $G = \mu^{2\epsilon} \int \frac{\mathrm{d}^D k}{i\pi^{D/2}} \frac{1}{(k+p)^2(k^2-m^2)^2}$

If we can compute the integral, the expansion after integration is straightforward

$$G = \frac{1}{p^2} \left[\ln\left(\frac{-p^2 - i0}{m^2}\right) + \ln\left(1 - \frac{m^2}{p^2}\right) \right] + \mathcal{O}(\epsilon)$$
$$= \frac{1}{p^2} \left[\ln\left(\frac{-p^2 - i0}{m^2}\right) - \sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{m^2}{p^2}\right)^j \right] + \mathcal{O}(\epsilon)$$

Now let's try to expand before integration

Expansion by Regions: Bubble Example (II)

$$--- \int \frac{d^{D}k}{d\mu} = \int \frac{d^{D}k}{d\mu} \frac{1}{(k+p)^{2}(k^{2}-m^{2})^{2}}$$

Since $|p^2| \gg m^2$ we may start by expanding the 2nd propagator around small m^2 :

$$I^{(h)} = \sum_{i} T_{i}^{(h)} I = \frac{1}{(k+p)^{2}} \left(\frac{1}{(k^{2})^{2}} + 2\frac{m^{2}}{(k^{2})^{3}} + \dots \right)$$

Integrating the expansion over the **whole domain** $k \in \mathbb{R}^d$ we get:

$$G^{(h)} = \sum_{i} T_{i}^{(h)}G = \frac{1}{p^{2}} \left[-\frac{1}{\epsilon} + \ln\left(\frac{-p^{2} - i0}{\mu^{2}}\right) - \sum_{j=1}^{\infty} \frac{2}{j} \left(\frac{m^{2}}{p^{2}}\right)^{j} \right] + \mathcal{O}(\epsilon)$$

Here, we implicitly assumed $k \gg m^2$ and neglected the region where $k \sim m$, let us compute this region too...

Expansion by Regions: Bubble Example (III)

Expanding the 1st propagator around large p^2 :

$$I^{(s)} = \sum_{i} T_{i}^{(s)} I = \frac{1}{(k^{2} - m^{2})^{2}} \left(\frac{1}{p^{2}} - \frac{k^{2} + 2p \cdot k}{(p^{2})^{2}} + \dots \right)$$

Integrating the expansion over the **whole domain** $k \in \mathbb{R}^d$ we get:

$$G^{(s)} = \sum_{i} T_i^{(s)} G = \frac{1}{p^2} \left[\frac{1}{\epsilon} + \ln\left(\frac{\mu^2}{m^2}\right) + \sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{m^2}{p^2}\right)^j \right] + \mathcal{O}(\epsilon)$$

Summing the hard (h) and soft (s) regions we get:

$$G = G^{(h)} + G^{(s)} = \frac{1}{p^2} \left[\ln\left(\frac{-p^2 - i0}{m^2}\right) - \sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{m^2}{p^2}\right)^j \right] + \mathcal{O}(\epsilon)$$

This reproduces the expanded result, but why does this work?

- **1)** Did we not **double-count** when replacing $\int Dk \to \int Dk I^{(h)} + \int Dk I^{(s)}$?
- 2) How do we choose the regions?

Expansion by Regions: Bubble Example (IV)

1) Did we not double-count when replacing $\int Dk \rightarrow \int Dk I^{(h)} + \int Dk I^{(s)}$?

This example (and several others) was examined in great detail by Jantzen, he noted:

The expansions $\sum_{i} T_{i}^{(h)}, \sum_{i} T_{i}^{(s)} \text{ converge absolutely in their respective domains}$ $D_{h} = \{k \in \mathbb{R}^{d} : |k^{2}| \ge \Lambda^{2}\}$ $D_{s} = \{k \in \mathbb{R}^{d} : |k^{2}| < \Lambda^{2}\}$ with $m^{2} \ll \Lambda^{2} \ll |p^{2}|$

The expansions commute $T_i^{(h)}T_j^{(s)}I = T_j^{(s)}T_i^{(h)}I = T_{i,j}^{(h,s)}I$

Thus
$$G = \sum_{i} \int_{k \in D_{h}} Dk T_{i}^{(h)} I + \sum_{j} \int_{k \in D_{s}} Dk T_{j}^{(s)} I = G^{(h)} + G^{(s)} - G^{(h,s)}$$

Finally, the overlap/multiple expansion contribution $G^{(h,s)}$ turns out to be scaleless (=0), in dimensional regularisation such integrals vanish, we did not double-count!

Expansion by Regions in pySecDec

Momentum space

In dimensional regularisation, scaleless integrals are 0

$$G(\{k_i\}_a, \{ck_i\}_b) = c^{N_G} G(\{k_i\}) \implies G(k_i) = 0, \quad \{k_i\} = \{k_i\}_a \cup \{k_i\}_b$$

Where $G(\{k_i\})$ is a Feynman integral depending on loop momenta $\{k_i\}$, $c \neq 0$ and N_G is some scaling dimension

Feynman parameter space $(\mathcal{U} \times \mathcal{F})(c^{\mathbf{v}}\mathbf{x}) = c^{N}(\mathcal{U} \times \mathcal{F})(\mathbf{x}), \quad \mathbf{v} \neq n\mathbf{1}, \quad n \in \mathbb{R}$

Geometrical viewpoint

For Δ built from $\mathcal{U} + \mathcal{F}$

 $dim(\Delta) = dim(\mathbf{x}) \iff G \text{ scaleful}$ $dim(\Delta) < dim(\mathbf{x}) \iff G \text{ scaleless}$

This was also used in earlier works on EBR Pak, Smirnov 10

Geometric Method: Overlap Contributions

Jantzen showed that under some quite general conditions Jantzen 2011 $G = \sum_{f \in F^+} G^{(f)} - \sum_{\{f_1, f_2\} \subset F^+}^{\langle F_c^+ + 1 \rangle} G^{(f_1, f_2)} + \dots - (-1)^n \sum_{\{f_1, \dots, f_n\} \subset F^+}^{\langle F_c^+ + 1 \rangle} G^{(f_1, \dots, f_n)} + \dots + (-1)^{N_c} \sum_{f' \in F_{nc}^+} G^{(f', f_1, \dots, f_{N_c})}$

overlap contributions / multiple expansions

Where F_c^+ yield commuting expansions, F_{nc}^+ non-commuting expansions and the sums $\{f_1, ...\}$ run over subsets containing at most one region from F_{nc}^+

However, for **regulated integrals** (dim reg + analytic regulators) **these multiple expansions usually vanish**

We always neglect them in our code, but one can easily check this case-by-case

Reason: Consider Newton polytope with $dim(\Delta) = dim(\mathbf{x}) + 1$

- 1st expansion: picks terms forming a facet f_1 , $\dim(f_1) = \dim(\mathbf{x}) \implies$ scaleful
- 2nd expansion: picks out terms that are an ``intersection'' between two facets $f_{1,2}$, $\dim(f_{1,2}) = \dim(\mathbf{x}) - 1 \implies$ scaleless (unless facets are parallel)

Geometric Method: Additional Regulators

Issue 1: EBR can introduce spurious singularities that are not regulated by dim reg. Let ν be a vector of propagator powers, $D = 4 - 2\epsilon$ space-time dimensions For each facet $f \in F_{\Delta}^{N-1}$ a singularity is present in G if

$$\langle \mathbf{v}_f, \nu
angle + a_f rac{D}{2} \le 0$$
 e.g: Schlenk 16

EBR will effectively subdivide the Newton polytope (by selecting only certain vertices for each expansion), this will introduce new **internal facets**

If these facets define a hyperplane that goes through **0** (i.e. $a_f = 0$) we can encounter spurious singularities, can introduce analytic regulators $\nu \to \nu + \delta \nu_{\delta}$ to regulate them

Examples:

Geometric Method: Negative Coefficients

Issue 2: What happens if we have negative coefficients $c_i < 0?$ **not handled by pySecDec (yet!)**

Consider a 1-loop massive bubble at threshold $y = m^2 - q^2/4 \rightarrow 0$ $\mathscr{F} = q^2/4(x_1 - x_2)^2 + y(x_1 + x_2)^2$ Can split integral into two subdomains $x_1 \le x_2$ and $x_2 \le x_1$ then remap $x_1 = x_1'/2$ $x_2 = x_2' + x_1'/2$: $\mathscr{F} \rightarrow \frac{q^2}{4}x_2'^2 + y(x_1' + x_2')^2$ (for first domain)

Various tools attempt to find such re-mappings:

FIESTA Jantzen, A. Smirnov, V. Smirnov 12

Check all pairs of variables (x_1, x_2) which are part of monomials of opposite sign For each pair, try to build linear combination x'_1 s.t negative monomial vanishes Repeat until all negative monomials vanish **or** warn user

ASPIRE Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20 Consider Gröbner basis of $\{\mathscr{F}, \partial \mathscr{F}/x_1, \partial \mathscr{F}/x_2, ...\}$ (i.e. \mathscr{F} and Landau equations) Eliminate negative monomials with linear transformations $x_1 \rightarrow ax'_1, x_2 \rightarrow x'_2 + ax'_1$

pySecDec: EBR Bubble Example

pySecDec: EBR Example

Step 2: Integrate

from pySecDec.integral_interface import IntegralLibrary, series_to_sympy
import sympy as sp

```
if __name__ == "__main__":
```

psq, msq = 4, 0.002 name = "bubble1L_dotted_m" real_parameters = [psq, msq]

load the library
intlib = IntegralLibrary(f"{name}/{name}_pylink.so")
intlib.use_Qmc(transform="korobov3")

```
# integrate
```

integral_without_prefactor, prefactor, integral_with_prefactor = \
 intlib(real_parameters)

convert the result to sympy expressions
result, error = \
 map(sp.sympify, series_to_sympy(integral_with_prefactor))

```
# access and print individual terms of the expansion
print("Numerical Result")
for power in [-2, -1, 0]:
   val = complex(result.coeff("eps", power))
   err = complex(error.coeff("eps", power))
   print(f"eps^{power:<2} {val: .5f} +/- {err:.5e}")</pre>
```

Step 3: Generate, Compile, Run

```
$ python3 generate_bubble1L_dotted_m_ebr.py
$ export CXX=nvcc
$ export SECDEC_WITH_CUDA_FLAGS="-gencode arch=compute_70,code=sm_70"
$ make -C bubble1L_dotted_m -j 8
$ time python3 integrate_bubble1L_dotted_m_ebr.py
> Numerical Result:
eps^-2 0.00000+0.00000j +/- 0.00000e+00+0.00000e+00j
eps^-1 0.00000+0.00000j +/- 1.87110e-17+0.00000e+00j
      1.90010-0.78540j +/- 8.70722e-17+1.03484e-16j
eps^0
. . .
        0m1.062s
real
        0m2.175s
user
sys
       0m0.270s
```

We have determined the Feynman parametrisation of our integral, applied expansion by regions and generated integrals which we then numerically computed

Of course, this works also for higher loop integrals...

pySecDec: EBR Box Example

Example: 1-loop massive box expanded for small $m_t^2 \ll s$, |t|

Requires the use of analytic regulators Can regulate spurious singularities by adjusting

propagators powers

$$G_4 = \mu^{2\epsilon} \int_{-\infty}^{\infty} \frac{d^D k}{i\pi^{D/2}} \frac{1}{[k^2 - m_t^2]^{\delta_1} [(k+p_1)^2 - m_t^2]^{\delta_2} [(k+p_1+p_2)^2 - m_t^2]^{\delta_3} [(k-p_4)^2 - m_t^2]^{\delta_4}}$$

Can keep $\delta_1, \ldots, \delta_4$ symbolic or $\delta_1 = 1 + n_1/2, \delta_2 = 1 + n_1/3, \ldots$ and take $n_1 \to 0^+$

Output region vectors: $\mathbf{v}_1 = (0,0,0,0,1)$ $\mathbf{v}_2 = (-1, -1,0,0,1)$ $\mathbf{v}_3 = (0,0, -1, -1,1)$ $\mathbf{v}_4 = (-1,0,0, -1,1)$ $\mathbf{v}_5 = (0, -1, -1,0,1)$ **Result:** $s = 4.0, t = -2.82843, m_t^2 = 0.1, m_h^2 = 0$) $I = -1.30718 \pm 2.7 \cdot 10^{-6} + (1.85618 \pm 3.0 \cdot 10^{-6}) i$ $+ \mathcal{O}\left(\epsilon, n_1, \frac{m_t^2}{s}, \frac{m_t^2}{t}\right)$

Transform the expression for the full integral:

$$F = \int_{k \in D_{h}} Dk I + \int_{k \in D_{s}} Dk I = \sum_{i} \int_{k \in D_{h}} Dk T_{i}^{(h)} I + \sum_{j} \int_{k \in D_{s}} Dk T_{j}^{(s)} I$$

$$= \sum_{i} \left(\int_{k \in \mathbb{R}^{d}} Dk T_{i}^{(h)} I - \sum_{j} \int_{k \in D_{s}} Dk T_{j}^{(s)} T_{i}^{(h)} I \right) + \sum_{j} \left(\int_{k \in \mathbb{R}^{d}} Dk T_{j}^{(s)} I - \sum_{i} \int_{k \in D_{h}} Dk T_{i}^{(h)} T_{j}^{(s)} I \right)$$
The expansions commute:

$$T_{i}^{(h)} T_{j}^{(s)} I = T_{j}^{(s)} T_{i}^{(h)} I \equiv T_{i,j}^{(h,s)} I$$

$$\Rightarrow \text{ Identity: } F = \sum_{i} \int_{k \in D_{k}} Dk T_{i}^{(h)} I + \sum_{j} \int_{k \in D_{k}} Dk T_{j}^{(s)} I - \sum_{i,j} \int_{k \in D_{h}} Dk T_{i,j}^{(h,s)} I$$

$$= \sum_{i} \int_{k \in D_{k}} Dk T_{i}^{(h)} I + \sum_{j} \int_{k \in D_{k}} Dk T_{j}^{(s)} I - \sum_{i,j} \int_{k \in D_{k}} Dk T_{i,j}^{(h,s)} I$$

All terms are integrated over the whole integration domain \mathbb{R}^d as prescribed for the expansion by regions \Rightarrow location of boundary Λ between D_h, D_s is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

- a (multiple) integral $F = \int Dk I$ over the domain D (e.g. $D = \mathbb{R}^d$),
- a set of N regions $R = \{x_1, \ldots, x_N\}$,
- for each region $x \in R$ an expansion $T^{(x)} = \sum_j T_j^{(x)}$ which converges absolutely in the domain $D_x \subset D$.

Conditions

- $\bigcup_{x \in R} D_x = D$ $[D_x \cap D_{x'} = \emptyset \ \forall x \neq x'].$
- Some of the expansions commute with each other. Let $R_c = \{x_1, \ldots, x_{N_c}\}$ and $R_{nc} = \{x_{N_c+1}, \ldots, x_N\}$ with $1 \le N_c \le N$. Then: $T^{(x)}T^{(x')} = T^{(x')}T^{(x)} \equiv T^{(x,x')} \ \forall x \in R_c, \ x' \in R$.
- Every pair of non-commuting expansions is invariant under some expansion from R_c : $\forall x'_1, x'_2 \in R_{nc}, x'_1 \neq x'_2, \exists x \in R_c : T^{(x)}T^{(x'_2)}T^{(x'_1)} = T^{(x'_2)}T^{(x'_1)}$.
- ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
 → All expanded integrals and series expansions in the formalism are well-defined.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012
Model With MatrixBernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions35The general formalism (2)Under these conditions, the following identity holds: $[F^{(x,...)} \equiv \sum_{j,...} \int Dk T_{j,...}^{(x,...)} I]$ $F = \sum_{x \in R} F^{(x)} - \sum_{\{x'_1, x'_2\} \subset R} F^{(x'_1, x'_2)} + \ldots - (-1)^n \sum_{\{x'_1, \ldots, x'_n\} \subset R} F^{(x'_1, \ldots, x'_n)} + \ldots + (-1)^{N_c} \sum_{x' \in R_{nc}} F^{(x', x_1, \ldots, x_{N_c})}$

where the sums run over subsets $\{x'_1, \ldots\}$ containing at most one region from R_{nc} .

Comments

- This identity is exact when the expansions are summed to all orders. ✓
 Leading-order approximation for F → dropping higher-order terms.
- It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal masses/off-shellness, ...) as long as all individual terms are well-defined.
- Usually regions & regularization are chosen such that multiple expansions
 F^(x'_1,...,x'_n) (n ≥ 2) are scaleless and vanish.
 [✓ if each F^(x)₀ is a homogeneous function of the expansion parameter with unique scaling.]
- If $\exists F^{(x'_1, x'_2, ...)} \neq 0 \rightsquigarrow$ relevant overlap contributions (\rightarrow "zero-bin subtractions"). They appear e.g. when avoiding analytic regularization in SCET. Chiu, Fuhrer, Hoang, Kelley, Manohar '09; ...

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

Numerical Integration

Finite Integrals (example from $gg \rightarrow ZZ$)

	Finite	ϵ Order	Rel Err	Timing (s)
$\frac{4-2\epsilon}{\ldots}$	No	0	$2 \cdot 10^{-3}$	45
$\frac{4-2\epsilon}{2}$	No	0	$4 \cdot 10^{-2}$	63
$6-2\epsilon$	Yes	1	8 · 10 ⁻⁶	60
$6-2\epsilon$	Yes	1	$8 \cdot 10^{-4}$	55
Linear combination (numerator insertion)	Yes	1	$1 \cdot 10^{-4}$	18 pySecDec + QMC

Numerical Integration

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) \quad \approx \quad Q[f] = \frac{1}{N} \sum_{i=1}^N w_i \ f(\mathbf{x}_i)$$

Goal: select points to minimise integration error

$$\varepsilon \equiv |I[f] - Q[f]|$$

Monte Carlo:

Randomly select sampling points $\varepsilon \approx \operatorname{Var}[f]/\sqrt{N}, \quad \varepsilon \sim \mathcal{O}(N^{-1/2})$ Improves slowly with N

Quasi-Monte Carlo

Select points with low discrepancy D_N $\varepsilon \leq D_N \cdot \operatorname{Var}[f], \quad \varepsilon \sim \mathcal{O}(\log^d(N)/N)$ Poor performance for large d

Both methods implemented in Cuba Hahn 04; Hahn14

Quasi-Monte Carlo (Rank 1 Lattices)

Quasi-Monte Carlo (QMC) in a Weighted Function Space

First applications to loop integrals, see: $\varepsilon \leq e_{\gamma} \cdot ||f||_{\gamma}, \quad \varepsilon \sim \mathcal{O}(N^{-1})$ or better

Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18; de Doncker, Almulihi 17; Kato, de Doncker, Ishikawa, Yuasa 18

$$I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f], \quad Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \mathbf{\Delta}_k\right\}\right)$$

- z Generating vec.
- $oldsymbol{\Delta}_k$ Random shift vec.
- $\{\}$ Fractional part
- n # Lattice points
- $m\,$ # Random shifts

Unbiased error estimate computed using (10-50) random shifts

Weighted Function Spaces

Assign weights $\gamma_{\mathfrak{u}}$ to each subset of dimensions $\mathfrak{u} \subseteq \{1, \ldots, d\}$ Review: Dick, Kuo, Sloan 13

Sobolev Space

Functions with square integrable first derivatives

Korobov Space

Periodic functions which are α times differentiable in each variable

$$\begin{split} \text{Norm} \quad ||f||_{\gamma}^{2} &= \sum_{\mathfrak{u} \subseteq \{1, \dots, d\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[0,1]^{|\mathfrak{u}|}} \left(\int_{[0,1]^{d-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|} f(\mathfrak{x})}{\partial \mathfrak{x}_{\mathfrak{u}}} d\mathfrak{x}_{-\mathfrak{u}} \right)^{2} d\mathfrak{x}_{\mathfrak{u}} \\ \text{Worst-case} \\ \text{error} \quad e_{\gamma}^{2} &\leq \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^{2})^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \forall \lambda \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-1}) \end{split} \\ \mathbf{v}_{\lambda} \in \mathcal{O}(n^{-\alpha}) \end{split} \\ \mathbf{v}_{\lambda} = \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^{2})^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \mathbf{v}_{\lambda} \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \end{split} \\ \mathbf{v}_{\lambda} = \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} (2\zeta(2\alpha\lambda))^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \mathbf{v}_{\lambda} \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \end{split}$$

Generating vector z precomputed for a **fixed** number of lattice points, chosen to minimise the worst-case error, we use component-by-component (CBC) construction Nuyens 07

In our public code, we distribute lattice rules generated using product weights: $\gamma_{\mathfrak{u}} = \prod_{i \in \mathfrak{u}} \gamma_i, \ \gamma_i = 1/d$ produced for a Korobov space with $\alpha = 2$ 78

Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions Functions can be periodized by a suitable change of variables: $\mathbf{x} = \phi(\mathbf{u})$

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) = \int_{[0,1]^d} d\mathbf{u} \ \omega_d(\mathbf{u}) f(\phi(\mathbf{u}))$$

$$\phi(\mathbf{u}) = (\phi(u_1), \dots, \phi(u_d)), \quad \omega_d(\mathbf{u}) = \prod_{j=1}^d \omega(u_j) \quad \text{and} \quad \omega(u) = \phi'(u)$$

Korobov transform: $\omega(u) = 6u(1-u), \quad \phi(u) = 3u^2 - 2u^3$ Sidi transform: $\omega(u) = \pi/2 \sin(\pi u), \quad \phi(u) = 1/2(1 - \cos \pi t)$ Baker transform: $\phi(u) = 1 - |2u - 1|$

Scaling

qmc: Performance

Accuracy limited by number of function evaluations Can accelerate this using Graphics Processing Units (GPUs)

Note: Performance gain highly dependent on integrand & hardware! Still room for further optimisations (both for CPU and GPU)