
Announcement: State of Software Survey

The EICUG Software Working Group (SWG) is repeating its “State of Software” survey from 2021 [1, 2].

In its updated survey, the SWG is collecting information on the community’s specific software tools and practices
during the call for detector collaboration proposals. Everyone who has been involved in the simulation efforts for the
proposals or the related physics and detector studies is invited to participate in the survey:

https://www.surveymonkey.com/r/EICUG-SWG-StateOfSoftware-2022

The “State of Software” survey should take at most five minutes to complete and will close on February 13.

Thank you very much for your support,

Wouter Deconinck, Markus Diefenthaler, Sylvester Joosten, and Kolja Kauder on behalf of the SWG.

[1] https://eic.github.io/activities/ucd.html

[2] https://indico.jlab.org/event/420/#16-eic-user-survey-and-focus-g

1

https://www.surveymonkey.com/r/EICUG-SWG-StateOfSoftware-2022
https://eic.github.io/activities/ucd.html
https://indico.jlab.org/event/420/#16-eic-user-survey-and-focus-g

Software & Computing
Lessons and next steps

Wednesday 2022-02-03

The Software and Computing WG Conveners:
Andrea Bressan (University of Trieste and INFN) ,
Dmitry Romanov (Jefferson lab) ,
Sylvester Joosten (Argonne National Laboratory) ,
Whitney Armstrong (Argonne National Laboratory) ,
Wouter Deconinck (The University of Manitoba)

2

Philosophy: Let’s prepare for our future at the EIC!

● Build forward-looking team of developers to
ensure the long-term success of the EIC
scientific program in software & computing.

● Focus on modern scientific computing practices
○ Strong emphasis on modular orthogonal tools.
○ Integration with HTC/HPC, CI workflows, and

enable use of data-science toolkits.
● Avoid “not-invented-here” syndrome, and instead

leverage cutting-edge CERN-supported software
components where possible.
○ Build on top of mature, well-supported, and

actively developed software stack.
○ Externalize support burden where possible.

● Actively work with the EICUG SWG to help develop
and integrate community tools for all collaborations.

3

ATHENA Software Stack

● Detailed detector geometry description in DD4HEP, which
steers the Geant4 simulations

● Reconstruction framework (JUGGLER) built on top of GAUDI,
leveraging ACTS for tracking and Tensorflow for AI.

● Modular components communicate through a robust, flat data
model (EICD, implemented using PODIO).

● Leverage dedicated GitLab server (eicweb) with CI backend
for reproducible container builds (using Spack), and
automated tests and benchmarks.

MCEG

DD4Hep,
Geometry,

Geant4 (DDSim)

Juggler,
Gaudi - processing
ACTS - tracking,
Tensorflow - ML

Custom algorithms

Analysis/Benchmarks

4

Highlights
● We took some risk starting from scratch, but it paid off!
● Performant modern simulation/reconstruction toolkit, fully

operational in 4 months!
● Setup the heart of a powerful toolkit aimed far beyond the

detector proposal.

https://github.com/AIDASoft/DD4hep
https://eicweb.phy.anl.gov/EIC/juggler
https://gitlab.cern.ch/gaudi/Gaudi
https://github.com/acts-project/acts
https://www.tensorflow.org
https://eicweb.phy.anl.gov/EIC/eicd
https://github.com/AIDASoft/podio
https://eicweb.phy.anl.gov/EIC
https://github.com/spack/spack

DD4hep as single source of geometry

6

Parametrized geometries
● Geometry configuration happens through XML files: easy to edit for beginners!
● Learning curve to design a proper detector parametrization a bit steeper, but

easy to overcome under expert guidance.
● Worth it:

○ Well designed parametrization easy to maintain.
○ Parametrized geometries show their power when designing and

optimizing a detector: were able to manage four major design iterations
for ATHENA (Acadia, BigBend, Canyonlands, DeathValley), and many
smaller optimizations.

● jsROOT geometry browser invaluable for both beginners and experts.

The DD4hep Community

Development with DD4hep
● Very positive interactions with DD4hep developers:

○ Joined some of their regular meetings
○ ATHENA had multiple pull requests merged into main DD4hep GitHub

repository, very fast turnaround!
● Long-term plan for custom DD4hep plugins (NPDet): minimize amount of

custom code we need to maintain ourselves: either push upstream (to
DD4hep) or downstream (to specific detector implementation).

○ DD4hep developers happy to include ATHENA plugins (eg. for
Cherenkov detectors) in official DD4hep 6

Detailed geometry implementation

7

EXAMPLE: Tracking Systems

Acadia DeathValley

Gaudi enables highly flexible concurrent workflows

8

● All Juggler algorithms reentrant by design
○ Support concurrent processing, heterogeneous

environments from the beginning
○ Highly modular
○ Easy to integrate with external toolkits (ACTS,

tensorflow, …)
○ Reentrant algorithms easy to write, debug,

validate, and compose, even by beginners!
● Reconstruction: steered through a simple python script →

trivial to reconfigure reconstruction for different detector
layouts, or for subsystem-only reconstructions

○ Algorithms designed to be as small as possible to
allow easy composition/substitution/optimization

○ Even true for the event scheduler! Concurrency in
Gaudi enabled by swapping out the event
scheduler (can use concurrent, parallel,
single-threaded, …).

We are well prepared to run heterogeneous environments
(using eg. GPUs, TPUs, …) in our reconstruction chain!

Tracking with ACTS at the design stage

9

The ACTS Community

Highly positive experience: the ACTS team treated us as
first-rate “clients” of their project

● Regular meetings with the ACTS team invaluable
● ATHENA commits to upstream ACTS repository now

part of the main codebase (less for us to maintain!)
● Close collaboration was crucial, allowed us to stay

close to the latest releases in rapidly evolving
codebase.

First collaboration to use ACTS throughout the
entire prototyping stage

● We were running ACTS for all our productions!
● Important feedback to ACTS developers on

automation (eg. material maps).
● EIC-unique problems will solved together with

the ACTS team (eg. dealing with off-axis
geometries for the B0 tracker).

Very early on we had issues with tracking due to an ACTS
version change (upgrade to v8). This was ultimately caused due
to our lack of communication with the ACTS developers. Since
then, we instituted (bi)weekly meetings with the ACTS team.
With this in place, we went from v8 all the way to v16 without
any major issues!
Lesson: communication (and even collaboration) with
upstream developer team invaluable. We waste time and
resources when working in isolation!

EIC Data Model (eicd)

10

● Well-defined flat data model defined in a single
yaml file. No external libraries needed to load data.
No hard lock-in to any file format (eg. ROOT).

● Enables collaborators to see the big picture over
implementation details.

● Encouraged generalization and consistency (eg.
weight, likelihood, probability in IRT)

● Flat data model enabled collaborators to use
data in unforeseen ways (good!):

○ python-only analysis (no ROOT)
○ python event display
○ VR event display
○ offline SIDIS fast/full analysis framework

could integrate easily with full reconstruction
○ …

● Similarities with EDM4hep (part of key4hep)
○ First meeting with key4hep last Friday:

move towards: Lot of enthusiasm from
HEP community to collaborate! Consider
adopting EDM4hep in-line with our
software philosophy.

1. Define data model

2. Write appropriate algorithm(s) and benchmarks.
3. Results!

Showcase: Enabled collaborators to think about
the big picture (versus implementation details)

Showcase: Modern toolkit enables creativity

11

ATHENA 3D VR display created by PhD student Sean Preins (UCR)

Structuring the toolkit as a set of
modular, orthogonal tools
(independent geometry description,
independent detector simulation,
independent data model, …) enabled
our collaborators to make use of our
environment in creative new ways … a
big win in our book!

https://www.youtube.com/watch?v=7vx2ukOJOBg

Automated Workflows at eicweb
MCEG

DD4Hep,
Geometry,

Geant4 (DD4Sim)

Gaudi -
ACTS - tracking,
Reco algorithms

Analysis/Benchmarks

Automated
Tests,

Benchmarks
Validation

GitLab server (eicweb.phy.anl.gov)
● mirrored on github.com/eic
● continuous integration
● dedicated build cluster

Runs automatically on each user commit,
executing workflows running multiple tests,
benchmarks and analysis

Automated containers
Both Docker and Singularity images are
created nightly or on demand (commit)
providing:

● reproducibility,
● production level images
● latest updates for those working locally

12

Why use a custom GitLab server?
● CI system loses benefits with shared, queued jobs
● Our collaboration controls users, yet access to HPC

14

Automatic Visualization

http://view.athena-eic.org
14

http://view.athena-eic.org

Step 1: curl -L get.athena-eic.org | bash
Step 2: ???
Step 3: Profit

Still easy to get started locally… in only 1 line!

16

● Uses images on /cvmfs when available, downloads
singularity sifs otherwise.

● Rolling out seamless container updates to end
users

● At the same time basis of scalable computing on
OSG: same containers are used everywhere.

● Note: In principle not even needed to look at data
(flat format!)

Approach worked robustly during the entire proposal period. Biggest
challenge was making people believe it was really that simple!

User support is paramount!

17

● Initial tutorials were crucial to get the collaboration
started with a new toolkit (and help develop it further):
https://eic.phy.anl.gov/tutorials/eic_tutorial/

● Regular office hours (3x/week) were extremely
productive to support the collaboration.

● Office hours also provided valuable contact time when
everyone was working from home, much appreciated
by many involved.

https://eic.phy.anl.gov/tutorials/eic_tutorial/

Deployment With Containers: Layout
ATHENA software layer (updates: ~days):

● git clone of key repositories, cache busting with
commit hashes through GitLab API

● all software also in EICUG SWG eic-spack repository,
aim to use spack environment

ATHENA geometry layer (updates: ~days):
● multiple geometries inside each container

○ streamlined distribution of large containers when only
geometries are different

● calibration and configuration artifacts defined by url,
stored in container cache by hash (FileLoader plugin)

○ url is only pulled when not found in cache, i.e. only when
modifying geometry

○ upstreaming to dd4hep planned

20

Dependencies:
spack.yaml

Debian “bookworm”

ATHENA
software

ATHENA
geometry

Ensure consistent detector
setups for production runs.

Able to deploy manicured
modern environment many
very different computer
systems (including OSG!)

Input:
● S3: mc cp of HepMC v3 files (gzipped)
● condor: transfer DD4hep gun steer file

Benchmarking on eicweb as part of CI:
● running test, smoke tests, sanity checks,

time-per-event determination into csv
● target time: slurm: ~20 hrs, condor: ~2 hrs

Job submission:
● identical syntax for slurm and condor

○ Automatic retrieval of csv artifacts,
automatic job strategy determination

○ No user code is needed: all submission
support is available on CVMFS

● memory request: 2 GB, typical use 1.5 GB

Anatomy Of ATHENA Jobs

22

This worked really well to support
very different computer systems!

Currently optimized for
single-threaded GEANT4, can
relax somewhat when moving to
concurrency in GEANT4 v11

22

Lessons Learned Running Large Productions

Slurm at Compute Canada and JLab

What worked well:
● predictability: equal specs on all nodes
● efficiencies of ~infinite network storage

What could be better
● lack of S3 access on compute nodes

require pre-staging inputs and
post-treatment of outputs: mitigated with
cronjobs

● improvements in data transfers to their final
destination, e.g. S3 or writable xrootd

● network access segmentation between
DTN, interactive nodes: mitigated with
cronjobs

HT-Condor on OSG

What worked well
● scalability to ~30k simultaneous jobs
● collaboration with OSG support staff
● delayed instantiation for job rate limiting

What could be better
● jobs getting vacuumed on certain clusters:

mitigate with Requirements clauses
excluding sites

● large variation (factor 10) in job durations
due to spec variations: not mitigated, just
resubmit jobs that time out at 19 hrs

26

Maintenance tasks:

● Upgrades of underlying dependencies:
moved to spack 0.17.1, and now using
ACTS 16.0.0 (January 13, 2022) in
production

● Find current limits on OSG job throughputs
(known limits were all mitigated, i.e. S3
access)

Wishlist For Next Months

Exploration tasks:

● GPU acceleration for ACTS as a proof of
concept for enabling this more widely

● Switch to task-based scheduler in gaudi for
default productions

● Leverage full software pipeline for prototype
testing (integration with streaming DAQ).

● Further explore user-centered design together
with the EICUG SWG

● Explore points of overlap and collaboration
with the key4hep project (which
independently converged on a similar toolkit).

○ First meeting last Friday was very positive!

27

Takaway points

28

Overarching philosophy:

● Focus on modern scientific computing
practices

● Use what is already available, do not
reinvent the wheel

● Actively work with outside
organizations

Some takeaway points from our experience

● Absolutely possible to migrate a userbase to a new software
environment while retaining (or improving!) productivity.

● A modern containerized approach can work well in highly
distributed production environments. We ran the ATHENA
productions on 7 distinct HTC and HPC sites.

● Actively working with the teams behind community software
projects is highly productive.

● Working closely with the users (regular contact time between
users/developers) is paramount.

● Modern productivity tools (CI, issue trackers, development
boards, slack, …) absolutely work!

● Many users are happy to be trained in modern approaches.
● Keeping the toolkit modular and orthogonal allows for direct

involvement of domain experts, and enables unforeseen
creativity.

29

Questions?

