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The EPIC Detector
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• In addition to the central detector → 
detectors integrated into the beamline 
on both the hadron-going (far-forward) 
and electron-going (far-backward) 
direction.

• Requires special considerations for 
the machine-detector interface.
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• In addition to the central detector → 
detectors integrated into the beamline 
on both the hadron-going (far-forward) 
and electron-going (far-backward) 
direction.

• Requires special considerations for 
the machine-detector interface.

The far-forward system functions 
almost like an independent 
spectrometer experiment at the EIC!



Roman Pots

Off-Momentum Detectors

B0 Silicon Tracker and Preshower

Zero-Degree Calorimeter

B0pf combined function magnet

Focusing Quadrupoles

The Far-Forward Detectors
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B1apf

PbW04 
EMCAL

All simulations done in GEANT4
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B1apf

Detector Acceptance

Zero-Degree Calorimeter (ZDC) 𝜽 < 5.5 mrad (𝜂 > 6)

Roman Pots (2 stations) 0.0* < 𝜽 < 5.0 mrad (𝜂 > 6)

Off-Momentum Detectors (2 stations) 0.0 < 𝜽 < 5.0 mrad (𝜂 > 6)

B0 Detector 5.5 < 𝜽 < 20.0 mrad
(4.6 < 𝜂 < 5.9)

PbW04 
EMCAL



Far-Forward Detector 
Subsystems



B0 Detectors

Space for 
detectors 
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B0 Detectors
Space for detectors 
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Hadrons

Electrons

Preliminary Parameters: 
229.5cm x 121.1cm x 195cm
(Actual length will be shorter)

This is the opening 
where the detector 

planes will be 
inserted

Ø Charged particle reconstruction and photon tagging.
Ø Precise tracking (~10um spatial resolution).
Ø Fast timing for background rejection and to 

remove crab smearing (~35ps).
Ø Photon detection (tagging or full reco).



Sensor planes

Hadron beam pipe

Electron quad 
(Q0EF)

DD4HEP Simulation

(5.5 < 𝜽 < 20.0 mrad)  
B0 Detectors

Ø Technology:
Ø Tracking: IT3 or ITS2 MAPS (3 layers) + AC-LGADs 

(1 layer)
Ø PbWO4 EMCAL or silicon preshower, depending on 

available space in final B0pf magnet design 
(pending). 
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Roman Pots @ the EIC
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Full GEANT4 simulation.Protons
E = 275 GeV
0 < 𝜽 < 5 mrad

Proton 
trajectories

40cm



Roman “Pots” @ the EIC
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2 m

Station 1

La
ye

r 1

La
ye

r 2
Station 2

La
ye

r 1
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ye

r 2

• Two stations, separated by 2 meters, each with 
two layers (minimum) of silicon detectors.

• Silicon detectors placed directly into machine 
vacuum!

• Allows maximal geometric coverage!
• Need space for detector insertion tooling and 

support structure.
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Roman “Pots” @ the EIC

DD4HEP Simulation

• Technology
Ø500um, pixilated AC-LGAD sensor, with 

30-40ps timing resolution.
Ø “Potless” design concept with thin RF foils 

surrounding detector components.

25.6 cm

12
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Using the two configurations, we 
are able to measure the low-t 
region (with better acceptance) and 
high-t tail (with higher luminosity).

HDHA

Digression: Machine Optics



Off-Momentum Detectors
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Off-momentum detectors implemented as 
horizontal ”Roman Pots” style sensors.

DD4HEP Simulation

EICROOT GEANT4 simulation.

• Same technology as for the 
Roman Pots.

• Need to also study use of 
OMD on other side for tagging 
negative pions.

OMD

RP

ZDC

Protons
123.75 < E < 151.25 GeV
(45% < xL < 55%)
0 < 𝜽 < 5 mrad

Proton 
trajectories



Summary of Detector Performance (Trackers)
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• Includes realistic considerations for 
pixel sizes and materials 

• More work needed on support 
structure and associated 
impacts.

• Roman Pots and Off-Momentum 
detectors suffer from additional 
smearing due to improper transfer 
matrix reconstruction.

• This problem is close to being 
solved!



Summary of Detector Performance (Trackers)
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• All beam effects included!
• Angular divergence.
• Crossing angle.
• Crab rotation/vertex smearing.

Beam effects the dominant 
source of momentum 
smearing!



3-Momentum Resolution (B0 tracker)
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• Similar results for the RP and OMD.
• Mostly dominated by transfer matrix inaccuracy.
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7 cm 
PbWO4 Crystal 

Layer

Si Tracker 12 W/Si 
planes

22 Pb/Si 
planes

30 Lead/Scintillator 
planes

64 Layers Photon energy resolution Neutron energy resolution

Physics 
requirement

Physics 
requirement

Performance

Performance

Credit to Shima Shimizu (Kobe U. , Japan) 

Zero-Degree Calorimeter



What can we do with 
meson and baryon decays 

in the FF region?



The importance of the B0 for the meson program
• Needed for measuring final states with 𝜃 > 5.5 mrad.

• Especially important at medium and low hadron beam energies at the EIC.
• Important for incoherent vetoing in e+A (heavy nuclear) collisions.

• Charged particles and photons.
• The B0 tracking system behaves like a normal spectrometer, so anything 

which decays with particles in its acceptance can be reconstructed just 
like in the forward tracking disks!
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GEANT simulation: 100 GeV proton

𝜌" → 𝜋#𝜋$ decay 
from u-channel production



The importance of the B0 for the meson program

• 𝜌! → 𝜋"𝜋# decay studied with 
eSTARLight 5x41 events (generated by 
Zach Sweger).

• Reconstruction performed with EicRoot.
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𝜌" → 𝜋#𝜋$ decay 
from u-channel production
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Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.

24
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Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.
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80 GeV < Elambda < 100 GeV

B0 detector cutoff



Lambda Decay (p + 𝜋-) 
• Boost causes the lambda to be able to 

decay 10s of meters from the IP.
• Significant problem since reconstruction of 

this displaced secondary vertex within the 
hadron magnets is very challenging.
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30 GeV < Elambda < 41 GeV

B0 detector cutoff

Lower beam energies help for 
the charged particle final state.



ZDC & neutral particle exit

Neutrons
E = 275 GeV
0 < 𝜽 < 5 mrad

Want to have as large an incident 
angle with the beam pipe as possible.

This is the problem area → shallow 
incident angle can increase effective 
material thickness by ~ factor of 10!!

This will reduce our detection efficiency beyond just 
the aperture limit!
Ø More detailed study needed as updated design

becomes available.



Summary and Takeaways
• All FF detector acceptances and detector performance well-understood with 

currently available information.
• Numerous impact studies done!

• Yellow Report, Detector proposals, and stand-alone studies.
• Ideal technology choices identified, along with suitable alternate designs for risk 

mitigation.
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• How does this influence the development of IP8?

30



Summary and Takeaways
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Want to get involved?? Join our meetings and learn how!
Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/EPIC/index.php?title=FarForward
Email-list: eic-projdet-FarForw-l@lists.bnl.gov
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-l

Email me or any other FF convener if you have any questions!

• All FF detector acceptances and detector performance well-understood with 
currently available information.

• Numerous impact studies done!
• Yellow Report, Detector proposals, and stand-alone studies.

• Ideal technology choices identified, along with suitable alternate designs for risk 
mitigation.

• More realistic engineering considerations need to be added to simulations as 
design of IR vacuum system and magnets progresses toward CD-2/3a.

• The NAS physics can be delivered by the FF detectors -> what else can we do 
with these other very important channels?

• How does this influence the development of IP8?

https://indico.bnl.gov/category/407/
https://wiki.bnl.gov/EPIC/index.php?title=FarForward
https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-l


Backup
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B0 Detectors in CAD

Lead Sheet

Detector Planes

Detector Plates

Blue lines represent where element locations are along beamline

33

Length of Detector is 1.5m

Credit: Ron Lassiter and Karim Hamdi
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Roman “Pots” @ the EIC

DD4HEP Simulation

• Technology
Ø500um, pixilated AC-LGAD sensor, with 

30-40ps timing resolution.
Ø “Potless” design concept with thin RF foils 

surrounding detector components.

25.6 cm

12
.8

 c
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More engineering work is currently underway to optimize the 
layout, support structure, cooling, and movement systems for 
inserting the detectors into the beamline.



Roman Pots and Off-Momentum Detectors

Initial step file 
inspired by STAR

Updated model in NX with
different beamtube size
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Credit: Ron Lassiter



Roman Pots in CAD
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Credit: Ron Lassiter



Off-Momentum Detectors
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B1apf

RP

B2apf

ZDC

neutrons and photons



• Off-momentum protons → smaller 
magnetic rigidity → greater bending in 
dipole fields.

• Important for any measurement with 
nuclear breakup!

Off-Momentum Detectors
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B1apf

B2apf

ZDC

RP

neutrons and photons

Protons with ~50-60% 

momentum w.r.t. steering 

magnets.

Protons with ~35-50% momentum 

w.r.t. steering magnets.

OMD

𝒍𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 𝒎𝒐𝒎𝒆𝒏𝒕𝒖𝒎 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏

𝒙𝑳 =
𝒑𝒛,𝒑𝒓𝒐𝒕𝒐𝒏
𝒑𝒛,𝒃𝒆𝒂𝒎



Preliminary CAD drawings of RP and 
OMD Supports and Magnet Cryostats
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Roman Pots 
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• Roman Pots are silicon sensors placed in a “pot”, which is then injected into the beam pipe, 
tens of meters or more from the interaction point (IP).

• Momentum reconstruction carried out using matrix transport of protons through magnetic 
lattice.

Beam pipe

Beam

Scattered 
protons

View along 
beam

Side view

Roman Pots at ~30 m from IP → 𝜃 ∽ 0 - 5 mrad



Roman Pots
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• Place roman pottery 
into the particle 
accelerator → learn the 
deep mysteries of the 
universe?



Roman Pots
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Roman pots at STAR – used to measure p+p elastic scattering.
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Roman “Pots” @ the EIC

DD4HEP Simulation

25.6 cm
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𝜎(𝑧) = 𝜀 ( 𝛽(𝑧))

𝜎 𝑧 is the Gaussian width of the 
beam, 𝛽 𝑧 is the RMS transverse 
beam size. 
𝜀 is the beam emittance.

Ø Low-pT cutoff determined by beam optics.
Ø The safe distance is ~10𝜎 from the beam center.
Ø 1𝜎 ~ 1mm

Ø These optics choices change with energy, but can also be 
changed within a single energy to maximize either 
acceptance at the RP, or the luminosity.



Off-Momentum Detectors
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EICROOT GEANT4 simulation.

OMD

RP

ZDC

Protons
123.75 < E < 151.25 GeV
(45% < xL < 55%)
0 < 𝜽 < 5 mrad

Proton 
trajectories



~25 cm

45/14

High Divergence High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics
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~25 cm

46/14Improves low 𝑝! acceptance.

High Divergence

High Acceptance
High Acceptance

High Divergence

Need both detector systems 
together here!

100 GeV DVCS Proton Acceptance
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Digression: Machine Optics
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Zero-Degree Calorimeter
• Need a calorimeter which can accurately reconstruct photons and neutrons from our various 

final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega 
production).

• Neutrons and photons react differently in materials – need both an EMCAL and an HCAL!
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Zero-Degree Calorimeter
• Need a calorimeter which can accurately reconstruct photons and neutrons from our various 

final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega 
production).

• Neutrons and photons react differently in materials – need both an EMCAL and an HCAL!

photon

neutron
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● Zero Degree Calorimeter (improved ALICE design): 
○ Dimension: 60 cm x 60 cm x 168 cm
○ 30 m from IR
○ Detect spectator nucleon
○ Acceptance: +4.5 mrad, -5.5mrad
○ Position resolution ~1.3mm at 40 GeV
○ Full reconstruction of photons (EMCAL) and neutrons 

(HCAL)

7 cm 
PbWO4 Crystal 

Layer

Si Tracker 12 W/Si 
planes

22 Pb/Si 
planes

30 Lead/Scintillator 
planes

64 Layers

Credit to Shima Shimizu (Kobe U. , Japan) 

Zero-Degree Calorimeter
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7 cm 
PbWO4 Crystal 

Layer

Si Tracker 12 W/Si 
planes

22 Pb/Si 
planes

30 Lead/Scintillator 
planes

64 Layers

Credit to Shima Shimizu (Kobe U. , Japan) 

Zero-Degree Calorimeter
● Zero Degree Calorimeter (improved ALICE design): 

○ Dimension: 60 cm x 60 cm x 168 cm
○ 30 m from IR
○ Detect spectator nucleon
○ Acceptance: +4.5 mrad, -5.5mrad
○ Position resolution ~1.3mm at 40 GeV
○ Full reconstruction of photons (EMCAL) and neutrons 

(HCAL)

Ø Sufficient calorimeter depth (radiation lengths, X0 for 
photons/electrons; nuclear interaction lengths, 𝜆- for 
neutrons/hadrons)
• Required for good energy resolution.

Ø Granularity needed for proper reconstruction of shower.
• Finding the center of the shower needed to provide 

angular resolution to get neutron transverse 
momentum!



Zero-Degree Calorimeter with Stand

Preliminary Design of Zero--
Degree Calorimeter with full 
support structure.
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Credit: Ron Lassiter
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Zero-Degree Calorimeter


