Real-time AI for sPHENIX and EIC

Jin Huang

Brookhaven National Lab

With focus on LDRD 19-028, 21-023, and collaborating work at CSI, IO and PO

Relativistic Heavy Ion Collider in 2023+

RHIC transition to the EIC

EIC: unique collider → unique real-time system challenges

	EIC	RHIC	LHC → HL-LHC	
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$	
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV	
Bunch spacing	10 ns	100 ns	25 ns	
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	
x-N cross section 50 µb		40 mb	80 mb	
Top collision rate	500 kHz	10 MHz	1-6 GHz	
dN _{ch} /dŋ in p+p/e+p 0.1-Few		~3 ~6		
Charged particle rate	4M <i>N</i> _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s	

• EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision rate

- But events are precious and have diverse topology \rightarrow hard to trigger on all process
- ▶ Background and systematic control is crucial → avoiding a trigger bias

Related streaming readout electronics

Associated test projects

Precision timing digitizer DRS4GIO (SBIR/LDRD)

MVTX RU, 200M ch INTT ROC, 400k ch

ALPIDE (ALICE/SPHENIX), FPHX (PHENIX)

Global Timing Module (NSLS II/sPHENIX) Receiving from RHIC RF low glitter clock source

TPC FEE, 160k ch BNL-712 / FELIX v2 x38 (ATLAS/sPHENIX) SAMPAv5 (ALICE/sPHENIX)

> FELIX Ref: <u>10.1109/tim.2019.2947972</u> Developed at BNL by Omega group!

Jin Huang <jihuang@bnl.gov>

Brookhaven

RFSoC Digitizer (LDRD)

High density multiplexer+ ADC

sPHENIX streaming DAQ for tracker

sPHENIX Streaming data flow

TPC data stream in sPHENIX triggered DAQ

Streaming readout status at sPHENIX

- All three sPHENIX tracking detector uses streaming readout
- Developed plan to take 10% streaming data for heavy flavor physics program commended by RHIC PAC.
- Data taking start in 2023!

RHIC PAC 2020 report

We commend sPHENIX for developing the continuous streaming readout option for the detector, which increases the amount of data that can be collected in Run-24 by orders of magnitude. In particular in the sector of open heavy flavor, this technique will give access to a set of qualitatively novel measurements that would otherwise not be accessible. Given the tight timeline for completing the RHIC physics program before construction of the EIC begins, this is a tremendous and highly welcome achievement.

Jin Huang <jihuang@bnl.gov>

Expanding the streaming data would given much better physics output

sPHENIX D⁰ trans. spin asymmetry, $A_N \rightarrow$ Gluon Sievers via tri-g cor.

- sPHENIX default to record 10% streaming data in tracker
- By increasing to 100% streaming data, we can significantly improve reach of D0 access to tri-gluon correlation
- However, 100% recording is significantly bump to data rate, >250Gbps (sPHENIX expect to log at ~100Gbps)
- Requires some real-time data reduction, opportunity for AI application
 - Lossy compression, focus of later this talk
 - Signal selection: seminar D.T. Yu Feb 1st

Jin Huang <jihuang@bnl.gov>

BNL Physics fifth joint meeting on AI/ML

Signal data rate -> DAQ strategy

- ▶ What we want to record: total collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
 - Assumption: sPHENIX data format, 100% noise, Less than sPHENIX peak disk rate. 10⁻⁴ comparing to LHC collision
- Therefore, we could choose to stream out all EIC collisions data
 - In addition, DAQ may need to filter out excessive beam background and electronics noise, if they become dominant.
- Very different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)

Strategy for an EIC real-time system

EIC streaming DAQ

- → Triggerless readout front-end (buffer length : µs)
- → DAQ interface to commodity computing (FELIX as the candidate in all EIC proposals)
 - Background filter if excessive background rate
- → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
- → Online monitoring and calibration (latency : minutes)
- → Final Collision event tagging in offline production (latency : days+)
- An essential job of EIC real-time computing: reliable streaming data reduction to fit permanent storage

Ref: EIC-CDR

Physics driven need for Real-time AI applications for sPHENIX and EIC

- Both RHIC and EIC has much lower collision signal data rate comparing to LHC
 - But background is important and can be dominating
 - We DO NOT want to drop any event for systematic uncertainty control and broader physics interests
- Opportunities for Real-time AI, e.g.
 - Lossy compression of data, noise filtering (LDRD 19-028)
 - Feature extraction: Energy time extraction from ADC time-series (LDRD 21-023, NPPS)
 - Feature extraction: tracking, vertexing, HF signal selection (sPHENIX ML Open Data [<u>GitHub</u>]→SBIRs→sPHENIX demo. See seminar Feb 1st D.T. Yu [<u>link</u>])

Lossy compression and noise filtering

Team members, supported under LDRD 19-028

- Yi Huang (CSI)
- Thomas Marshall (UCLA)
- Yihui Ren (CSI)
- Shinjae Yoo (CSI)
- Jin Huang (PO)

Reference:

- arXiv: 2111.05423, in print
- Yi Huang, IEEE ICMLA2021, AI4EIC, Streaming Readout VIII

Online computing for streaming data - compression

- Lossless compression
 - Compress by ~1/2
 - Well established fast compression algorithm
- Lossy compression
 - Opportunity for unsupervised machine learning based on data
 - This work: Bicephalous Convolutional Neural Encoder for compressing zerosuppressed data and noise filtering

Lossy compression of data, noise filtering

 Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction

Simple auto-encode neural network

Lossy compression of data, noise filtering

- Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction
- Same network architecture can be adopted with supervised learning to filter out noise: further data reduction, speed up reconstruction
- We are not alone in this research: see also in CMS HGCal ASIC, CLAS12 tracker offline reco.

Laboratory

CLAS12 Drift Chamber offline AE de-noise [link]

Data of time projection tracker at sPHENIX

Bicephalous Convolutional Auto-Encoder (BCAE) and input transform [arXiv:2111.05423]

- Input transform: fill in the zero-suppression gap and make ADC distribution much less steep
- Bicephalous decoder: +classification decoder to note the zero-suppressed ADC bins (unsupervised training) and +noise bins (supervised training)

Results from Bicephalous AE with transform [arXiv:2111.05423]

Brookhaven^{*} National Laboratory

Jin Huang <jihuang@bnl.gov>

Results from Bicephalous AE with transform [arXiv:2111.05423]

Brookhaven National Laboratory

Jin Huang <jihuang@bnl.gov>

Comparison with existing algorithm [arXiv:2111.05423]

Brookhaven⁻ National Laboratory

Compressibility check: thanks to suggestion from Brett!

The lossy-compressed code is hardly compressible further losslessly

On-going research

- Supervised learning for noise filtering [on-going work by Thomas Marshall (UCLA), Yi Huang(CSI)]
- Throughput demonstration and optimizations on GPU servers (A6000, DGX-2 and DGX-A100)
- Downstream integration and performance/bias evaluation with physics observables, e.g. D0->piK
- Test resilience with TPC distortion, event background, and 2023 real data
- Exploring AI-optimized hardware: e.g. Intelligence Processing Unit (IPUs)

sPHENIX MDC2 data, TPC R3-single sector, pp->D(piK) +X \sqrt{s} =200 GeV with 3MHz pile up

Team members, supported under LDRD 21-023

- Sandeep Miryala (IO)
- Sandeep Mittal (CSI)
- Gabriella Carini (IO)
- Grzegorz Deptuch (FNAL)
- Sioan Zohar (IO)
- Jack Fried (IO)
- Shinjae Yoo (CSI)
- Jin Huang (PO)

Reference:

- Sandeep Miryala, CPAD21, 22nd iWoRiD
- JINST, in press

Also work by

- Maxim Potekhin (NPPS)
- Tim Rinn (sPHENIX)

ADC time series, and reduction based on feature building SPHENIX calorimeter test beam data:

- Both sPHENIX and EIC calorimeter will be digitized continuously with FADCs
- An efficient way of storing the information is feature of pulse: amplitude and time of arrival, shape information
- Application of regression with MLP/CNN

- 2016 data: <u>10.1109/TNS.2018.2879047</u>
- 2018 data: <u>10.1109/TNS.2020.3034643</u>

ADC data and fit

Brookhaven National Laboratory

LGAD signal sample [LDRD 21-023, JINST in press]

Current focus: Deep dive into NN regression for LGAD tracker-TOF data

Brookhaven National Laboratory

Network selection

[LDRD 21-023, JINST in press]

- ▶ 18 sample at 2GHz,
- 16 bit input /output
- Tested MLP and CNN

Various sizes

Brookhaven

Laborator

5-FC layer 18x8, (8x8)^3, (8x1)

(a) Model Configurations of MLP

	MLP	Config.	# Param.
	Tiny (T)	8-8-8-8	377
	Small (S)	16-16-16-16	1137
	Medium (M)	32-32-32-32	3809
-	Large (L)	52-52-52-52	9309

• 3-Conv1D + 2-FC layer

(b) Model Configurations of CNN

CNN	Config.	# Param.
Tiny (T)	2-2-2-16	453
Small (S)	3-3-3-32	1289
Medium (M)	5-5-5-64	4149
Large (L)	6-6-6-128	9725

Network pruning

[LDRD 21-023, JINST in press]

Pruning + Variable Bit Quantization-aware Training

Highly pruned (sparsity=0.75) CNN with 8bit internal precision appears strike good performance (smaller error) and small model size

On sPHENIX test beam data

- Study by Maxim Potekhin, data from Tim Rinn
- sPHENIX Test beam data
- MLP in Tensor flow

Brookhaven

Laborator\

 Orders of magnitude speed up comparing to current iterative fit algorithm

Maxim Potekhin [sPHENIX software meeting, Jan 18, 2022]

Possible sPHENIX and EIC applications

- Improving calorimetric trigger energy threshold reconstruction (require FPGA application)
- Preserve tower energy for below-threshold towers for jet background estimation
- Realtime data reduction via wavelet feature extraction for calorimeter, LGAD, PID detectors
- Fast online tower energy reconstruction for monitoring and abnormally detection
- Fast offline reconstruction

Summary

- Unique real time challenge at RHIC and EIC calls for AI applications
 - Both RHIC and EIC has much lower collision signal data rate comparing to LHC
 - But background is important and can be dominating
 - We DO NOT want to drop any event for systematic uncertainty control and physics interests
 - Key research is reducing data sufficiently in real time to fit into storage, where AI comes in
- Selected opportunities for Real-time AI highlighted here
 - Lossy compression of data, noise filtering (LDRD 19-028)
 - Feature extraction: Energy time extraction from ADC time-series (LDRD 21-023, NPPS)
 - Feature extraction: tracking, vertexing, HF signal selection (Seminar Feb 1st D.T. Yu)
- Still in exploration stages but aim to have a deployment at sPHENIX with unique physics capability gain. Your inputs welcomed

Remix credit: Dave Morrison

Extra information

Jin Huang <jihuang@bnl.gov>

Online computing for streaming data – trigger throttling

- At the beginning of the EIC operation, background & noise rate could be unpredictable and high
- A contingency method: throttling streaming data with triggering
 - Immediately reduce streaming data by orders of magnitudes
 - Widely used hardware producing trigger, fix latency or HLT (Aaji's talk)
 - Has physics loss, added systematic uncertainty for hardware trigger efficiency
- Can utilize ML to produce more complex triggering on FPGA
 - PID trigger, e.g. ref: S. Furletov @ streaming workshop VIII [link]
 - Tracking-event topology trigger: D. Yu @ AI4EIC workshop [link]

Real-time computing for streaming data pipeline

- Despite low signal rate, the raw data rate can be filled with noises and background
 - Need low background & low noise detector & electronics design
- An essential job of EIC real-time computing: reliable streaming data reduction to fit permanent storage (next topics)
- And more traditional roles for online/offline server farm:
 - Online monitoring/fault det.
 - Calibration
 - Production \rightarrow Initial analysis pass

Blured boundary with offline computing

Countesy: David Lawrence ECCE computing model [link]

See also: last talk M. Battaglieri

EIC DAQ in Fun4All-EIC simulation

Refs: EIC CDR, sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/

Beam gas event p + p(gas), 275 GeV/c at z=-4 m

e+p DIS 18+275 GeV/c Q² ~ 100 (GeV/c)²

Brookhaven[®] National Laboratory

SRO-Mode1-Simple [Recommended]

Simply prolong L1-Acceptance signal to each subsystem, from 1 BCO to T_{SRO} ~67 beam crossings (~7us or 10% SRO data)

 \rightarrow x500 increase of hard-to-trigger p+p sample

→ at cost only 50% increase in data vol. (by piggy back on long TPC readout window of 13us)

sPHENIX magnet installation RHIC IP8 Hall, Oct 7, 2021

Í

88

000

EIC x-sec : further quantification [Courtesy E. Aschenauer]

- Inelastic e+p scattering x-sec:
 - For a luminosity of 10³⁴ cm⁻²s⁻¹
 50ub corresponds to 500 kHz
- Elastic e+p cross-section:
 - For EIC central barrel, elastic cross section is small comparing to the inclusive QCD processes
- Beam gas interaction:
 - Beam proton beam gas fix target inelastic interactions. The pp elastic cross section is smaller (~7 mb)
 - For a vacuum of 10⁻⁹ mbar in the detector volume (10m) this gives

Bea	am [GeV]	HERA	5 x 50	10 x 100	18 x 275
Q ² >	>10 ⁻⁹ GeV	65.6	29.9	41.4	54.3 ub
Q	² >1 GeV	1.29	0.45	0.65	0.94 ub
Bear	n [GeV]	HERA	5 x 50	10 x 100	18 x 275
σ [γ	Exp >-4]	5 pb	5 ub	0.7 ub	0.06 ub
σ [γ	_{Exp} >-6]	11 ub	420 ub	100 ub	29 ub
E _p :	50 Ge\ 38.4 m	/ 10 b 38	0 GeV .4 mb	275 GeV 39.4 mb	920 GeV 41.8 mb

Results I: AE v.s. Bicephalous AE

Compression ratio is 1:27 (1:3 for SAMPA ASIC for this busiest event)

∽**4**7 (~

Result III. Ablation Study

