A short reference of Cherenkov photon implementation in GEANT4 and ATHENA dRICH / pfRICH

Materials

- Given the refractive index parameterization as a function of wavelength $n(\lambda)$ GEANT4 predicts absolute Cherenkov photon yield

$$
\frac{d^{2} N}{d x d \lambda}=\frac{2 \pi \alpha z^{2}}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n^{2}(\lambda)}\right)
$$

- Optical photons are produced in a proper polarization state

	GEANT4	aerogel	$\mathrm{C}_{2} \mathrm{~F}_{6}$	$\mathrm{C}_{4} \mathrm{~F}_{10}$	
$n(\lambda)$	+	+	+	+	\longrightarrow generation \& refraction
Rayleigh scattering	+	+			propagation through the optical materials of the
Absorption	+	+	+	+	experimental setup
Mie Scattering	+				

- ATHENA dRICH / pfRICH parameterizations are taken from existing experimental data, when possible

Surfaces

- GEANT4 automatically performs photon propagation, provided user described material properties and boundaries (sane defaults exist):
- reflection (diffuse or specular) \& refraction
- dielectric-dielectric or dielectric-metal interface
- surface roughness

> For now ATHENA dRICH / pfRICH implementation is more or less "ideal" except for dRICH mirror reflectivity is taken to be 90% in the appropriate wavelength range

Sensors \& other stuff

- Here we are on our own:

- GEANT4 part ends with (optional) description of sensor material composition (e.g. optical resin + silicon in case of the SiPMs) -> not implemented for dRICH / pfRICH yet
- Reflection at normal incidence must be taken into account in manufacturer PDE specs
- Angular variation vs photon polarization state in actually pretty weak for our typical angles of incidence (and does not necessarily match the actual sensor performance)
- Package(s) like G4SiPM exist, but can not be interfaced to ATHENA environment easily
- Geometric efficiency (sensor dead area accounting) we perform by hand
- Manufacturer PDE is typically given based on the measured photocathode current
- Does not include collection efficiency -> we apply 70% safety factor, but it may not be enough
- Detected wavelength spectrum is a convolution of $\mathrm{dN} / \mathrm{d} \lambda$, absorption \& PDE

