Quarkonium detection and physics opportunities at the EIC

Wangmei Zha University of Science and Technology of China

S Workshop "Exotic heavy meson spectroscopy and structure with EIC", Aug. 15 - 19, 2022

Electron-Ion Collider

Why EIC ?

- * One of the most cleanest environment to study QCD.
- Large kinematic coverage
- * 100/1000 times $(10^{33} 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ higher luminosity than HERA.
- * Highly polarized electron (\sim 70%) and proton (\sim 70%) beams.
- Variable Ion beam species: from deuterons to heavy nuclei such as gold, lead or uranium.

The facility: EIC at BNL

- ✓ Luminosity: 10³³⁻³⁴ cm⁻²sec⁻¹
 - (100-1000 times HERA)
- ✓ Hadrons up to 275 GeV
- ✓ Electrons : 5-10 (20) GeV
- ✓ CM energy: 20-100 (140) GeV
- \checkmark Polarized beams
- ✓ >1200 scientists, 250 institutions [Webpage]
- CD0 and site selection at Brookhaven National Lab in 2019
- ✓ Framework for international participation being set up CD1 achieved in 2021 [Webpage]
- ✓ Project hosted/managed jointly by BNL and JLab
- ✓ EIC Yellow Report Physics-Detector studies completed 2021 [2103.05419]
- ✓ Call for Collaboration Proposals for EIC detectors (1 Dec, 2021) [Webpage]
- ✓ CD4 and operations expected in 2030+

The EIC status/timeline

ECCEATHENACOREIP6IP8New community (Det-1)New name—EPIC

start of operations: 2031 full-fledged accelerator: 2034

Why Exclusive Quarkonium ?

Gluons are massless, yet, responsible for nearly all visible mass Gluons are hard to probe, as they do not carry electromagnetic charge

 β J/ψ and Y(1S) couple to gluons
 Production near threshold is promising to directly probe gluons

Exclusive processes allow precise measurement of t Low-x quarkonium mainly produced by PGF (photongluon fusion) process

The EIC detector (reference design)

Tracking performance

Tracking

Good momentum resolution.

Calorimeter

PID at **EPIC**

PID AT EIC EPIC DETECTOR

h-endcap: dRICH

Ring imaging:

- π/K < 50 GeV/c
- e/π <15 GeV/c

"Veto" mode:

- e/ π above few MeV/c (up to ~15 GeV/c)
- π/K,p above 0.7 GeV/c (or ~1 GeV/c at "full efficiency")
- K/p > 2.5 Gev/c (or ~3 GeV/c at "full efficiency")
- e-endcap: mRICH

Ring imaging:

- π/K: 2-10 GeV/c
- e/π: 0.6-2./2.5 GeV/c

"Veto" mode:

- k/π:0.6-2 GeV/c
- e/π: <0.6 GeV/c
- K/p <3.8 GeV/c
- barrel: hpDIRC

Ring imaging:

- π/K <6-7 GeV/c
- e/π <1.2 GeV/c

"Veto" mode:

- e,K/π >0.2/0.3GeV/c
- K/p >1 GeV/c

Great talks and discussions lead by Elke and Joe about RICH and DIRC veto/threshold mode: <u>https://indico.bnl.gov/event/16314/</u>

🛁 G.Kalicy, CUA | Cherenkov based PID for EIC Detector1 | 2022 EIC Users' Group Meeting | July 26, 2022

J/ψ Reconstruction

Generator: eSTARlight + Full Geant simulation (fun4All)

J/ψ Reconstruction Efficiency

Single electron efficiency

High J/ψ efficiency in central region Forward region with a low efficiency

 J/ψ efficiency

The theoretical setup for projection

$$\sigma(eA \to eAV) = \int \frac{dW}{W} \int dk \int dQ^2 \frac{d^2 N_{\gamma}}{dk dQ^2} \sigma_{\gamma^*A \to VA} (W, Q^2),$$

$$\frac{d^2 N_{\gamma}}{dk dQ^2} = \frac{\alpha}{\pi k Q^2} \left[1 - \frac{k}{Ee} + \frac{k^2}{2E_e^2} - \left(1 - \frac{k}{Ee} \right) \left| \frac{Q_{\min}^2}{Q^2} \right| \right].$$

$$\sigma_{\gamma^*A \to VA} (W, Q^2) = f (M_V) \sigma (W, Q^2 = 0) \left(\frac{M_V^2}{M_V^2 + Q^2} \right)^n$$

$$n = c_1 + c_2 \left(Q^2 + M_V^2 \right),$$

$$\sigma (W, Q^2 = 0) = \int_{t_{\min}}^{\infty} dt \frac{d\sigma(\gamma A \to VA)}{dt} \Big|_{t=0} |F(t)|^2,$$

$$\int_{t=0}^{0} |\Delta_{max}| = \sqrt{-t_{max}}$$

Spencer Klein, Phys. Rev. C **99** (2019) 015203

Wangmei Zha etal, Phys. Rev. C **97** (2018) 044910

The theoretical input for ep and eAu

Projection statistics with designed luminosity

Probe the nuclear gluon PDF

$$\frac{d\sigma(\gamma A \to VA)}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[xG_A(x,Q^2) \right]^2$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} Q^2 = M_V^2/4$$

Guzey, Zhalov, JHEP 10 (2013) 207; JHEP 02 (2014) 046

The nuclear gluon PDF can be model-independently quantified by R_q

$$R_g = \sqrt{\frac{\frac{d\sigma(\gamma A \to VA)}{dt}\Big|_{t=0}}{\frac{d\sigma(\gamma p \to Vp)}{dt}\Big|_{t=0}}}$$

Eskola,K.J., Paakkinen, et al. EPPS16: EPJC 77 (2017) 163

DVMP and gluon GPD

Average unpolarized gluon GPD

$$\begin{aligned} |\langle \mathcal{H}_g \rangle|(t) \propto \sqrt{\frac{d\sigma}{dt}(t)} / \frac{d\sigma}{dt}(t=0) \\ \rho(|\vec{b}_T|, x_V) &= \int \frac{d^2 \vec{\Delta}_T}{(2\pi)^2} e^{i \vec{\Delta}_T \vec{b}_T} |\langle H_g \rangle|(t=-\vec{\Delta}_T^2) \\ F(b) &= \frac{1}{2\pi} \int_0^\infty d\Delta \cdot \Delta J_0(\Delta b) \sqrt{\frac{d\sigma_{\text{coherent}}}{d|t|}(\Delta)} \end{aligned} \right|_{\text{mod}} \end{aligned}$$

t spectra Mor Normalized average gluon

density

Hard scale:
$$Q^2 + M_V^2$$

Modified Bjorken-x: $x_V = \frac{Q^2 + M_V^2}{2p \cdot q}$

- ✓ Simplest possible GPD extraction approach
- ✓ NLO effects could be significant
- \checkmark Heavier (Y) would be better

S. Joosten and Z. Meziani, arXiv:1802.02616

Slide from S. Joosten

Spatial distribution of the nuclear gluons

ATHENA eAu 18x110 GeV $-int = 10 \text{ fb}^{-1}/\text{A}$ Coherent truth 10^{4} $1 < Q^2 < 10 \text{ GeV}^2$ ••••• Incoherent truth Coherent reco' w. Method. L $x_{v} < 0.01$ Residue incoherent reco' 10^{3} after vetos by IP-6 FF detectors do / dlt I (nb/GeV²) 10² 10-1 $J/\psi \rightarrow e^+e^-$ 10-2 0.05 0.15 0.1 Ω |t| (GeV²)

t distribution (Wood-Saxon, Good-Walker)

W. Chang etal., Phys. Rev. D **104**, 114030 The plane-wave diffraction patterns

will survive to a large extent in EIC.

a community

State-of-the-art theoretical model of elastic electron scattering off stable and exotic nuclei

Smearing (distortion) of the diffraction minima due to Coulomb interaction.

The near threshold production mechanism

- 2g+3g is still used to describe the GlueX data in YR
- While due to C-parity conservation, 3g will not have a contribution
- EIC and JLab can dramatically improve the statistics near threshold to optimize models

2g+3g fits data well but not real? !

$$\frac{d\sigma}{dt} = \mathcal{N}_{2g} v \frac{(1-x)^2}{R^2 \mathcal{M}^2} F_{2g}^2(t) \left(W_{\gamma p}^2 - m_p^2\right)^2$$
$$\frac{d\sigma}{dt} = \mathcal{N}_{3g} v \frac{(1-x)^0}{R^4 \mathcal{M}^4} F_{3g}^2(t) \left(W_{\gamma p}^2 - m_p^2\right)^2$$

S.J. Brodsky, et al., PLB 498 (2001) 23-28

New power law twist 3+4 form factor, 5?

$$\begin{aligned} \frac{d\sigma}{dt}|_{(-t)\gg\Lambda^2_{QCD}} &= \frac{1}{16\pi (W^2_{\gamma p} - M^2_p)^2} \left(|\overline{\mathcal{A}}_3|^2 + |\overline{\mathcal{A}}_4|^2 \right) \\ &\approx \frac{1}{(-t)^4} \left[(1-\chi)\mathcal{N}_3 + \widetilde{m}_t^2 \mathcal{N}_4 \right], \end{aligned}$$

P. Sun, X. Tong and F. Yuan, PLB 822 (2021) 136655

Proton mass decomposition (trace anomaly)

 $M_N = M_m + M_a + M_g + M_a$ Ji, PRD 52 (1995) 271; Hatta and Yang, PRD 98 (2018) 074003

$$M_m = \frac{4 + \gamma_m}{4(1 + \gamma_m)} b m_p$$

$$M_q = \frac{3}{4} \left(a - \frac{b}{1 + \gamma_m} \right) m_p$$

$$M_g = \frac{3}{4} (1-a) m_p$$
$$M_a = \frac{1}{4} (1-b) m_p$$

- $a(\mu)$ related to PDFs, well constrained
- $b(\mu)$ related to quarkoniumproton scattering amplitude $T_{\psi p}$ near-threshold

To maximize the sensitivity to the twist-4 operator G², centerof-mass should be as low as possible—— near threshold

Yi-Bo Yang et al, EPJ Web of Conferences 175, (2018) 14002

trace anomaly

Proton mass decomposition (trace anomaly)

X. Li et al., arXiv: 2207.10356

GlueX extraction from R. Wang, J. Evslin and X. Chen, Eur. Phys. J. C 80 (2020) no.6, 507

20

Large Q² lever arm will allow to constrain the production mechanism and reduce the model dependence of the trace anomaly contribution.

Proton mass decomposition (trace anomaly)

Negligible uncertainty from higher order corrections for Y

Uncertainty from Y near threshold one-year yield at EIC seems comparable to GlueX J/ ψ Slide from Y. Ji

Muon ID at EIC?

- ✓ Less bremsstrahlung
- ✓ Internal photon radiation
- ✓ Combinatorial background

- ✓ Detector technology?
- ✓ R&D and cost evaluation?
- ✓ Space limitations?

Impact from material to Upsilon (ee) measurement [early sPHENIX optimization]

Summary

- Quarkonia as powerful probe of gluons at EIC
- Excellent detector response and high luminosity allows to provide promising constraining power to theory
 - Unprecedented precision, unexplored low-x region (deep into proton sea)
 - ✓ Address profound open questions in the fundamental structure of matter (proton mass...)
- Many other physics with exclusive quarkonia production:

Thank you!

✓ Gluonic Van der Waals force (scattering length, binding energy)
 ✓ Proton mass radius

Detector Configuration (July Concept)

Electron Endcap EMCal

Nearly final ECCE detector image for the proposal

J/ψ detection

a forward light cone variables can be used to see scattering beam e⁻ influence $x_{+} = \frac{b_0 + (-b_z)}{a_0 + (-a_z)}$ (cause beam e⁻ moves along negative z axis), b is beam e⁻.

J/ψ detection

elD——TOF(fastsimulation)

	η range	path length	time resolution
forward	-1.5>ŋ>-3.5	250(cm) / cos(Θ)	20 (ps)
barrel	1.5>ŋ>-1.5	50 / sin(Θ)	20
end	3.5>ŋ>1.5	150 / cos(Θ)	20

TOF eID

p < 0.4(GeV/c) |1/β-1|<0.04 survival possibility: e: 99.5% π: 0.1%

Electron identification capability at ECCE

Electron identification capability at ECCE

