

Inclusive productions of hidden/double-charm states at electron-proton facilities

Feng-Kun Guo

Institute of Theoretical Physics, CAS

Exotic heavy meson spectroscopy and structure with EIC

15-19 August 2022

Based on

Z. Yang, FKG, Semi-inclusive lepto-production of hidden-charm exotic hadrons, arXiv:2107.12247; P.-P. Shi, FKG, Z. Yang, Semi-inclusive electroproduction of hidden-charm and double-charm hadronic molecules, arXiv:2208.02639

Hidden-charm states

2

Hidden-charm and double-charm states

- Internal structure not understood
- Many structures are near threshold; candidates of hadronic molecules

Current experiments for the hidden-charm particles

- B-factories
 - □ From ISR processes
 - Cross sections and selection efficiency are relatively low
 - **D** From B decays with $b \rightarrow sc\bar{c}$
 - ▶ Energy region limited: $< m_B m_K \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons: $B \rightarrow K\psi\phi$, $K\psi\omega$, $K\psi\pi\pi$, ... Often difficult due to multi-hadron final states to get unambiguous properties of broad resonances

b

- Hadron colliders
 - $\Box \operatorname{From} \Lambda_b \operatorname{decays} \operatorname{with} b \to sc\bar{c}$
 - ▶ Energy region limited: $< m_{\Lambda_b} m_{\Lambda} \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons
 - Prompt productions: high background
- BESIII
 - **\square** Energy so far $\lesssim 4.96 \text{ GeV}$, to be upgraded to 5.6 GeV
 - **\Box** Low production rates (radiative transition) for C = + states
 - \blacksquare Luminosity: less than $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ above 4 GeV

4

More hadronic molecules are expected

X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41 (2021) 65

- Survey of hadronic molecular spectrum with a simple vector-exchange model
- Hidden-charm hadronic molecules

XYZP at electron-proton facilities

More hadronic molecules are expected

Hidden-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41 (2021) 65

 High-luminosity experiments covering the energy range above 5 GeV are needed

More hadronic molecules are expected

Double-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, CTP73 (2021) 125201

Photoproduction: charm

Figure from D. P. Anderle et al., Front. Phys. 16 (2021) 64701

- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- Many more open-charm hadrons D and Λ_c

Near-threshold J/ψ production at GlueX

No evidence of P_c in the J/ψ photoproduction at GlueX

GlueX, PRL 122 (2019) 222001

Hidden-charm exotics at COMPASS

• Cross sections: $\sigma(\gamma N \to \tilde{X}\pi N') \times \mathcal{B}(\tilde{X} \to J/\psi\pi^+\pi^-) = (71 \pm 28 \pm 39) \text{ pb}$ $\sigma(\gamma N \to X(3872)N') \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) < 2.9 \text{ pb} (\text{CL} = 90\%)$

Hidden-charm exotics at COMPASS

F.-K. Guo (ITP, CAS)

XYZP at electron-proton facilities

11

Coupled-channel effects

• Open-charm channels easier to be produced than $J/\psi p$; thresholds nearby

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053

The same mechanism for $J/\psi p \rightarrow J/\psi p$ leads to small scattering length; need to compare with the scattering length from gluon exchanges (ongoing):

 $\left|a^{J=1/2}\right| = 0.2...3.1 \text{ mfm}, \quad \left|a^{J=3/2}\right| = 0.2...3.0 \text{ mfm},$

Cross section estimates

- Order-of-magnitude estimates of inclusive lepto-production of near-threshold hadronic molecules
- The cross section can be estimated as e.g., for P_c states

Event generators

 The method has been used to estimate the X(3872) production at hadron colliders; despite the debates regarding the X(3872) structure, correct order of magnitude was reproduced

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda {=} 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
Tevatron	37-115	7(5)	29 (20)
LHC-7	13 - 39	13~(4)	55 (15)

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

Cross section estimates

• Charm hadron pairs generated using Pythia6.4

Considered machine configurations

	EicC	EIC	CEBAF (24 GeV)
<i>e</i> ⁻ energy (GeV)	3.5	20	24
proton energy (GeV)	20	250	0
luminosity $(cm^{-2} s^{-1})$	2×10 ³³	10 ³⁴	10 ³⁶

Cross section estimates

Z. Yang, FKG, CPC 45 (2021) 123101; P.-P. Shi, FKG, Z. Yang, arXiv:2208.02639

 Order-of-magnitude estimates of the semi-inclusive electro-production of hidden/doublecharm hadronic molecules (in units of pb)

	Constituents	$I, J^{P(C)}$	EicC	EIC
X(3872)	$Dar{D}^*$	0, 1++	21(89)	216(904)
$Z_c(3900)^0$	$Dar{D}^*$	1, 1+-	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
Z_{cs}^{-}	$D^{*0}D_s^-$	1/2,1+	19(69)	250(900)
$P_{c}(4312)$	$\Sigma_c \bar{D}$	1/2,1/2-	0.8(4.1)	15(73)
$P_{cs}(4338)$	$\Xi_c\overline{D}$	0,1/2-	0.1(1.6)	1.8 (30)
Predicted	$\Lambda_c\overline{\Lambda}_c$	0,0^+	0.3 (3.0)	10 (110)
Predicted	$\Lambda_c \overline{\Sigma}_c$	1,0-	0.01 (0.12)	0.5 (5.5)
T_{cc}^+	DD^*	0,1+	$0.3 \times 10^{-3} (1.2 \times 10^{-3})$	0.1 (0.5)

Results for more systems can be found in the above refs.

Semi-inclusive production at CEBAF 24 GeV

P.-P. Shi, FKG, Z. Yang, arXiv:2208.02639

- For beam energy of 24 GeV, the *ep* c.m. energy: 6.77 GeV; too low for Pythia
- Choose a few higher energy points, and extrapolate the results done to 24 GeV
- Rough order-of-magnitude estimates

Semi-inclusive production at CEBAF 24 GeV

P.-P. Shi, FKG, Z. Yang, arXiv:2208.02639

- For beam energy of 24 GeV, the *ep* c.m. energy: 6.77 GeV; too low for Pythia
- Choose a few higher energy points, and extrapolate the results done to 24 GeV
- Rough order-of-magnitude estimates

Semi-inclusive production at CEBAF 24 GeV

P.-P. Shi, FKG, Z. Yang, arXiv:2208.02639

 Order-of-magnitude estimates of the electro-production cross sections with 24 GeV electron beam

	Constituents	$J^{P(C)}$	$\sigma_X/{ m pb}$
X(3872)	$Dar{D}^*$	1++	1.3 (5.5)
$Z_c(3900)^0$	$Dar{D}^*$	1+-	23 (82)
$P_{c}(4312)$	$\Sigma_c \overline{D}$	1/2-	0.02 (0.08)
$P_{cs}(4459)$	$\Xi_c \overline{D}^*$	3/2-	0.005 (0.03)

- Not surprising the GlueX observed no signal of $P_c: \sigma(\gamma p \to J/\psi p) = \mathcal{O}(1 \text{ nb}) \gg 10^2 \times \sigma(e^-p \to P_c + \text{anything})$, much higher statistics is needed
- With a luminosity of $10^{36} \text{ cm}^{-2} \text{s}^{-1}$, for an integrated luminosity of 10^7 pb^{-1} , a large number of hidden-charm exotics can be produced even after having taken into account branching fractions, e.g., $\mathcal{B}(P_c \to J/\psi p) = \mathcal{O}(1\%)$, $\mathcal{B}(J/\psi \to \ell^+ \ell^-) = 12\%$

Summary

- Future electron-proton machines will be able to contribute a lot to hadron spectroscopy
- A large amount of hidden-charm exotic hadrons can be observed at CEBAF 24 GeV for a luminosity of 10³⁶ cm⁻²s⁻¹

Thank you for your attention!

Near-threshold structures

HILLER ALLS LINE THE

Nontrivial near-threshold structure for S-wave short-range attraction

- The same pole could lead to distinct line shapes in different reactions
- Hadronic molecules easily formed in the hidden/double-heavy-flavor region
- Other models also predict higher states

Interaction strengths from light-vector exchanges

XK. Dong,	FKG,	BS.	Zou,	CTP73	(2021)	125201
-----------	------	-----	------	-------	--------	--------

System	Ι	S	Thresholds [MeV]	Exchanged particles	F
$D^{(*)} ar{D}^{(*)} / D^{(*)} D^{(*)}$	1	0/0	(3734, 3876, 4017)	$ ho,~\omega$	$-\frac{1}{2}, \frac{1}{2}/-\frac{1}{2}, -\frac{1}{2}$
	0				$\frac{3}{2}, \frac{1}{2}/\frac{3}{2}, -\frac{1}{2}$
$D_s^{(*)}ar{D}^{(*)}/D_s^{(*)}D^{(*)}$	$\frac{1}{2}$	1/1	(3836, 3977, 3979, 4121)	K^*	0/-1
$D_s^{(*)} \bar{D}_s^{(*)} / D_s^{(*)} D_s^{(*)}$	0	0/2	(3937, 4081, 4224)	ϕ	1/-1
$ar{D}^{(*)} \Lambda_c / D^{(*)} \Lambda_c$	$\frac{1}{2}$	0/0	(4154, 4295)	ω	-1/1
$ar{D}_{s}^{(st)} \Lambda_{c}/D_{s}^{(st)} \Lambda_{c}$	0	-1/1	(4255, 4399)	_	0/0
$ar{D}^{(*)}\Xi_c/D^{(*)}\Xi_c$	1	-1/-1	(4337, 4478)	$ ho,~\omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{3}{2}, -\frac{1}{2}/\frac{3}{2}, \frac{1}{2}$
$ar{D}_{s}^{(*)}\Xi_{c}/D_{s}^{(*)}\Xi_{c}$	$\frac{1}{2}$	-2/0	(4438, 4582)	ϕ	-1/1
$ar{D}^{(*)}\Sigma^{(*)}_{c}/D^{(*)}\Sigma^{(*)}_{c}$	$\frac{3}{2}$	0/0	(4321, 4385, 4462, 4527)	$ ho,~\omega$	-1, -1/-1, 1
	$\frac{1}{2}$				2, -1/2, 1
$ar{D}_{s}^{(*)}\Sigma_{c}^{(*)}/D_{s}^{(*)}\Sigma_{c}^{(*)}$	1	-1/1	(4422, 4486, 4566, 4630)	_	0/0
$\bar{D}^{(*)} \Xi_c^{\prime(*)} / D^{(*)} \Xi_c^{\prime(*)}$	1	-1/-1	(4446, 4513, 4587, 4655)	$ ho,\omega$	$-\frac{1}{2}, -\frac{1}{2}/-\frac{1}{2}, \frac{1}{2}$
	0				$\frac{\overline{3}}{2}, -\frac{\overline{1}}{2}/\frac{3}{2}, \frac{\overline{1}}{2}$
$\bar{D}_{s}^{(*)} \Xi_{c}^{\prime(*)} / D_{s}^{(*)} \Xi_{c}^{\prime(*)}$	$\frac{1}{2}$	-2/0	(4547, 4614, 4691, 4758)	ϕ	$\frac{2}{-1/1}$
$ar{D}^{(*)}\Omega^{(*)}_{c}/D^{(*)}\Omega^{(*)}_{c}$	$\frac{1}{2}$	-2/0	(4562, 4633, 4704, 4774)	_	0/0
$ar{D}_{s}^{(*)}\Omega_{c}^{(*)}/D_{s}^{(*)}\Omega_{c}^{(*)}$	$\overset{2}{0}$	-3/-1	(4664, 4734, 4807, 4878)	ϕ	-2/2
$\overline{\Lambda_c \bar{\Lambda}_c / \Lambda_c \Lambda_c}$	0	0/0	(4573)	ω	2/-2
$\Lambda_c \bar{\Xi}_c / \Lambda_c \Xi_c$	$\frac{1}{2}$	1/-1	(4756)	ω/K^*	1, 0/-1, -1
$\Xi_c \bar{\Xi}_c / \Xi_c \Xi_c$	1	0/-2	(4939)	$ ho,\omega,\phi$	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -1$
-	0	·			$\frac{5}{2}, \frac{1}{2}, 1/\frac{3}{2}, -\frac{1}{2}, -1$
$\Lambda_c \bar{\Sigma}_c^{(*)} / \Lambda_c \Sigma_c^{(*)}$	1	0/0	(4740, 4805)	ω/K^*	1, 0/-1, -1

Interaction strengths from light-vector exchanges

X.-K. Dong, FKG, B.-S. Zou, CTP73 (2021) 125201

System	Ι	S	Thresholds [MeV]	Exchanged particles	F
$\overline{\Lambda_c \bar{\Xi}_c^{\prime(st)} / \Lambda_c \Xi_c^{\prime(st)}}$	$\frac{1}{2}$	1/ - 1	(4865, 4932)	ω	1/-1
$\Lambda_c \bar{\Omega}_c^{(*)} / \Lambda_c \Omega_c^{(*)}$	Ō	2/-2	(4982, 5052)	_	0/0
$\Sigma_c^{(*)} \bar{\Xi}_c / \Sigma_c^{(*)} \Xi_c$	$\frac{3}{2}$	1/-1	(4923, 4988)	$ ho,~\omega,~K^*$	-1, 1, 0/-1, -1, -2
	$\frac{\tilde{1}}{2}$				2, 1, 0/2, -1, -2
$\Xi_c \bar{\Xi}_c^{\prime(*)} / \Xi_c \Xi_c^{\prime(*)}$	1^2	0/-2	(5048, 5115)	$ ho,\omega,\phi$	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{-\frac{1}{2}}, -\frac{1}{2}, -1$
	0				$\frac{5}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, -1$
$\Xi_c \bar{\Omega}_c^{(*)} / \Xi_c \Omega_c^{(*)}$	$\frac{1}{2}$	1/-3	(5165, 5235)	$\phi, \ \mathit{K}^*$	$2^{2}, 0/-2, -2^{2}$
$\sum_{c}^{(*)} \bar{\Sigma}_{c}^{(*)} / \Sigma_{c}^{(*)} \Sigma_{c}^{(*)}$	2	0/0	(4907, 4972, 5036)	$ ho, \omega$	-2, 2/-2, -2
	1	,			2, 2/2, -2
	0				4, 2/4, -2
$\Sigma_c^{(*)} \bar{\Xi}_c^{\prime(*)} / \Sigma_c^{(*)} \Xi_c^{\prime(*)}$	$\frac{3}{2}$	1/ - 1	(5032, 5097, 5100, 5164)	$ ho,~\omega,~K^*$	-1, 1, 0/-1, -1-2
	$\frac{1}{2}$				2, 1, 0/2, -1, -2
$\Sigma_{c}^{(*)}\bar{\Omega}_{c}^{(*)}/\Sigma_{c}^{(*)}\Omega_{c}^{(*)}$	Ō	2/-2	(5149, 5213, 5219, 5284)	_	0/0
$\Xi_c^{\prime(*)} \overline{\Xi}_c^{\prime(*)} / \Xi_c^{\prime(*)} \Xi_c^{\prime(*)}$	1	0/-2	(5158, 5225, 5292)	$ ho$, ω , ϕ	$-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -1$
	0				$\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, -1$
$\Xi_c^{\prime(*)} \bar{\Omega}_c^{(*)} / \Xi_c^{\prime(*)} \Omega_c^{(*)}$	$\frac{1}{2}$	1/-3	(5272, 5341, 5345, 5412)	ϕ , K^*	2, 0/-2, -2
$\Omega_{c}^{(*)}\bar{\Omega}_{c}^{(*)}/\Omega_{c}^{(*)}\Omega_{c}^{(*)}$	$\tilde{0}$	0/-4	(5390, 5461, 5532)	ϕ	4/-4