

B-physics Anomalies: from Data to New Physics Models

Claudia Cornella

Institute for Physics Johannes Gutenberg University Mainz

With a few exceptions, flavor-changing observables agree with the SM.

▶ If NP has a generic flavor structure, flavor bounds force it to be very heavy: $\bar{K}K$, $\mu \rightarrow e\gamma... \Rightarrow \Lambda > 10^{4-5} \text{ TeV}$

With a few exceptions, flavor-changing observables agree with the SM.

- If NP has a generic flavor structure, flavor bounds force it to be very heavy: $\bar{K}K$, $\mu \to e\gamma... \Rightarrow \Lambda > 10^{4-5}$ TeV
- If we insist on TeV NP at the TeV scale, it must have a non-generic flavor structure.

With a few exceptions, flavor-changing observables agree with the SM.

• If NP has a generic flavor structure, flavor bounds force it to be very heavy: $\bar{K}K$, $\mu \to e\gamma... \Rightarrow \Lambda > 10^{4-5} \text{ TeV}$

 If we insist on TeV NP at the TeV scale, it must have a non-generic flavor structure.

e.g. Minimal Flavor Violation:

 $Y_{\rm SM}$ only source of flavor violation (up to $\Lambda \gg 1 {
m TeV}$)

- \rightarrow TeV-scale NP is flavor blind
- \rightarrow by construction little to no effects in flavor obs.

With a few exceptions, flavor-changing observables agree with the SM.

- If NP has a generic flavor structure, flavor bounds force it to be very heavy: $\bar{K}K$, $\mu \to e\gamma... \Rightarrow \Lambda > 10^{4-5} \text{ TeV}$
- If we insist on TeV NP at the TeV scale, it must have a non-generic flavor structure.
 - e.g. Minimal Flavor Violation:
 - $Y_{\rm SM}$ only source of flavor violation (up to $\Lambda \gg 1 {
 m TeV}$)
 - \rightarrow TeV-scale NP is flavor blind
 - \rightarrow by construction little to no effects in flavor obs.
- Now we have hints from flavor, the B anomalies. Taking them as genuine BSM signals, what do learn about the scale and flavor structure of New Physics?

Data

The B-physics anomalies

In the SM:

Gauge interactions are lepton-flavor universal. Lepton masses are the only source of non universality. $\Rightarrow \qquad \Gamma_e = \Gamma_\mu = \Gamma_\tau$ (up to kinematical effects)

The B-physics anomalies

In the SM:

they look all the same

Gauge interactions are lepton-flavor universal. Lepton masses are the only source of non universality.

h
h
$$l_{don't think sol}$$

 $m_e \neq m_\mu \neq m_2$
h

$$\Rightarrow \qquad \Gamma_e = \Gamma_\mu = \Gamma_\tau$$
(up to kinematical effects)

Hints of LFU violation in semi-leptonic B decays:

•
$$\mu$$
 vs e universality in $b \rightarrow sll$

$$R_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)} \mu \mu)}{\mathscr{B}(B \to K^{(*)} e e)} < R_{K^{(*)}}^{\mathrm{SM}}$$

+ angular obs. and rates in
$$b \rightarrow s \mu \mu$$

 $\sim 4 \sigma$

▶ τ vs μ ,e universality in $b \rightarrow c l \nu$

$$R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathscr{B}(B \to D^{(*)}\ell\bar{\nu})} > R_{D^{(*)}}^{\mathrm{SM}}$$

 $\sim 3 \sigma$

The $b \rightarrow sll$ anomalies

• discrepancy in $B \to K^* \mu \mu$ angular distribution

• deficit in
$$\mathscr{B}(B \to X_s \mu \mu) \ X_s = K, K^*, \phi$$

$$\mu/e \text{ LFUV in } B \to K^{(*)}ll$$

$$deficit \text{ in } \mathscr{B}(B_s \to \mu\mu)$$

$$\left\{ \begin{array}{c} \text{``clean''} \\ \mathscr{B}(B_s \to \mu\mu)_{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9} \\ (Beneke et al., 1908.07011] \end{array} \right\}$$

LHCb results on LFU ratios this year: $R_{K}^{[1]}$

 $R_{K}^{[1.1,6]}$ update (3.1 σ) [LHCb, 2103.11769] first results for $R_{K_{s}}$ and $R_{K^{*+}}$ [LHCb, 2110.09501]

Global significance for New Physics in $b \rightarrow sll \sim 4\sigma$ [Isidori, Lancierini, Owen, Serra, 2104.05631]

The $b \rightarrow c l \nu$ anomalies

- $\bullet~\sim 15\,\%$ enhancement due to excess in tau mode
- theoretically clean
- measurements by Babar, Belle, LHCb (so far R_{D^*} only) in good agreement
- 3.1σ tension (combined)

Lower significance, need experimental clarification.

NP interpretation (I): Effective Theory

EFT for $b \rightarrow sll$

$$\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} \sum_{i} C_i O_i \qquad O_9^{\mu} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \mu) \\ O_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \gamma_5 \mu) \\ O_{10}^{\mu} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \gamma_5 \mu) \\ \mathcal{L}_{0}^{\mu} = -\Delta C_{10}^{\mu} \qquad \Delta C_{9}^{\mu} \\ \mathcal{L}_{0}^{\mu} = -\Delta C_{10}^{\mu} \\ \mathcal{L}_{0}^{\mu} = -$$

 $m_{W,t,H}$ +

EFT for $b \rightarrow c \tau \nu$

$$\mathscr{L}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_i C_i O_i$$

$$O_{LL}^{i} = (\bar{u}_{L}^{i} \gamma_{\mu} \nu_{L})(\bar{\tau}_{L} \gamma^{\mu} b_{L}) \qquad C_{LL}^{SM} = 1$$

$$O_{LR}^{i} = (\bar{u}_{L}^{i} \gamma_{\mu} \nu_{L})(\bar{\tau}_{R} \gamma^{\mu} b_{R}) \qquad C_{LR}^{SM} = 0$$

- Ieft-handed NP (=Fermi interaction!)
- other structures also possible

Why both?

No obvious connection. Why combine both anomalies in a single NP framework?

$$b \to sll \qquad \qquad SU(2)_L \qquad b \to cl\nu$$

$$(\bar{s}_L \gamma^{\mu} b_L)(\bar{\mu}_L \gamma_{\mu} \mu_L) \qquad \Leftarrow \qquad (\bar{c}_L \gamma^{\mu} b_L)(\bar{\tau}_L \gamma_{\mu} \nu_L)$$

⇒ Minimal sol: left-handed NP in semi-leptonic operators (RH currents also possible)

$$\mathscr{L}_{\rm EFT}^{\rm NP} = -\frac{1}{v^2} \left(C_{lq}^{(3)} (\bar{l}_L \gamma^\mu \tau^a l_L) (\bar{q}_L \gamma^\mu \tau^a q_L) + C_{lq}^{(1)} (\bar{l}_L \gamma^\mu l_L) (\bar{q}_L \gamma^\mu q_L) \right) \approx -\frac{2}{v^2} C_{LL} \left(\bar{q}_L \gamma^\mu l_L \right) (\bar{l}_L \gamma_\mu q_L)$$
$$b \to s \nu \bar{\nu} \to C_{\ell q}^{(3)} \approx C_{\ell q}^{(1)} \equiv C_{LL}$$

Connection between anomalies:

$$R_{D^{(*)}} \Rightarrow b_L \rightarrow c_L \tau_L \nu_L \sim b_L \rightarrow s_L \tau_L \tau_L \Rightarrow \frac{b_L}{z_L} \xrightarrow{S_L}{z_L} \equiv \Delta C_9^U$$

 $U(2)^{5} = U(2)_{q} \times U(2)_{l} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}$ $\psi = (\underbrace{\psi_{1} \psi_{2}}) \psi_{3})$

Why both?

$$U(2)^{5} = U(2)_{q} \times U(2)_{l} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}$$

$$\psi = (\underbrace{\psi_{1} \psi_{2}}) \psi_{3})$$

SM masses & mixings, "flavored" alternative to MFV [Barbieri et al.,1105.3396]

$$Y = y_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
exact U(2)⁵
$$Y = y_3 \begin{bmatrix} \Delta & V \\ 0 & 1 \end{bmatrix}$$
minimally broken
U(2)⁵
$$|V_q| = \epsilon_q = \mathcal{O}(y_t | V_{ts} |) |\Delta_{u,d,e}| \sim y_{c,s,\mu}$$

 $U(2)^5 = U(2)_q \times U(2)_l \times U(2)_u \times U(2)_d \times U(2)_e$

 $\psi = ((\psi_1 \ \psi_2) \ \psi_3)$

exact U(2)5

SM masses & mixings, "flavored" alternative to MFV [Barbieri et al.,1105.3396]

 $Y = y_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $Y = y_3 \begin{vmatrix} \Delta & V \\ 0 & 1 \end{vmatrix}$

Same pattern? [Barbieri et al.,1512.01560]

NP coupled only to 3rd family

NP max for 3rd family, suppressed by $\epsilon_q(\epsilon_l)$ for each 2nd family quark (lepton)

 $|V_q| = \epsilon_q = \mathcal{O}(y_t | V_{ts}|) \quad |\Delta_{u,d,e}| \sim y_{c,s,\mu}$

minimally broken

U(2)⁵

EFT for combined explanations (LL + LR)

$$\mathscr{L}_{\rm EFT}^{\rm NP} = -\frac{2}{v^2} \left[C_{LL}^{ij\alpha\beta} \left(\bar{q}_L^i \gamma^\mu l_L^\alpha \right) (\bar{l}_L^\beta \gamma_\mu q_L^j) + \left(C_{LR}^{ij\alpha\beta} (\bar{q}_L^i \gamma_\mu \ell_L^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j) + {\rm h.c.} \right) + C_{RR}^{ij\alpha\beta} (\bar{d}_R^i \gamma_\mu e_R^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j) \right]$$

- LR helps saturating $R_{D^{(*)}}$ $\rightarrow \tau$ LFU and B_s - \bar{B}_s less stringent.
- Both chiralities enter $pp \rightarrow \tau \tau$ \rightarrow stronger high- p_T bounds.

NP interpretation (II): the U₁ simplified model

Which mediator?

Only leptoquarks (scalars & vectors) are viable tree-level mediators

 \checkmark no 4-lepton and 4-quark processes at tree level

✓ no resonant production in quark-quark initiated processes

- Three possibilities for a combined explanation:
 - $S_1 + S_3$ [Crivellin et al 1703.09226; Buttazzo et al. 1706.07808; Marzocca 1803.10972...]
 - $R_2 + S_3$ [Bečirević et al., 1806.05689]
 - $U_1 \sim (3, 1, 2/3)$ [di Luzio et al., 1708.08450; Calibbi et al., 1709.00692; Bordone, CC, et al. 1712.01368; Barbieri, Tesi 1712.06844; Heck, Teresi 1808.07492...]

 \checkmark no $b\to s\nu\bar{\nu}$ at tree level

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 ($\bar{3}, 3, 1/3$)	✓	×	×
S_1 (3 , 1 , 1/3)	×	✓	×
R_2 (3 , 2 , 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504]

The U_1 simplified model

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_\mu e_R^\alpha \right) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$$\beta^{L} = \begin{pmatrix} 0 & 0 & \beta_{d\tau}^{L} \\ 0 & \beta_{s\mu}^{L} & \beta_{s\tau}^{L} \\ 0 & \beta_{b\mu}^{L} & \beta_{b\tau}^{L} \end{pmatrix} \qquad \beta^{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{b\tau}^{R} \end{pmatrix} \qquad \beta^{L}_{b\tau} = 1$$

$$\beta^{R}_{b\tau} \sim \mathcal{O}(1)$$

$$\beta^{L}_{b\tau} \beta^{L}_{b\tau} \sim \mathcal{O}(1)$$

$$\beta^{L}_{s\tau}, \beta^{L}_{b\mu} \sim \mathcal{O}(0.1)$$

$$R_{K^{(*)}} \qquad R_{D^{(*)}} \qquad b \rightarrow s\tau\mu \text{ [tree]} \qquad \beta^{L}_{s\mu}, \beta^{L}_{d\tau} \sim \mathcal{O}(0.01)$$

Benchmarks: 1. $\beta_{b\tau}^{R} = 0$ 2. $|\beta_{b\tau}^{R}| = |\beta_{b\tau}^{L}| = 1$ [models with 3rd family quark-lepton unification]

✓ Good description of all low-energy data with U(2)-like flavor structure.

The U_1 simplified model

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_{\mu} \mathcal{C}_L^{\alpha} \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_{\mu} e_R^{\alpha} \right) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$$\beta^{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \tau \to \mu\gamma \text{ [loop]} \end{pmatrix} \beta^{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{b\tau}^{R} \end{pmatrix} \beta^{L}_{b\tau} \sim \mathcal{O}(1)$$

$$\beta^{L}_{s\tau}, \beta^{L}_{b\mu} \sim \mathcal{O}(0.1)$$

$$\beta^{L}_{s\mu}, \beta^{L}_{d\tau} \sim \mathcal{O}(0.01)$$

$$b \to s\tau\tau \text{ [tree]} \qquad \beta^{L}_{s\mu}, \beta^{L}_{d\tau} \sim \mathcal{O}(0.01)$$

Benchmarks: 1. $\beta_{b\tau}^{R} = 0$ 2. $|\beta_{b\tau}^{R}| = |\beta_{b\tau}^{L}| = 1$ [models with 3rd family quark-lepton unification]

✓ Good description of all low-energy data with U(2)-like flavor structure.

Low-energy predictions for the U_1

• large $b \rightarrow s \tau \tau$

• large τ/μ LFV in $b \rightarrow s\tau\mu$ and τ decays

5.0

0.0

1.0

1.5

2.0

2.5

3.0

 M_U [TeV]

3.5

4.0

4.5

5.0

4.5

4.0

High-pT bounds for the U_1

0.0

1.0

1.5

2.0

2.5

3.0

 M_U [TeV]

3.5

The same interaction can be probed in **di-tau tails**.

~Tel ~GeV Pb ح (**B**) \Rightarrow b $(+bb \rightarrow zz)$

NP interpretation (III): UV completing the U₁

UV-completing the U_1 : the gauge path

[Pati, Salam, Phys. Rev. D10 (1974) 275]

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

× flavor-blind U_1 mediates $K_L → μe \Rightarrow m_{U_1} \gtrsim 100 \text{ TeV}$

 \times *extra fermions can make the U_1 non-universal, not the Z'

 \times strongly coupled, universal Z' would be excessively produced at the LHC

UV-completing the U_1 : the gauge path

[Pati, Salam, Phys. Rev. D10 (1974) 275]

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

 \checkmark flavor-blind U_1 mediates $K_L \rightarrow \mu e \Rightarrow m_{U_1} \gtrsim 100 \,\text{TeV}$

 \times *extra fermions can make the U_1 non-universal, not the Z'

 \times strongly coupled, universal Z' would be excessively produced at the LHC

 $\mathcal{G}_{4321} = SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$ 4321/SM $\ni U_1, Z', G' \sim (8, 1, 0)$

✓ SU(4) decorrelated from $SU(3)_c$. High-pT problem solved for $g_4 \gg g_1, g_3$

✓ both Z' and U_1 can be flavor non-universal

[Georgi and Y. Nakai, 1606.05865; Diaz, Schmaltz, Zhong, 1706.05033; Di Luzio, Greljo, Nardecchia, 1708.08450]

Non-universality via mixing

[di Luzio, Greljo, Nardecchia, 1708.08450; di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner 1808.00942]

$$\mathcal{G}_{4321} = SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$$

Flavor-universal gauge interactions

- all SM families have SM-like charges under 321
- only vector-like fermions are charged under 4
- no direct NP couplings to SM fields.

- flavor structure of U_1 interactions for B anomalies generated via hierarchical choice of mixing angles
 - \rightarrow 3rd family has to be the "most composite"
- can have U_1 coupled only to left-handed SM fields
- Yukawa couplings as in the SM. No connection flavor anomalies & hierarchies.

	(i = 1, 2	,3	Ψ :	$=\begin{pmatrix} \mathcal{Q}\\ L \end{pmatrix}$	
	Field	SU(4)	SU(3)'	$SU(2)_L$	U(1)'	
ſ	$q_L^{\prime\imath}$	1	3	2	1/6	
	$u_R'^i$	1	3	1	2/3	SM fields
	$d_R'^i$	1	3	1	-1/3	all lamiles
	$\ell_L'^i$	1	1	2	-1/2	
	$e_R'^i$	1	1	1	-1	
ſ	Ψ^{\imath}_L	4	1	2	0	vectorlike
	Ψ^i_R	4	1	2	0	fermions
ſ	\overline{H}	1	1	2	1/2	
	Ω_3	$\overline{4}$	3	1	1/6	scalar
	Ω_1	$\overline{4}$	1	1	-1/2	sector

(0)

Non-universal gauge interactions

[Bordone, CC, Fuentes-Martin, Isidori 1712.01368, 1805.09328; Greljo, Stefanek, 1802.04274; CC, Fuentes-Martin, Isidori 1903.11517]

 $\mathscr{G}_{4321} = SU(4)_3 \times SU(3)'_{1+2} \times SU(2)_L \times U(1)$

- Flavor non-universal gauge interactions
- light SM families: SM-like charges under 321
- vectorlike fermions and 3rd SM family charged under 4
 - accidental $U(2)^5$ $\psi = (\psi_1 \psi_2) \psi_3$)
 - direct NP coupling to 3rd SM family (L+R)
 - TeV scale 3rd family quark-lepton unification

	Field	$SU(4)_3$	$SU(3)_{1+2}$	$SU(2)_L$	$U(1)_{Y'}$	SM fields
•••	יא q_L^i	1	3	2	1/6	
	u_R^i	1	3	1	2/3	
	d_R^i	1	3	1	-1/3	IST & 200
	ℓ_L^i	1	1	2	-1/2	lamiy
	$e_R^{\overline{i}}$	1	1	1	-1	
	ψ_L^3	4	1	2	0	Ord formily
	$\psi^3_{R_{u,d}}$	4	1	1	$\pm 1/2$	Sru larnily
	χ^i_L	4	1	2	0	vectorlike
	χ^i_R	4	1	2	0	fermions
	Н	1	1	2	1/2	
	Ω_1	$ar{4}$	1	1	-1/2	scalar
	Ω_3	$ar{4}$	3	1	1/6	sector
	Ω_{15}	15	1	1	0	

i = 1.2

Non-universal gauge interactions

[Bordone, CC, Fuentes-Martin, Isidori 1712.01368, 1805.09328; Greljo, Stefanek, 1802.04274; CC, Fuentes-Martin, Isidori 1903.11517]

 $\mathcal{G}_{4321} = SU(4)_3 \times SU(3)'_{1+2} \times SU(2)_L \times U(1)$

- Flavor non-universal gauge interactions
- light SM families: SM-like charges under 321
- vectorlike fermions and 3rd SM family charged under 4
 - accidental $U(2)^5$ $\psi = (\psi_1 \psi_2) \psi_3$)
 - direct NP coupling to 3rd SM family (L+R)
 - TeV scale 3rd family quark-lepton unification

• $U(2)^5$ broken by SM-vectorlike mixing

Leading breaking:

- U_1 couplings to light families for B anomalies
- 2-3 CKM mixing
- ✓ connection flavor anomalies & hierarchies!

*Mild 2-3 down alignment required to suppress G' and Z' contribution to B_s - \bar{B}_s

' 	Field	$SU(4)_3$	$SU(3)_{1+2}$	$SU(2)_L$	$U(1)_{Y'}$	SM fields
•••	$\cdot\cdot ightarrow q_L^i$	1	3	2	1/6	
	u_R^i	1	3	1	2/3	tot 0 Opd
	d_R^i	1	3	1	-1/3	ISL& ZNU
	ℓ^i_L	1	1	2	-1/2	larniy
	e_R^i	1	1	1	-1	
	ψ_L^3	4	1	2	0	2rd family
	$\psi^3_{R_{u,d}}$	4	1	1	$\pm 1/2$	Siu lainii
	χ^i_L	4	1	2	0	vectorlike
	χ^i_R	4	1	2	0	fermions
	Н	1	1	2	1/2	
	Ω_1	$\bar{4}$	1	1	-1/2	scalar
	Ω_3	$\overline{4}$	3	1	1/6	sector
	Ω_{15}	15	1	1	0	

Subleading breaking:

constrained by $K_L \rightarrow \mu e$, $K \cdot \overline{K}$ and $D \cdot \overline{D}$

i = 1.2

UV-sensitive low-energy observables

[Selimovic et al., 2009.11296] [CC, Fuentes et al., 2103.16558]

Coloron direct searches at the LHC

Relevant collider signatures for G'("coloron" = heavy color-octet vector)

G'-mediated $pp \rightarrow tt$ gives the strongest constraint on the overall scale of the model!

$$M_{G'} \sim \sqrt{2} M_{\rm LQ}$$

A three-scale picture

[Barbieri, 2103.15635, Bordone, CC, Fuentes, Isidori 1712.01368 Panico, Pomarol, 1603.06609 Dvali, Shiftman, '00, ...]

B anomalies might hint at a three-scale picture:

Non-universal Pati-Salam unification

PS³: 4D three-site model

warped compact extra dimension with multiple

5D construction

4-dimensional branes

[Bordone, CC, Fuentes, Isidori 1712.01368]

[Fuentes-Martin, Isidori, Pagès, Stefanek, 2012.10492] [Fuentes-Martin, Isidori, Lizana, Stefanek, Selimovic, in progress]

NP interpretation (IV): g-2 in 4321 models

[inspired by Ben Stefanek's Virtual Seminar @ Peking and Beijing Flavor Anomaly Seminar Series on June 17, 2021]

$$(g-2)_{\mu}$$
as New Physics

The discrepancy is roughly the same size as the SM electroweak contribution:

$$\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} \approx (a_{\mu}^{SM})_{EW} \approx \frac{m_{\mu}^2}{16\pi^2} \times \frac{4 G_F}{\sqrt{2}} \approx 3 \times 10^{-9}$$

$$\Delta a_{\mu}^{\rm NP} \approx \frac{g_{\rm NP}^2}{16\pi^2} \frac{m_{\mu}^2}{M_{\rm NP}^2} \implies M_{\rm NP} \sim v_{\rm EW}$$
$$\Delta a_{\mu}^{\rm NP} \approx \frac{g_{\rm NP}^2}{16\pi^2} \frac{m_{\mu}m_f}{M_{\rm NP}^2} \qquad \text{Chiral Enhancement}$$

$$\implies M_{\rm NP} \sim \sqrt{N_c} \begin{cases} 1 \text{ TeV} & m_f = m_b \\ 6 \text{ TeV} & m_f = m_t \end{cases}$$

 $(Max \sim 10 \text{ TeV})$

*Another option is light NP $M_{\rm NP} < v_{\rm EW}$ with small couplings.

$$(g - 2)_{\mu} \text{as New Physics}$$

$$\mathcal{L}_{\text{EFT}} \supset \frac{e}{16\pi^{2}} \frac{v}{\sqrt{2}} C_{\ell\ell'} \left(\bar{\ell}_{L} \sigma_{\mu\nu} \ell'_{R} F^{\mu\nu} \right) \xrightarrow{\langle H \rangle}_{\ell_{L}^{i}} \underbrace{\ell_{R}^{i}}_{\ell_{R}^{i}}$$

$$\ell = \ell': \text{Magnetic \& electric moments} \qquad \ell \neq \ell': \text{ cLFV, in particular } \ell \to \ell' \gamma$$

$$(g - 2)_{\mu} \longrightarrow \text{Re}(C_{\mu\mu}) \approx (4 - 7) \times 10^{-3} \text{ TeV}^{-2} \qquad \mu \to e\gamma \longrightarrow |C_{\mu e}| \leq 10^{-7} \text{ TeV}^{-2}$$

$$e\text{EDM} \longrightarrow \text{Im}(C_{ee}) \leq 10^{-10} \text{ TeV}^{-2} \qquad \tau \to \mu\gamma \longrightarrow |C_{\tau\mu}| \leq 2 \times 10^{-3} \text{ TeV}^{-2}$$

$$[\text{Calibbi, Lopez-Ibanez, Melis, Vives, 2104.03296]}$$

- $\implies \text{cLFV bounds require strong alignement} \quad C_{\mu e}/C_{\mu \mu} \lesssim 10^{-5}, \ C_{\tau \mu}/C_{\mu \mu} \lesssim 0.5$ much stronger than what naively expected from Yukawa-like flavor structure: $C_{\mu e}/C_{\mu \mu} \sim \sqrt{m_e/m_{\mu}} \approx 0.07, \ C_{\tau \mu}/C_{\mu \mu} \sim \sqrt{m_{\tau}/m_{\mu}} \approx 4$
- \implies Not easy to reconcile $(g-2)_{\mu}$ with both *B* anomalies.

U_1 for both anomalies and g-2?

We already know the U₁ leptoquark works for B-anomalies. What about for (g-2)? Need large U₁ coupling to μ_R , b_R :

But RH currents generate the scalar operator

$$\mathcal{O}_s \sim \frac{m_b}{m_\mu} V_{ts} \left(\bar{s}_L b_R \right) \left(\bar{\mu}_R \mu_L \right)$$

....would give too large a contribution to $B_s \rightarrow \mu^+ \mu^-!$

U_1 for both anomalies and g-2?

Try with vector-like fermions in the loop:

$$\begin{split} \chi_{L,R} &\sim (4,1,2,0)\,, \qquad \qquad \chi \supset \begin{pmatrix} Q \\ L \end{pmatrix} \quad \xi \supset \begin{pmatrix} D \\ E \end{pmatrix} \\ \xi_{L,R} &\sim (4,1,1,-1/2) \end{split}$$

VL mass contribution from Higgs: $\mathscr{L} \supset -\bar{\chi}_L y_H H \xi_R - \bar{\chi}_R \tilde{y}_H H \xi_L$

$$\Delta a_{\mu} \sim \frac{N_c}{4\pi^2} \frac{m_{\mu}m_t}{M_{LQ}^2} \frac{g_4^2}{2} y_H s_{\mu_L} s_{\mu_R} \sim 3 \times 10^{-9} \left(\frac{4 \text{ TeV}}{m_{LQ}}\right)^2 \left(\frac{s_{\mu_L}}{0.2}\right) \left(\frac{s_{\mu_R}}{0.05}\right) \left(\frac{y_H}{1}\right)$$

for $y_H, \tilde{y}_H \sim 1$, get full chiral enhancement!

U₁ for both anomalies and g-2?

Try with vector-like fermions in the loop:

$$\begin{split} \chi_{L,R} &\sim (4,1,2,0)\,, \qquad \qquad \chi \supset \begin{pmatrix} Q \\ L \end{pmatrix} \quad \xi \supset \begin{pmatrix} D \\ E \end{pmatrix} \\ \xi_{L,R} &\sim (4,1,1,-1/2) \end{split}$$

VL mass contribution from Higgs: $\mathscr{L} \supset -\bar{\chi}_L y_H H \xi_R - \bar{\chi}_R \tilde{y}_H H \xi_L$

$$\Delta a_{\mu} \sim \frac{N_c}{4\pi^2} \frac{m_{\mu}m_t}{M_{LQ}^2} \frac{g_4^2}{2} y_H s_{\mu_L} s_{\mu_R} \sim 3 \times 10^{-9} \left(\frac{4 \text{ TeV}}{m_{LQ}}\right)^2 \left(\frac{s_{\mu_L}}{0.2}\right) \left(\frac{s_{\mu_R}}{0.05}\right) \left(\frac{y_H}{1}\right)$$

$$\checkmark \text{ for } y_H, \tilde{y}_H \sim 1, \text{ get full chiral enhancement!}$$

SM chiral - VL mixing gives large tree-level correction to down-type Yukawas $y_{\mu} = y_{\mu}^{H} + \delta y_{\mu}^{\text{mix}} + \delta y_{\mu}^{\text{loop}} \sim 6 \times 10^{-4} \qquad \delta y_{\mu}^{\text{mix}} \sim y_{H} s_{\mu_{L}} s_{\mu_{R}} \sim 10^{-2}$ $\therefore \text{ no control for cLFV. Main problem is the expectation for } \tau \rightarrow \mu \gamma: \quad \frac{C_{\tau\mu}}{C_{\mu\mu}} \sim \frac{1}{s_{\mu_{L}}} \sim 5 \gg 0.5$

 \implies U₁ vector LQ as a single mediator fails.

A possible solution within universal 4321

Enlarge the scalar sector and add a softly broken Z_2 symmetry can work!

Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)_X$	Z_2	Flavor
q_L^i	1	3	2	1/6	+	3_{q}
u_R^i	1	3	1	2/3	+	$3_{oldsymbol{u}}$
d_R^i	1	3	1	-1/3	—	3_{d}
ℓ_L^{i}	1	1	2	-1/2	+	$3_{\boldsymbol{\ell}}$
$e_R^{\overline{i}}$	1	1	1	-1/2	—	$3_{\boldsymbol{\ell}}$
$\chi^i_{L,R}$	4	1	2	0	+	3_{ℓ}
$\xi^i_{L,R}$	4	1	1	-1/2	+	3_{ℓ}
H_{\parallel}	1	1	2	1/2	+	1
Ω_1^\pm	$\bar{4}$	1	1	-1/2	±	1
Ω_3^\pm	$\overline{4}$	3	1	1/6	±	1
Ω_{15}	15	1	1	0	+	1

[Fuentes-Martin, Greljo, Stefanek, Thomsen, in progress]

Conclusions and outlook

B anomalies could be the manifestation of a new interaction violating LFU. In the coming years, on-going experiments will have the final word about their nature!

- Taken together, they point to TeV-scale leptoquark(s) coupled dominantly to the 3rd family.
 - \rightarrow flavor non-universal gauge interactions?
 - \rightarrow multi-scale picture at the origin of flavor?

Explaining also the (g-2) is possible, but requires additional ingredients.

• Consistent picture, but present data in $b \rightarrow c\tau\nu$ require NP to be quite close: if $R_{D^{(*)}}$ stays, we NP effects must show up soon, at low and high energy. Need experimental corroboration to guide us.

