Bound states in the three-body scattering formalism

Sebastian M. Dawid

Three-body processes and hadronic spectrum

* Interesting resonances decay to three-particle final states
* X(3872), $\pi_{1}(1600), N^{*}(1440), a_{1}(1420), a_{1}(1260), \ldots$
- Interpretations
- molecules diquark-antidiquark
- hybrids
- kinematical effects

Three-body processes and hadronic spectrum

- Interesting resonances decay to three-particle final states * X(3872), $\pi_{1}(1600), N^{*}(1440), a_{1}(1420), a_{1}(1260), \ldots$
- Interpretations
- molecules
- diquark-antidiquark
- hybrids
- kinematical effects

On the nature of $a_{1}(1420)$
Mikhasenko, Ketzer, Sarantsev, Phys. Rev. D 91, 094015 (2015)

Three-body processes and hadronic spectrum

- Interesting resonances decay to three-particle final states
* X(3872), $\pi_{1}(1600), N^{*}(1440), a_{1}(1420), a_{1}(1260), \ldots$
- Interpretations
- molecules
diquark-antidiquark
- hybrids
- kinematical effects

additional energy level, which implies that $N \pi$ elastic scattering alone does not render a low-lying Roper resonance. The current status indicates that the $N^{*}(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N \pi \pi$.

Three-body processes and hadronic spectrum

* Interesting resonances decay to three-particle final states
* X(3872), $\pi_{1}(1600), N^{*}(1440), a_{1}(1420), a_{1}(1260), \ldots$
- Interpretations

GOAL: three-body scattering formalism

* properties of hadrons from the (lattice) QCD
* convenient three-body framework for phenomenology

Pion-nucleon scattering in the Roper channel from lattice QCD Lang, Leskovec, Padmanath, Prelovsek, Phys. Rev. D 95 (2017) 1, 014510
additional energy level, which implies that $N \pi$ elastic scattering alone does not render a low-lying Roper resonance. The current status indicates that the $N^{*}(1440)$ might arise as dynamically generated resonance from coupling to other channels, most notably the $N \pi \pi$.

The B-matrix approach

- Physical degrees of freedom (domain of integration)
- Simple parametrization with clear interpretation
 $=$

正

One Particle Exchange

Three-body amplitude
$\mathcal{A}_{\ell^{\prime} m_{\ell^{\prime}} ; \ell m_{\ell}}\left(p^{\prime}, s, p\right)$

- pair-spectator
partial waves
symmetrization

$$
\mathcal{A}=\mathcal{M}_{2} \mathcal{B} \mathcal{M}_{2}+\mathcal{M}_{2} \int \mathcal{B} \tau \mathcal{A}
$$

The B-matrix approach

- Physical degrees of freedom (domain of integration)
* Simple parametrization with clear interpretation

$=$

佂

Short Range Interactions

Three-body amplitude $\mathcal{A}_{\ell^{\prime} m_{\ell^{\prime}} ; \ell m_{\ell}}\left(p^{\prime}, s, p\right)$
b pair-spectator

- partial waves
- symmetrization

$$
\tilde{\mathcal{A}}=\mathcal{B}+\int \mathcal{B} \mathcal{M}_{2} \tau \tilde{\mathcal{A}}
$$

$$
\mathcal{M}_{2}=\mathcal{K}+\mathcal{K} i \rho \mathcal{M}_{2}
$$

FV Spectrum

Amplitudes

Particle properties

FV Spectrum

Amplitudes

Particle properties
(A) Finite volume spectrum
(B) Quantization Condition
(C) Three-body K-matrix

Three-body spectra - status

Currently three π and three K at $I=3, S$ and D waves

Hansen et al. (HadSpec), Phys. Rev. Lett. 126 (2021), 012001

(a) $\mathcal{K}_{\mathrm{df}, 3}^{\mathrm{iso}, 0}$

(b) $\mathcal{K}_{\mathrm{df}, 3}^{\text {iso, }}$

Path to three-body physics from the lattice QCD

FV Spectrum

Amplitudes

$A_{A_{l}(s)}$

Particle properties

(A) Finite volume spectrum

(B) Quantization Condition
(C) Three-body K-matrix

Path to three-body physics from the lattice QCD

Lattice QCD

FV Spectrum

Amplitudes

(b) Integral equations
(c) Three-body amplitudes
(d) Amplitudes analytically continued to the unphysical Riemann sheets

Solving the REFT three-body ladder equation

- Ladder approximation, $B=G+(R=0)$

* Numerical solution of the three-body EFT equations
- Similar studies

* weakly interacting system in $\pi^{+} \pi^{+}$and $\pi^{+} \pi^{+} \pi^{+}$ Hansen et al., Phys. Rev. Lett. 126 (2021), 012001
* decay $a_{1}(1260) \rightarrow \rho^{0} \pi^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}$

Sadasivan et al., Phys. Rev. D 101 (2020) 9, 094018
Sadasivan et al., Phys. Rev. D 105 (2022) 5, 054020

Solving the REFT three-body ladder equation

b Ladder approximation, $B=G+(R=0)$

$$
\begin{aligned}
& \text { two-particle bound state + particle } \\
& \mathrm{J}=0 \text { (S wave) }
\end{aligned}
$$

$=$
$+$

Solving the REFT three-body ladder equation

Solving the REFT three-body ladder equation

Break-up amplitude

Numerical procedure

- Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i \in$ prescription

$D\left(\sigma_{p}, s, \sigma_{k}\right)=-\mathcal{M}_{2}\left(\sigma_{p}\right) G\left(\sigma_{p}, s, \sigma_{k}\right) \mathcal{M}_{2}\left(\sigma_{k}\right)-\mathcal{M}_{2}\left(\sigma_{p}\right) \int_{0}^{(\sqrt{s}-m)^{2}} \frac{d \sigma_{q}}{2 \pi} G\left(\sigma_{p}, s, \sigma_{q}\right) \tau\left(\sigma_{q}, s\right) D\left(\sigma_{q}, s, \sigma_{k}\right)$

Numerical procedure

- Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i \epsilon$ prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

Numerical procedure

- Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i \epsilon$ prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

Numerical procedure

- Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i \epsilon$ prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

Numerical procedure

b Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)

- Regulation of the bound-state pole via the $i \epsilon$ prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

Amputation
$\longleftarrow \underline{D\left(\sigma_{p}, s, \sigma_{k}\right)}=\mathcal{M}_{2}\left(\sigma_{p}\right) d\left(\sigma_{p}, s, \sigma_{k}\right) \mathcal{M}_{2}\left(\sigma_{k}\right)$

Numerical procedure

- Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the $i \epsilon$ prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

$$
\left.\boldsymbol{d}(N, \epsilon)=-\boldsymbol{G}(\epsilon)-\boldsymbol{P} \cdot \boldsymbol{G}(\epsilon) \cdot \boldsymbol{\mathcal { M }} \cdot \boldsymbol{d}(N, \epsilon) \longleftarrow \underline{ } \longleftarrow \sigma_{p}, s, \sigma_{k}\right)=\mathcal{M}_{2}\left(\sigma_{p}\right) d\left(\sigma_{p}, s, \sigma_{k}\right) \mathcal{M}_{2}\left(\sigma_{k}\right)
$$

Numerical procedure

* Discretization of the integral equation $\rightarrow \mathrm{N}$ linear equations (Matrix equation)
- Regulation of the bound-state pole via the ie prescription

$$
d(s)=\lim _{\epsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} d(s ; N, \epsilon)
$$

Example results, $M^{2}=3 m^{2} \quad(m a=2)$

Example result, three-body scattering length

Example result, 2 $\rightarrow 3$ amplitude

* We are not limited to energies below the three-body threshold

Analytic continuation to complex energies

Analytic continuation to complex energies

Analytic continuation to complex energies

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{q_{\max }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{q_{\max }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{q_{\max }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{\text {Inhomogeneous term }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{\text {Inhomogeneous term }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the integration

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{\text {Inhomogeneous term }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Avoid crossing the singularities in the

Contour deformation in momentum variable

TT Three-body scattering amplitudes in the B-matrix formalism

Integral equation below the threshold

* Homogeneous term also contributes singularities to the solution

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{q_{\max }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Homogeneous term also contributes singularities to the solution

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{\text {Inhomogeneous term }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Homogeneous term also contributes singularities to the solution

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{0}^{q_{\max }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Homogeneous term also contributes singularities to the solution

$$
d\left(p^{\prime}, s, p\right)=-G\left(p^{\prime}, s, p\right)-\int_{\substack{\text { Solution } \\ \text { "inherits" the } \\ \text { OPE cuts }}}^{\text {Inhomogeneous term }} \frac{d q q^{2}}{(2 \pi)^{2} \omega_{q}} G\left(p^{\prime}, s, q\right) \mathcal{M}_{2}(q, s) d(q, s, p)
$$

Integral equation below the threshold

- Homogeneous term also contributes singularities to the solution

WT Three-body scattering amplitudes in the B-matrix formalism

Results - Amplitudes

Efimov physics

TI Three-body scattering amplitudes in the B-matrix formalism

Efimov physics

* Binding energies of the three-body bound states

Ratios of binding energies approach Efimov's scaling constant

$m a$

Summary

\square Three-body scattering
\& relevant for some of the most intriguing states
\& phenomenology \& Lattice QCD

Summary

- Three-body scattering

\& relevant for some of the most intriguing states
ק phenomenology \& Lattice QCD
\square Resonance properties from LQCD

* three-body spectra
- quantization condition
- integral equations
\& analytic continuation

Summary

- Three-body scattering

* relevant for some of the most intriguing states
\& phenomenology \& Lattice QCD

Resonance properties from LQCD

* three-body spectra
\& quantization condition
- integral equations
> analytic continuation

- Solution of the ladder equation

* two-body bound state
\& systematic numerical procedure

Summary

- Three-body scattering

\& relevant for some of the most intriguing states
\& phenomenology \& Lattice QCD

- Resonance properties from LQCD
* three-body spectra
- quantization condition
- integral equations
\& analytic continuation

\square Solution of the ladder equation

\& two-body bound state
\& systematic numerical procedure

Analytic continuation
 * circular cut
 - Efimov states

THANK YOU

