EIC XYZ production simulations Workshop : Exotic Meson spectroscopy and structure with EIC

> Derek Glazier University of Glasgow 08/18/2022 e'\

Event Generator (Pictorial)

Factorise 2 photon vertices

Phys. Rev. D **102**, 114010 – Published 7 December 2020

https://github.com/dwinney/jpacPhoto

Event Generator (Formal)

$$\frac{d^4 \sigma}{ds dQ^2 d \phi dt} = \frac{d^2 \sigma_{e, \gamma * e'}}{ds dQ^2} \frac{d^2 \sigma_{\gamma * + p \to V + p}(s, Q^2)}{d \phi dt}$$

$$\frac{d^2 \sigma_{e,y*e'}}{ds dQ^2} = \frac{\alpha}{2\pi} \cdot \frac{K \cdot L}{E} \cdot \frac{1}{Q^2} \cdot \frac{1}{(s - M^2 + Q^2)}$$

$$\frac{d^2 \sigma_{\gamma^{*+p}}}{d \phi dt} = \frac{d \sigma^T(Q^2, s)}{d \phi dt} + (\epsilon + \delta) \frac{d \sigma^L(Q^2, s)}{d \phi dt}$$

$$\rightarrow$$
 Integrate for event rate

$$Q^{2} = 2E M x y$$

$$W^{2} = M^{2} + 2E M y - Q^{2}$$

$$L = \frac{1 + (1 - y)^{2}}{y} - \frac{2m_{e}^{2}y}{Q^{2}}$$

$$K = \frac{W^{2} - M^{2}}{2M} = v(1 - x) = Ey(1 - x) = v - \frac{Q^{2}}{2M}$$

$$\frac{d^2 \sigma^T(Q^2, s)}{d \phi dt} = \frac{d^2 \sigma_{\gamma + p \to V + p}}{d \phi dt} F(Q^2)$$

$$\frac{d^2 \sigma^L(Q^2, s)}{d \phi dt} = 0$$

 $\frac{d^2 \sigma_{y+p \rightarrow V+p}}{d \phi dt} = \frac{1}{128 \pi^2 s} \frac{1}{|\boldsymbol{p}_{y*cm}|^2} |M(s,t)|^2 \rightarrow |M(s,t)|^2 \text{ JPAC Photoproduction Amplitudes}$

Production estimates for various Exotic candidates

X,Z production benefit from low CM energies Luminosity too low at 28 GeV Here focus on 41 GeV configuration Luminosity assumed 6.1 x 10^{33} cm⁻²s⁻¹

TABLE II. Summary of results for production of some states of interest at the EIC electron and proton beam momentum $5 \times 100(GeV/c)$ (for electron x proton). Columns show : the meson name; our estimate of the total cross section; production rate per day, assuming a luminosity of 6.1×10^{33} cm⁻²s⁻¹; the decay branch to a particular measurable final state; its ratio; the rate per day of the meson decaying to the given final state.

Meson	Cross Section (nb)	Production rate (per day)	Decay Branch	Branch Ratio (%)	Events (per day)
$\chi_{c1}(3872)$	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	5	6.1 k
Y(4260)	2.3	2.0 M	$J/\Psi \pi^+\pi^-$	1	1.2 k
$Z_c(3900)$	0.3	$0.26 \mathrm{M}$	$J/\Psi \pi^+$	10	1.6 k
X(6900)	0.015	$0.013 { m M}$	$J/\Psi J/\Psi$	100	46
$Z_{cs}(4000)$	0.23	0.20 M	$J/\Psi K^+$	10	1.2 k
$Z_b(10610)$	0.04	$0.034 \mathrm{~M}$	$\Upsilon(2S) \pi^+$	3.6	24

* Branching ration $J/\psi \rightarrow$ e+e- = 0.06 ;

Υ(2S) → e+e- = 0.0198
** Taken from "Precision Studies of QCD in
the Low Energy Domain of the EIC"
(In preparation)

- * May be some tension with COMPASS Muoproduction results
- * Compared to FKG (Tuesday)
- ~ x10 lower χ
- \sim x10 higher Zc, similar Zcs

Simulations for ECCE

Produce X,Y, ψ (2S) based on jpacPhoto & elSpectro

Produce events for 10 fb^{-1}

Here focus on 5 Gev e- and 100 GeV proton beams

Approximately 300k events

Passed through ECCE detector simulation/reconstruction After-burner rotates for crossing angle etc.

Simple Analysis results :

Just using track momentum Take PID from truth (100% efficient) Calculate Energy from momentum

ECCE Spectroscopy Simulations

J/ψ decay e+ acceptances at 1.5T

π + acceptances at 1.5T

π + acceptances at 3T

Invariant masses with ECCE

Acceptances for full final state much lower at 3T Solenoid - low energy pions

Meson Decay angles

Detector effects on Invariant Masses

Far Forward Roman Pot Acceptance

Far Forward B0 Acceptance

Proton Detection B0 and RP

Roman Pot position and momentum

Correlation between position and $\mathbf{P}_{_{\mathrm{t},}}$ but dependent on $\boldsymbol{\Phi}_{_{\mathrm{RP}}}$

Proton Φ_{true} correlated with Φ_{RP} =>Assume it can be reconstructed

For these studies, if proton detected in RP 6% P_t resolution, B0 3% P_+ resolution

Assume (unrealistic) perfect Φ reconstruction

Electron Detection

Useful Exclusivity variables

 γ = (e⁻ beam) - (e⁻ scattered) Here we take e⁻ in Low Q2 Tagger

 ΔP_{+} difference : Here we take proton in Far Forward

= P₊ {calculated proton - measured proton}

 $\Delta \Phi$, Production Plane difference : $\Phi_{\text{meson}} - \Phi_{\text{proton}}$

Centre of Momentum frame Δ Breakup Momentum, P_{break} :

 $P_{break}(E_{\gamma}, M_{p}, M_{meson}) - P_{break}(E_{\gamma}, meson)$ second term boosts meson into CM

True Electron, True Proton, Realistic Meson

True Electron, "Realistic" Proton

+ Electron 2% energy resolution

+ Electron 5% energy resolution

+ Electron 10% energy resolution

Missing Pion Background

No simulations of background Channels

Instead create exclusivity variables with missing pion

Top 2% electron resolution Bottom 10% electron resolution

Fully Exclusive Missing Pion

Other Useful Kinematics

Low Q^2 Tagger can also provide :

Polarisation

Polarisation

Conclusions

Realistic simulations show Spectroscopy measurements benefit from :

Low beam energies Low solenoidal field strength Good exclusivity variables from fully reconstructed events Require Far forward and backward acceptance and resolution Determination of W and t Transverse photon polarisation (~ Linear Polarisation)

We should expect to reconstruct around 10% fully exclusive events (most events lost in far forward/backward regions)

Low (and uncertain) cross sections and small branching ratios are main issue

Given sufficient statistics polarised SDMEs should be measurable

Many possible mesons and final states to simulate...

Detector Talks

11:00	Tracking with EIC detector	Low momentum thresholds	Dr Xuan Li
		resolutions	11:00 - 11:20
	Exclusive physics with muons at EIC		Marie BOER
		Reconstruction of J/ψ ?	11:20 - 11:40
	Far-forward ion detection at EIC	Exclusivity, acceptance	Alexander Jentsch
		Δs ?	11:40 - 12:00
12:00	Low-Q2 tagger and photoproduction at EIC	Exclusivity, acceptance	Dr Simon Gardner
		Linear polarisation	12:00 - 12:20
	AI/ML Heavy Flavor trigger at EIC	Small cross section	Zhaozhong Shi
		=> need all events	12:20 - 12:40

Photoproduction of exotic mesons

1) Identify photoproduction of the narrow XYZ states. Typically these have only been seen in 1 production mechanism and photoproduction offers a clean mechanism whereby any resonance should be able to be photoproduced and therefore we would validate if these are real poles.

2) As photoproduction can produce any state we may see states that haven't been produced in other mechanisms. For example no "exotic" tensor mesons have been identified yet.

3) Photoproduction offers a means to determine quantum numbers of produces states, in particular we may search for broader overlapping states. Polarised beams give us a greater handle on this.

4) The nature of the observed states is a matter of great discussion. How these states behave in different production mechanism can help us understand the underlying dynamics (tetraquark, molecules, hybrids). Things like photocouplings or even Q2 dependences can be helpful here.

5) We can look for many varieties of decay products $J/\psi + \pi$ or K or vector or ... which are not well established at other experiments.

Exclusive Photoproduction (Quasi-real)

Observation of XYZ states in photoproduction

- independent confirmation

Different production mechanism, different kinematics

Measurement of polarisation observables and photocouplings

- insights into production mechanisms and internal structure

XYZ spectroscopy at electron-hadron facilities: Exclusive processes

M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak (Joint Physics Analysis Center) Phys. Rev. D **102**, 114010 – Published 7 December 2020 See D.Winney Exotic Spectroscopy at the EIC

- qualitative behaviour and order of magnitude estimates

X & Y & $\psi(2S)$

X better at low proton Energy, Y, ψ better at high proton Energy

No Electron, True Proton, Realistic Meson

X(3872)

FIG. 3. Integrated cross sections for the axial $\chi_{c1}(1P)$ and X(3872). Left panel: predictions for fixed-spin exchange, valid at low energies. Right panel: predictions for Regge exchange, valid at high energies.

Larger model uncertainty

