Bound states in the three-body scattering formalism

Sebastian M. Dawid

EIC workshop, August 17th, 2022

Three-body processes and hadronic spectrum

- Interesting resonances decay to three-particle final states ***** X(3872), π₁(1600), N*(1440), a₁(1420), a₁(1260), ...
- Interpretations

 - molecules
 diquark-antidiquark
 - hybrids
 kinematical effects

Three-body processes and hadronic spectrum

- Interesting resonances decay to three-particle final states ***** *X*(3872), π₁(1600), *N**(1440), *α*₁(1420), *α*₁(1260), ...
- Interpretations
 - molecules hybrids
- diquark-antidiquark kinematical effects

Triangle singularity as the origin of the $a_1(1420)$ COMPASS, Phys. Rev. Lett. 127 (2021) 8, 082501

חה

not render a low-lying Roper resonance. The current status indicates that the $N^*(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N\pi\pi$.

Three-body processes and hadronic spectrum

Interesting resonances decay to three-particle final states ***** X(3872), π₁(1600), N*(1440), a₁(1420), a₁(1260), ...

Interpretations

GOAL: three-body scattering formalism

- * properties of hadrons from the (lattice) QCD
- * convenient three-body framework for phenomenology

Pion-nucleon scattering in the Roper channel from lattice QCD Lang, Leskovec, Padmanath, Prelovsek, Phys. Rev. D 95 (2017) 1, 014510

additional energy level, which implies that $N\pi$ elastic scattering alone does not render a low-lying Roper resonance. The current status indicates that the $N^*(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N\pi\pi$.

The B-matrix approach

- Physical degrees of freedom (domain of integration)
- Simple parametrization with clear interpretation

Three-body scattering amplitudes in the B-matrix formalism

Three-body amplitude

 $\mathcal{A}_{\ell'm_{\ell'};\ell m_{\ell}}(p',s,p)$

pair-spectator partial waves symmetrization

Phenomenology of relativistic $3 \rightarrow 3$ reaction amplitudes within the isobar approximation Jackura et al. (JPAC), Eur. Phys. J. C (2019) 1, 56

The B-matrix approach

- Physical degrees of freedom (domain of integration)
- Simple parametrization with clear interpretation

Three-body scattering amplitudes in the B-matrix formalism

Three-body amplitude

 $\mathcal{A}_{\ell'm_{\ell'};\ell m_{\ell}}(p',s,p)$

pair-spectator partial waves

symmetrization

$+ \kappa \iota \rho J$

Jackura et al. (JPAC), Eur. Phys. J. C (2019) 1, 56

approximation

Path to three-body physics from the lattice QCD

Three-body scattering amplitudes in the B-matrix formalism

Relativistic, model-independent, three-particle quantization condition Hansen, Sharpe, Phys. Rev. D 90 (2014) 11, 116003

Three-body unitarity in finite volume Mai, Döring, Eur. Phys. J. A 53 (2017) 12, 240

Amplitudes

Particle properties

Path to three-body physics from the lattice QCD

(A) Finite volume spectrum Quantization Condition (C) Three-body K-matrix **(B)**

Three-body scattering amplitudes in the B-matrix formalism

Relativistic, model-independent, three-particle quantization condition Hansen, Sharpe, Phys. Rev. D 90 (2014) 11, 116003

Three-body unitarity in finite volume Mai, Döring, Eur. Phys. J. A 53 (2017) 12, 240

 $3K\pi$

	¢
≻	0
	-0-
>	0

Path to three-body physics from the lattice QCD

(C) Three-body K-matrix (A) Finite volume spectrum (B) Quantization Condition

Path to three-body physics from the lattice QCD

(a) K-matrix + two-body subprocesses

(d) Amplitudes <u>analytically continued</u> to the unphysical Riemann sheets

Three-body scattering amplitudes in the B-matrix formalism

Amplitudes

Particle properties

(c) Three-body amplitudes (b) Integral equations

▶ Ladder approximation, B = G + (R=0)

- Numerical solution of the three-body EFT equations
- Similar studies

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys. Rev. D 104 (2021) 1, 014507

* weakly interacting system in $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$

Hansen et al., Phys. Rev. Lett. 126 (2021), 012001

• decay
$$a_1(1260) \to \rho^0 \pi^- \to \pi^- \pi^+ \pi^-$$

Sadasivan et al., Phys. Rev. D 101 (2020) 9, 094018 Sadasivan et al., Phys. Rev. D 105 (2022) 5, 054020

▶ Ladder approximation, B = G + (R=0)

U

Three-body scattering amplitudes in the B-matrix formalism

two-particle bound state + particle J=0 (S wave)

$$\mathcal{M}_2^{-1} \sim -\frac{1}{a} - i\rho_2$$

$$\lim_{\sigma,\sigma'\to\sigma_b} \mathcal{A}_3 = \frac{g}{\sigma'-\sigma_b} \mathcal{A}_2 \frac{g}{\sigma-\sigma_b}$$

Sadasivan et al., Phys. Rev. D 105 (2022) 5, 054020

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

Three-body scattering amplitudes in the B-matrix formalism

Break-up amplitude

- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

\triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation)

$$d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N,$$

- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

\triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation) $d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N, \epsilon)$

- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

\triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation) $d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N, \epsilon)$

- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

\triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation) $d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N, \epsilon)$

- \triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

$d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N, \epsilon)$ $\int^{(\sqrt{s}-m)^2} \frac{d\sigma_q}{2\pi} G(\sigma_p, s, \sigma_q) \tau(\sigma_q, s) D(\sigma_q, s, \sigma_k)$ Amputation

$$D(\sigma_p, s, \sigma_k) = \mathcal{M}_2(\sigma_p) d(\sigma_p, s, \sigma_k) \mathcal{M}_2(\sigma_k)$$

- \triangleright Discretization of the integral equation \rightarrow N linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i\epsilon$ prescription

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

$d(s) = \lim_{\epsilon \to 0^+} \lim_{N \to \infty} d(s; N, \epsilon)$ Amputation

$$D(\sigma_p, s, \sigma_k) = \mathcal{M}_2(\sigma_p) d(\sigma_p, s, \sigma_k) \mathcal{M}_2(\sigma_k)$$

Three-body scattering amplitudes in the B-matrix formalism

Different methods: "Brute force", explicit pole removal, spline-based quadratures

Example results, $M^2 = 3m^2$ (ma=2)

Three-body scattering amplitudes in the B-matrix formalism

ŪJ

Example result, three-body scattering length

Romero-Lopez et al., JHEP 10 (2019) 007

Three-body scattering amplitudes in the B-matrix formalism

Ш

Bedaque et al., Nucl. Phys. A 646 (1999) 444

Example result, $2 \rightarrow 3$ amplitude

Three-body scattering amplitudes in the B-matrix formalism

Solving relativistic three-body integral equations in the presence of bound states Jackura, Briceño, Dawid, Islam, McCarty, Phys.Rev.D 104 (2021) 1, 014507

Analytic continuation to complex energies

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Analytic continuation to complex energies

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Analytic continuation to complex energies

Ū

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Avoid crossing the singularities in the integration

Three-body scattering amplitudes in the B-matrix formalism

$d(p', s, p) = -G(p', s, p) - \int_{0}^{1} \frac{dq \, q^2}{(2\pi)^2 \omega_q} G(p', s, q) \mathcal{M}_2(q, s) \, d(q, s, p)$

Avoid crossing the singularities in the integration

 q_{\max} $d(p',s,p) = -G(p',s,p) - \int_{\Omega} \frac{dq q^2}{(2\pi)^2 \omega_q} G(p',s,q) \mathcal{M}_2(q,s) d(q,s,p)$ Solution

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Integration kernel

Avoid crossing the singularities in the integration

Three-body scattering amplitudes in the B-matrix formalism

$d(p', s, p) = -G(p', s, p) - \int_{0}^{1} \frac{dq \, q^2}{(2\pi)^2 \omega_q} G(p', s, q) \mathcal{M}_2(q, s) \, d(q, s, p)$

Avoid crossing the singularities in the integration

Inhomogeneous term q_{\max} $d(p', s, p) = -G(p', s, p) - \int_{\Omega} \frac{dq \, q^2}{(2\pi)^2 \omega_q} G(p', s, q) \mathcal{M}_2(q, s) \, d(q, s, p)$

Three-body scattering amplitudes in the B-matrix formalism

Avoid crossing the singularities in the integration

Inhomogeneous term q_{\max}

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Homogeneous term

Avoid crossing the singularities in the integration

Ш

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Homogeneous term

Avoid crossing the singularities in the

Ū

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

14

Contour deformation in momentum variable

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Homogeneous term also contributes singularities to the solution

$$d(p', s, p) = -G(p', s, p) - \int_{0}^{q_{\max}}$$

х $\frac{dq q^2}{(2\pi)^2 \omega_a} G(p', s, q) \mathcal{M}_2(q, s) d(q, s, p)$

Homogeneous term also contributes singularities to the solution

Inhomogeneous term q_{\max}

 $d(p', s, p) = -G(p', s, p) - \int_{\Omega} \frac{dq \, q^2}{(2\pi)^2 \omega_q} G(p', s, q) \mathcal{M}_2(q, s) \, d(q, s, p)$

Homogeneous term also contributes singularities to the solution

 $d(p',s,p) = -G(p',s,p) - \int \frac{dq q^2}{(2\pi)^2 \omega_q} G(p',s,q) \mathcal{M}_2(q,s) d(q,s,p)$

Homogeneous term also contributes singularities to the solution

Three-body scattering amplitudes in the B-matrix formalism

Homogeneous term

Homogeneous term also contributes singularities to the solution

Three-body scattering amplitudes in the B-matrix formalism

Homogeneous term

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state

Results – Amplitudes

Efimov physics

Three-body scattering amplitudes in the B-matrix formalism

Analytic continuation of the three-body scattering equation in the presence of bound state Dawid, Briceño, Jackura, Islam, in preparation

Ш

Three-body scattering

- relevant for some of the most intriguing states
- phenomenology & Lattice QCD

Three-body scattering

- relevant for some of the most intriguing states
- phenomenology & Lattice QCD

Three-body scattering amplitudes in the B-matrix formalism

Resonance properties from LQCD

- three-body spectra
- quantization condition
- integral equations
- analytic continuation

Three-body scattering

- relevant for some of the most intriguing states
- phenomenology & Lattice QCD

Solution of the ladder equation

- two-body bound state
- systematic numerical procedure

Three-body scattering amplitudes in the B-matrix formalism

Resonance properties from LQCD

- three-body spectra
- quantization condition
- integral equations
- analytic continuation

Three-body scattering

- relevant for some of the most intriguing states
- phenomenology & Lattice QCD

Solution of the ladder equation

- two-body bound state
- systematic numerical procedure

Three-body scattering amplitudes in the B-matrix formalism

Resonance properties from LQCD

- three-body spectra
- quantization condition
- integral equations
- analytic continuation

Analytic continuation

- circular cut
- Efimov states

