
 Fang-Ying Tsai

 28 January 2022, NPPS meeting

Project Participants for the VH(bb) analysis and Google-
ATLAS R&D
John Hobbs, Giacinto Piacquadio,
Torre Wenaus, Alexei Klimentov

Application of the DSNN for the VHbb analysis
and tactics to combat computing challenges

 2

• 3 channels in the VHbb studies:
0 lepton (Z→vv), 1 lepton (W→lv), 2
leptons(Z→ll) where l = e, μ
• Backgrounds: ttbar, V+jets,

multijets, single top, Diboson.

Outline

• We aim to have a generic classification for VH(bb) as well as VH(cc)
analyses in both boosted and resolved regimes.

 → generate a mapping function between two MC configurations
 that is independent of the reconstruction scheme.

 → We will use two dense neural networks in TensorFlow’s Keras to
 solve the classification problem inclusively (without b-tagging).

• Computing Challenges.

• The DSNN architecture (ref.)

Obj1_feat_MCa φ1

φ2

φM

NN mapping
per object

representations pooling operation, Σ

r

the latent representation in
the *PFN architecture
(*includes pdgID)

nonlinear transformation, F

prediction at MCa:
Probability of being MCa and MCb

(event by event)

NN mapping to a mean
and variance of the MCb

 3

objs input features= (pT, η,φ,m)

Obj1_feat_MCb

Obj2_feat_MCa Obj2_feat_MCb

ObjM_feat_MCb ObjM_feat_MCb

.

.

.

.

.

.

.

.

.
dense layers
(100,100,80)

dense layers
(100,100,100)

O(p1,...,pM)= F(⌃M
i=1�(pi))

Deep Set Neural Network

encoder

• Encoder 𝚽(pi): embed datasets into an appropriate vector space.
 → The approximate function will accept this input sets, which have no order.
 → The algorithm must operate on representations of sets to be invariant to
 their ordering (ref).

• Decoder F: maps the latent representation to a mean and variance for the
predictive distribution.

• Vectors can be benefit from performing operations in parallel. (GPUs are
 needed!)

https://pkomiske.com/publication/efns/
https://gordonjo.github.io/post/deepsets_nps/

• The DSNN architecture (ref.)

Obj1_feat_MCa φ1

φ2

φM

NN mapping
per object

representations

r

nonlinear transformation, F

NN mapping to a mean
and variance of the MCb

 4

objs input features= (pT, η,φ,m)

Obj1_feat_MCb

Obj2_feat_MCa Obj2_feat_MCb

ObjM_feat_MCb ObjM_feat_MCb

.

.

.

.

.

.

.

.

.
dense layers
(100,100,80)

dense layers
(100,100,100)

O(p1,...,pM)= F(⌃M
i=1�(pi))

• Computing challenges in the DSNN:
• High RAM and CPU usage.

 → To make MCa+d+e Numpy arrays from the CxAOD samples requires
 >250 GB memory!

• Time consuming in data preprocessing and the NN training.
 → To get a trained model usually takes 5-6 hours with the full Sherpa and
 MGPy8 datasets.

Deep Set Neural Network

the latent representation in
the *PFN architecture
(*includes pdgID)

prediction at MCa:
Probability of being MCa and MCb

(event by event)

pooling operation, Σ

https://pkomiske.com/publication/efns/

Step 1

Data
Preparation

Step 2

DSNN Alg.

Step 3

Prediction &
Performance

 6

Sherpa (events) MGPy8 (events) Time for getting numpy arrays MaxRSS
MCa 25053101 7570460 02:32:43 27 GB
MCd 30415633 9017054 02:54:44 139 GB
MCe 40936533 11854840 05:06:13 186 GB
Total 96,405,267 28,442,354 x >250 GB

• Store 4-vector sets of interested objects
that pass certain criteria from CxAOD.

• Convert information from CxAOD to
Numpy arrays in a PFN tensor format:
(events(N) x objects(6) x features(5))
dimension.

MC = [[[Pt_ele1,Eta_ele1,Phi1_ele1, M1_ele1, pdgID_ele1],[Pt1_ μ1,Eta_μ1,Phi_μ1, M_μ1, pdgID_μ1],…,
[Pt_met1,Eta_met1,Phi_met1, M_met1, pdgID_met1]

.

.

. 
[[Pt_eleN,Eta_eleN,Phi1_eleN, M1_eleN, pdgID_eleN],[Pt1_ μN,Eta_μN,Phi_μN, M_μN, pdgID_μN]…,

[Pt_metN,Eta_metN,Phi_metN, M_metN, pdgID_metN]
 EventWeight = [Weight1, Weight2,….. WeightN]

• It’s not possible to run all pileup campaigns together, so we must run them
3 times separately to get Numpy first.

Data Preprocessing

 7

• The feature scaling technique: Normalization.

X 0 =
x� xmin

xmax � xmin

• Reasons for scaling:
 - To prevent one significant number from playing a decisive role because
 of the magnitude (at pooling operation stage).
 - To get faster neural network gradient descent converge.

b1_pT

linear scaling

Data Scaling

b1_pT

⭐ Remove outliers; e.g. pT > 3000 GeV

Sherpa

leading jet_pT
⭐ Rescale the Sherpa and MGPy8 by the max and min features of the

Sherpa + MGPy8.

Outliers Matter
• Machine learning algorithms are sensitive to the range and distribution of attribute

values. Data outliers can spoil and mislead the training process resulting in longer
training times, less accurate models and ultimately poorer results. (ref)

• To remove or not to remove?
 - Normalized scaling is sensitive to outliers.
 - Removing > 3TeV jets for now is acceptable for a comparison of methods.

 8

https://datascience.foundation/sciencewhitepaper/knowing-all-about-outliers-in-machine-learning

 9

• A training dataset: feed into the model so that the NN can learn.
• A testing dataset: use to evaluate the model.

 - test the model on data that we have never used/seen.
• The NN learns in a supervised way.

- Both training and testing datasets are assigned categorical labels
[0,1] and [1,0] representing Sherpa and MGPy8.

 → One-hot encoded doesn’t have any ranking for category values.
 → Easy to determine a prior probability.

Train & Test

MCb+[1,0], MCa+[0,1], MCa+[0,1]…

Dataset

MCa+[0,1], MCb+[1,0]

MCa+[0,1], MCb+[1,0], MCa+[0,1]…

Train Model Evaluate Model

Categorical labels

50% training, (shuffle) 50% testing, (shuffle)

Step 1

Data
Preparation

Step 2

DSNN Alg.

Step 3

Prediction &
Performance

 11

Categorical Cross Entropy

batch_size = 5000 batch_size = 50000

❌

• Hyper-parameters: nodes, layers, batch_size… etc.
• Changing batch_size = 50000 (to make sure the model can walk

through enough data before updating its parameters.)
• Unrepresentative training dataset:

• The gap between two learning curves was reduced through adding
more datasets to mini batches.

• Despite adding more datasets in (have tried batch_size=100000), the
NN is not able to capture characteristics on training dataset well.

 12

Categorical Cross Entropy

the 76th got the minimal loss

batch_size = 50000 +
learning rate

• Optimizer: Adam
• Get an updated learning rate!

>>> # This function keeps the initial learning
rate for the first 2 epochs and decreases it
exponentially after that. (ref)

a generalization gap, good fit!

https://keras.io/api/callbacks/learning_rate_scheduler/

Probability
• The final NN layer returns the raw values for

the predictions (= logits).
• Softmax is used as a default recommended

activation function.
 - Funcsoftmax (logits) => Probability for
 each class.

fig. source here
Common DSNN architectures options, here.

 13

(MGPy8)
(Sherpa)

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://energyflow.network/docs/archs/

Categorical Accuracy

 14

• The final NN layer returns the raw values for
the predictions (= logits).

• Softmax is used as a default recommended
activation function.

 - Funcsoftmax (logits) => Probability for
 each class.

 source code, here.
• Bad model can possibly end up with high

accuracy.

fig. source here
Common DSNN architectures options, here.

Made by the 76th model. The
fluctuations wear out in the end!

YTrue =

2

4
[0, 1]
[0, 1]
[1, 0]

3

5 argmax()
YTrue = [1, 1, 0]

YPred =

2

4
[0.45, 0.55]
[0.65, 0.35]
[0.53, 0.47]

3

5 YPred = [1, 0, 0]
argmax()

https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/keras/metrics.py#L727-L775
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax
https://energyflow.network/docs/archs/

 15

ROC

the MCa are classified correctly
the MCb are classified correctly

Interpretation of area
under the curve(AUC)
AUC > 0.5: the classifier
is able to detect a higher
number of TP and TN
than FP and FN.

• The ROC was made by the 76th model.

(FP)

(TP)

True Class
Sherpa MGPy8

Predicted
Class

sherpa TP FP
MGPy8 FN TN

 16

Features Performance

electron pT muon pT

leading jet pT sub-leading jet pT 3rd jet pT

MET

• Sherpa * NN Weight → MGPy8.
• NN Weight = Prob(MGPy8)/Prob(Sherpa). MCa= Sherpa; MCb=MGPy8

 17

Observables Performance
• Use spectator (mass(j,j), ptV, dR(j,j)…) variables stored in the ntuples * NN

Weights. (50% of the Sherpa+MGPy8 samples on testing.)

m(jet,jet) dR(jet,jet)

ptV

Computing tactics

 18

• Speeding up data pre-processing using DASK on GCP.
 - The parallel data processing can be done in 5-6 mins (the final amount of
 memory occupied ~ 47.4GB), while the standard data processing takes at
 least 40 mins.

• Speeding up hyper parameter tuning using Ray APIs on NERSC computing
facilities.

 - I asked for 4 nodes, 32 tasks, and 32 GPUs to test the parallel training
 with full Sherpa+MGPy8 datasets. To scan 4 combination of hyper-
 parameters, the job was done in 54.7 mins using Ray clusters, while w/o
 distributed computing, the same size of inputs was done in 87.8 mins.
 - Failed to use DASK to train TF with larger datasets in parallel on
 GCP.

• Distributed tasks using a user container through ATLAS PanDA, prun.
prun - - containerImage docker://sjiggins/tensorflow-gpu-dsnnr:v1 \
--exec="./myDSNNr_run.sh '%IN' '%IN2'"\
--inDS user.sjiggins.mc15_13TeV.410470.PhPy8EG_A14_ttbar_hdamp258p75_nonallhad.evgen.EVNT.e6337.VHbb_DSNNr_ttbar-v3_1_Lep\
--secondaryDSs IN2:1:user.sjiggins.mc15_13TeV.410464.aMcAtNloPy8EvtGen_ttbar_noShWe_SingleLep.evgen.EVNT.e6762.VHbb_DSNNr_ttbar-v3_1_Lep\
--excludeFile data \
--site=GOOGLE100 \
--destSE=GOOGLE_EU\
--nFiles 1\
--outDS user.fatsai.DSNNr_output\
--outputs “GoogleCloudJob/“

https://dask.org/
https://docs.ray.io/en/latest/cluster/index.html
docker://sjiggins/tensorflow-gpu-dsnnr:v1

Conclusions & Plans

 19

Conclusions:
• Good performance for classifying the inclusive events using the DSNN.
• Perhaps can do a probability calibration and see how much is improved.
• Optimize hyper-parameters could probably help get better performance.

Plans:
• Compare it with the BDT technique. (Work in progress!)

 The BDT training on the same sample is ready
 (Thanks to Ilaria), and next step will be making a
 comparison.

• Working on the GCP stuff (maybe) after the LLWI2022
 in Feb.

Computing needs:
• I will appreciate if I can convert three pile-up profile MCs from CxAOD to

Numpy arrays in one go.
• Train the NN in parallel (DASK? Ray… others?).

BDT:
3-jets events

Backups

 21

Data Scaling

⭐ Remove outliers; e.g. pT > 3000 GeV 

⭐ Rescale the MCa by the max and min
features of the MCa, and rescale the MCb
by the max and min features of the MCb.

b1_pT

Sherpa

Sherpa

b1_pT

b2_pT

pT[pT1,pT2,pT3,pT4…]
φ[φ1,φ2,φ3,φ4…]

M[M1,M2,M3,M4…]
η[η1,η2,η3,η4…]

PdgID[Obj1,Obj2,Obj3,Obj4…]

pT[pT1,pT2,pT3,pT4…]
φ[φ1,φ2,φ3,φ4…]

M[M1,M2,M3,M4…]
η[η1,η2,η3,η4…]

PdgID[Obj1,Obj2,Obj3,Obj4…]

MCa

MCb

MCa = [[[Pt1_1,Eta1_1,Phi1_1, M1_1, obj1_1],
[Pt1_2,Eta1_2,Phi1_2, M1_2, obj1_2]…,
[Pt1_m,Eta1_m,Phi1_m, M1_m, obj1_m]]
.
.
. 
[Ptn_1,Etan_1,Phin_1, Mn_1, objn_1]…

MCb = [[[Pt1_1,Eta1_1,Phi1_1, M1_1, obj1_1],
[Pt1_2,Eta1_2,Phi1_2, M1_2, obj1_2]…,
[Pt1_m,Eta1_m,Phi1_m, M1_m, obj1_m]]
.
.
. 
[Ptn_1,Etan_1,Phin_1, Mn_1, objn_1]…

worker

worker

...
worker

...

worker

worker

...
...

...

...

client.scatter dask.delayed dask.compute

dask.computedask.delayedclient.scatter

150
chunks

150
chunks

worker
 22

Numpy array in
(events(n), objects(m), features(5)) dim

Parallel programming in data preprocessing

#(events, object, features):
(1589590, 45, 5)
(2725439, 45, 5)
CPU times: user 2min 39s, sys: 11.8 s, total: 2min 51s
Wall time: 3min 34s

→ The parallel data processing can be done in 5-6 mins (the
final amount of memory occupied ~ 47.4GB), while the
standard data processing takes at least 40 mins (+memory
usage is limited).

preprocess_data → Features scaling took only
about 39+23 seconds.

→ 150 Workers

 23

Computing performance in data preprocessing

BCE vs CCE

- source: the BCE
and CCE are

equivalent in the
2 classes case.

 24

https://ai.stackexchange.com/questions/26849/is-it-appropriate-to-use-a-softmax-activation-with-a-categorical-crossentropy-lo

.

.

.

 25

Training from epoch to epoch

It took so long because the system’s error is high due to random weights at the beginning.

