Realstic seeding with ACTS in ATHENA track reconstruction

Wenqing Fan, Yue Shi Lai

LBNL

Seeding

- A good seeding algorithm
 - It finds at least one seed for each particle that should be found
 - It doesn't find many seeds which do NOT correspond to particles
 - It doesn't find many seeds per particle
- ACTS seeding
 - Use triplet of hits for seed finding
 - Currently all hits used in ATHENA for seed finding

✓ Particle measurement on detector surface

Seeding

- Configuration
 - We cannot adjust deltaRMmax to much higher value
 - Tighter beam spot contraints
 - Any suggestions on tuning the parameters?


```
std::vector<std::string> inputSpacePoints;
/// Output track seed collection.
std::string outputSeeds;
/// Output proto track collection.
std::string outputProtoTracks;
float bFieldInZ = 3 * Acts::UnitConstants::T;
float minPt = 150 * Acts::UnitConstants::MeV;
float rMax = 320 * Acts::UnitConstants::mm;
float zMin = -4000 * Acts::UnitConstants::mm;
float zMax = 4000 * Acts::UnitConstants::mm;
float deltaRMin = 1 * Acts::UnitConstants::mm;
float deltaRMax = 320 * Acts::UnitConstants::mm;
float cotThetaMax = 45.003; // 27.2899; // About eta = 4
// 7.40627; // 2.7 eta
```

```
float collisionRegionMin = -250 * Acts::UnitConstants::mm;
float collisionRegionMax = 250 * Acts::UnitConstants::mm;
float maxSeedsPerSpM = 10;
float sigmaScattering = 50;
float radLengthPerSeed = 0.1;
float beamPosX = 0 * Acts::UnitConstants::mm;
float beamPosY = 0 * Acts::UnitConstants::mm;
float impactMax = 3 * Acts::UnitConstants::mm;
```

```
/// The minimum magnetic field to trigger the track
/// parameters estimation
double bFieldMin = 0.1 * Acts::UnitConstants::T;
```

```
/// Constant term of the loc0 resolution.
double sigmaLoc0 = 25 * Acts::UnitConstants::um;
/// Constant term of the loc1 resolution.
double sigmaLoc1 = 100 * Acts::UnitConstants::um;
/// Phi angular resolution.
double sigmaPhi = 0.02 * Acts::UnitConstants::degree;
/// Theta angular resolution.
double sigmaTheta = 0.02 * Acts::UnitConstants::degree;
/// q/p resolution.
double sigmaQOverP = 0.1 / Acts::UnitConstants::GeV;
/// Time resolution.
double sigmaT0 = 1400 * Acts::UnitConstants::s;
```

//

Efficiency, fake rate, duplicate rate

- A well reconstructed track: tracks can be associated to a generated particle by mathcing the momentum algorithm (association criteria: Δp/p within 10%, Δφ within 50mrad, Δθ within 10mrad)
- A track that is not associated to any simulated particle is considered to be a fake track.
- Duplicate tracks occur when multiple tracks are associated to the same generated particle.
- Currently looking at single particle events

From Xiaocong Ai's presentation, TrackML detector, ATLAS B field

Truth seeding ($p \sim 1 \text{GeV}, \eta \sim 0$)

Realistic seeding (p~1GeV, η ~0)

Truth seeding ($p \sim 1 \text{GeV}, \eta \sim 2$)

N_{hits}

Realistic seeding (p~1GeV, η ~2)

Truth seeding (p~10GeV, η ~0)

N_{hits}

Realistic seeding (p~10GeV, η ~0)

Truth seeding (p~10GeV, η ~2)

11

Realistic seeding (p~10GeV, η ~2)

Comparison between truth and realistic seeding

- In high p and mid-rapidty
 - Realistic seeding consistent with truthseeding results (p resolution, efficiency)
 - More fake tracks (<10%)</p>
- In low p or forward(backward)-rapidty
 - Much lower efficiency with realistic seeding, a lot of fake tracks with wrongly reconstruct momentum direction
 - More fake tracks (~25%)
- For low effcincy case
 - Look into whether there is no good seed or no track reconstructed with given seed

Comparison between forward and backward rapidity

Efficiency
 curve look
 asymetric
 between the
 forward and
 backward
 rapidity

Additional info on low efficiency events

- Single pion p = 1GeV, ϕ = 0 rad, θ = 1.57 rad (η = 2.5)
 - No filtering
 - All of the seeds are with q/p systematically higher than the true q/p
 - * All of the seeds are with θ systematically higher than the true θ
 - All of the seeds are with ϕ systematically lower than the true ϕ

```
acts_seeding_init
                    DEBUG seeds.size() = 16
acts_seeding_init
                    DEBUG /global/project/projectdirs/m3763/wenging/eic/juggler/JugTrack/src/components/TrackParamACTSS
eeding.cpp:366:
                    DEBUG /global/project/projectdirs/m3763/wenqing/eic/juggler/JugTrack/src/components/TrackParamACTSS
acts_seeding_init
eeding.cpp:396:
acts_seeding_init
                    DEBUG /global/project/projectdirs/m3763/wenging/eic/juggler/JugTrack/src/components/TrackParamACTSS
eeding.cpp:435: iseed = 0, 4, 218.675, -79.5911, 729.865
acts_seeding_init
                    DEBUG Estimation of track parameters for seed 0 is with q/p 1.23827 phi-0.687094 theta 0.200557 and
 charge 1
acts_seeding_init
                    DEBUG /global/project/projectdirs/m3763/wenging/eic/juggler/JugTrack/src/components/TrackParamACTSS
eeding.cpp:435: iseed = 1, 4, 218.675, -79.5911, 729.865
                    DEBUG Estimation of track parameters for seed 1 is with a/p 1.51977 phi-0.692229 theta 0.249507 and
acts_seedina_init
 charge 1
acts_seeding_init
                    DEBUG /global/project/projectdirs/m3763/wenging/eic/juggler/JugTrack/src/components/TrackParamACTSS
eeding.cpp:435: iseed = 2, 4, 107.021, -18.8706, 249.865
acts_seeding_init
                    DEBUG Estimation of track parameters for seed 2 is with q/p 2.12836 phi-0.249091 theta 0.34663 and
charge 1
acts_seeding_init
                    DEBUG /global/project/projectdirs/m3763/wenging/eic/juggler/JugTrack/src/components/TrackParamACTSS
eeding.cpp:435: iseed = 3, 4, 107.021, -18.8706, 249.865
                    DEBUG Estimation of track parameters for seed 3 is with q/p 1.7577 phi-0.248101 theta 0.28413 and c
acts_seeding_init
harge 1
```