

Alex Jentsch (BNL)
ajentsch@bnl.gov

Exotic Heavy-Meson Spectroscopy and Structure with the EIC

$+\quad$ August $15^{\text {th }}-18^{\text {th }}, 2022$
Stony Brook Uṇiversitity

The EPIC Detector

- In addition to the central detector \rightarrow detectors integrated into the beamline on both the hadron-going (far-forward) and electron-going (far-backward) direction.
- Requires special considerations for the machine-detector interface.

The EPIC Detector

- In addition to the central detector \rightarrow detectors integrated into the beamline on both the hadron-going (far-forward) and electron-going (far-backward) direction.
- Requires special considerations for the machine-detector interface.

The far-forward system functions almost like an independent spectrometer experiment at the EIC!

The Far-Forward Detectors

30 Silicon Tracker and Preshower

All simulations done in GEANT4

The Far-Forward Detectors

Far-Forward Detector Subsystems

B0 Detectors

B0 Detectors

Charged particle reconstruction and photon tagging.
> Precise tracking ($\sim 10 u m$ spatial resolution).
> Fast timing for background rejection and to remove crab smearing (~ 35 ps).
$>$ Photon detection (tagging or full reco).

This is the opening where the detector planes will be inserted

Preliminary Parameters:
$229.5 \mathrm{~cm} \times 121.1 \mathrm{~cm} \times 195 \mathrm{~cm}$ (Actual length will be shorter)

B0 Detectors

($5.5<\boldsymbol{\theta}<20.0 \mathrm{mrad}$)

DD4HEP Simulation
$>$ Technology:
> Tracking: IT3 or ITS2 MAPS (3 layers) + AC-LGADs (1 layer)
> PbWO4 EMCAL or silicon preshower, depending on available space in final BOpf magnet design (pending).

Roman Pots @ the EIC

Protons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Full GEANT4 simulation.

Roman "Pots" @ the EIC

- Two stations, separated by 2 meters, each with two layers (minimum) of silicon detectors.
- Silicon detectors placed directly into machine vacuum!
- Allows maximal geometric coverage!
- Need space for detector insertion tooling and support structure.

Roman "Pots" @ the EIC

DD4HEP Simulation

- Technology
> 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution.
> "Potless" design concept with thin RF foils surrounding detector components.

Digression: Machine Optics
275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Acceptance: larger β^{*} at
IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

- Same technology as for the Roman Pots.
- Need to also study use of OMD on other side for tagging negative pions.

Protons
123.75 < E < 151.25 GeV
(45\% < xL < 55\%)
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Summary of Detector Performance (Trackers)

- Includes realistic considerations for pixel sizes and materials
- More work needed on support structure and associated impacts.
- Roman Pots and Off-Momentum detectors suffer from additional smearing due to improper transfer matrix reconstruction.
- This problem is close to being solved!

Summary of Detector Performance (Trackers)

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
3-Momentum Resolution (B0 tracker)

- Similar results for the RP and OMD.
- Mostly dominated by transfer matrix inaccuracy.

Zero-Degree Calorimeter

Photon energy resolution

Neutron energy resolution

Credit to Shima Shimizu (Kobe U. , Japan)

What can we do with meson and baryon decays in the FF region?

The importance of the B0 for the meson program

- Needed for measuring final states with $\theta>5.5$ mrad.
- Especially important at medium and low hadron beam energies at the EIC.
- Important for incoherent vetoing in e+A (heavy nuclear) collisions.
- Charged particles and photons.
- The B0 tracking system behaves like a normal spectrometer, so anything which decays with particles in its acceptance can be reconstructed just like in the forward tracking disks!

GEANT simulation: 100 GeV proton
$\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay
from u-channel production

The importance of the B0 for the meson program

- $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay studied with eSTARLight 5×41 events (generated by Zach Sweger).
- Reconstruction performed with EicRoot.

$\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay
from u-channel production

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

"

ZDC \& neutral particle exit
Want to have as large an incident angle with the beam pipe as possible.

Neutrons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

This is the problem area \rightarrow shallow incident angle can increase effective material thickness by ~ factor of 10 !!

This will reduce our detection efficiency beyond just the aperture limit!
$>$ More detailed study needed as updated design becomes available.

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Yellow Report, Detector proposals, and stand-alone studies.
- Ideal technology choices identified, along with suitable alternate designs for risk mitigation.

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Yellow Report, Detector proposals, and stand-alone studies.
- Ideal technology choices identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3a.

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Yellow Report, Detector proposals, and stand-alone studies.
- Ideal technology choices identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3a.
- The NAS physics can be delivered by the FF detectors -> what else can we do with these ofher very important channels?
- How does this influence the development of IP8?

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Yellow Report, Detector proposals, and stand-alone studies.
- Ideal technology choices identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3a.
- The NAS physics can be delivered by the FF detectors -> what else can we do with these ofher very important channels?
- How does this influence the development of IP8?

Email me or any other FF convener if you have any questions!

Want to get involved?? Join our meetings and learn how!

Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/EPIC/index.php?title=FarForward
Email-list: eic-projdet-FarForw-l@lists.bnl.gov
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I

Backup

BO Detectors in CAD

Credit: Ron Lassiter and Karim Hamdi Blue lines represent where element locations are along beamline

T1(1) (a)

Roman "Pots" @ the EIC

25.6 cm

DD4HEP Simulation

- Technology
> 500um, pixilated AC-LGAD sensor, with 30-40ps timing resolution.
> "Potless" design concept with thin RF foils surrounding detector components.

More engineering work is currently underway to optimize the layout, support structure, cooling, and movement systems for inserting the detectors into the beamline.

Roman Pots and Off-Momentum Detectors

Roman Pots in CAD

Off-Momentum Detectors

Off-Momentum Detectors

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!
longitudinal momentum fraction

$$
x_{L}=\frac{p_{z, \text { proton }}}{p_{z, \text { beam }}}
$$

Preliminary CAD drawings of RP and OMD Supports and Magnet Cryostats

Roman Pots

Beam pipe

- Roman Pots are silicon sensors placed in a "pot", which is then injected into the beam pipe, tens of meters or more from the interaction point (IP).
- Momentum reconstruction carried out using matrix transport of protons through magnetic lattice.

Roman Pots

- Place roman pottery into the particle accelerator \rightarrow learn the deep mysteries of the universe?

Roman Pots

Roman pots at STAR - used to measure $p+p$ elastic scattering.

Roman "Pots" @ the EIC
25.6 cm

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.
ε is the beam emittance.

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z)}
$$

$>$ Low-pT cutoff determined by beam optics.
$>$ The safe distance is $\sim 10 \sigma$ from the beam center.
$>1 \sigma \sim 1 \mathrm{~mm}$
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Off-Momentum Detectors

Protons 123.75 < $\mathrm{E}<151.25 \mathrm{GeV}$
($45 \%<x L<55 \%$)
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

RP

Digression: Machine Optics

Digression: Machine Optics

Improves low p_{t} acceptance.

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct photons and neutrons from our various final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega production).
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct photons and neutrons from our various final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega production).
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Zero Degree Calorimeter (improved ALICE design):
- Dimension: $\mathbf{6 0} \mathbf{~ c m ~ x ~} \mathbf{6 0} \mathbf{~ c m ~ x ~} 168 \mathrm{~cm}$
- $\mathbf{3 0} \mathbf{~ m}$ from IR
- Detect spectator nucleon
- Acceptance: $\mathbf{+ 4 . 5} \mathbf{~ m r a d}, \mathbf{- 5 . 5 m r a d}$
- Position resolution $\sim 1.3 \mathrm{~mm}$ at $\mathbf{4 0} \mathbf{~ G e V}$
- Full reconstruction of photons (EMCAL) and neutrons (HCAL)

Credit to Shima Shimizu (Kobe U. , Japan)

Zero-Degree Calorimeter

Credit to Shima Shimizu (Kobe U. , Japan)

- Zero Degree Calorimeter (improved ALICE design):

Dimension: $60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 168 \mathrm{~cm}$ 30 m from IR
Detect spectator nucleon

- Acceptance: $\mathbf{+ 4 . 5} \mathbf{~ m r a d}, \mathbf{- 5 . 5 m r a d}$
- Position resolution $\sim 1.3 \mathrm{~mm}$ at $\mathbf{4 0} \mathbf{G e V}$
- Full reconstruction of photons (EMCAL) and neutrons (HCAL)

Sufficient calorimeter depth (radiation lengths, X_{0} for photons/electrons; nuclear interaction lengths, λ_{I} for neutrons/hadrons)

- Required for good energy resolution.

Granularity needed for proper reconstruction of shower.

- Finding the center of the shower needed to provide angular resolution to get neutron transverse momentum!

Zero-Degree Calorimeter with Stand

Preliminary Design of Zero-Degree Calorimeter with full support structure.

Zero-Degree Calorimeter

