Low-Q2 Tagger and Photoproduction at EIC

Simon Gardner

Exotic Heavy Meson Spectroscopy and Structure with EIC Stony Brook 18 August 2022

What/Where is the Low Q^2 tagger?

What can we expect regarding acceptance and resolutions?

Low Q² Tagger

Low Q^2 electrons pass through recirculation machine magnets. Electrons with reduced energy are separated from main beam. Tagger stations @ -20 m and -37 m.

Limitations

Low E does not escape dipole. High E too close to main beamspot. High Q2 caught by beampipe.

Quasi-Real Acceptance

Events from Jaroslav Adam https://github.com/adamjaro/GETaLM/

Spectroscopy Events

Events from Derek Glazier https://github.com/dglazier/elSpectro/

Conservative positioning of tagger 2. Options to extend in order to accept X events.

Energy Resolutions - Tagger 2 - 18 GeV

Energy, Q2 and phi reconstructed using TMVA DNN. Hit positions on detector planes with perfect resolution. Everything in beam vacuum.

Energy Resolutions - Tagger 2 - 18 GeV

Energy, Q2 and phi reconstructed using TMVA DNN. Hit positions on detector planes with perfect resolution. Everything in beam vacuum.

logQ² Resolution - Tagger 2 - 18GeV

Phi Resolutions - Tagger 2 - 18 GeV

Phi Resolutions - Tagger 2 - 18 GeV

Real Hit Phi Reconstruction

55um pix Phi Reconstruction

Real Hit Phi Reconstruction

Simplifies implementation but impacts physics.

Out of vacuum design - Resolutions

Synchrotron radiation

Direct and scattered.

Coincidence conditions can make false tracks negligible with small pixel pitch and 3+ layer track reconstruction.

Bremsstrahlung eletrons

Indistinguishable from photoproduction electrons below beam divergence. Coincidence with other detectors, (e.g. luminosity Bremstrahlung monitor) will provide scope for statistical separation.

END