

Belle II Results and Plans

Aug 15, 2022

Bryan Fulsom (PNNL)

Exotic heavy meson spectroscopy and structure with EIC Stony Brook, NY Aug 15-19, 2022

PNNL is operated by Battelle for the U.S. Department of Energy

in fb⁻

Luminosity

Integrated

B-Factories Legacy

e.g.: "The Physics of the B Factories", EPJC 74, 3026 (2014)

- 1999~2011 : BaBar (SLAC) & Belle (KEK)
- Flavor physics: CKM/UT, CPV in B decays
- Possible hints for NP in rare processes

Belle II / Bryan FULSOM (PNNL) / Exotics @ EIC / 2022.08.15

 $\mathcal{B}_{\mathcal{B}\mathcal{I}\mathcal{L}\mathcal{E}}$

Motivations for a next-generation B Factory

- Broad physics program
 - New Physics in precision/rare B meson decays
 - Dark sector particle searches
 - Spectroscopy of exotic QCD
 - ...and more

"The Belle II Physics Book", PTEP 2019, 123C01 (2019) "Belle II physics reach and plans for the next decade and beyond", SNOWMASS 2021 White Paper (2022)

- Advantages of Belle II
 - "Clean" environment
 - Full event reconstruction
 - Decay with neutrals (γ , π^{o} , K₁, v) in final state
 - Large statistics
 - Complementary to LHC

The Belle II Collaboration

- Experiment located at KEK in Tsukuba, Japan
- 1100+ members, 123 institutions, 26 countries

Accelerator Upgrade

- SuperKEKB Upgrade
 - "Nano-beam" interaction point
 - Increase in current
 - Goal: factor of 40x increase in luminosity
 - Nominal energy: e⁻ (7 GeV) e⁺ (4 GeV)

Belle II / Bryan FULSOM (PNNL) / Exotics @ EIC / 2022.08.15

for higher beam current

Belle II Detector Rebuild

- Order of magnitude luminosity increase means:
 - Higher background ✓ Radiation damage ✓ Detector readout
 - Higher event rate ✓ Trigger, DAQ, computing
 - Boost change ✓ Improve vertexing

Belle II Timeline

- 2016: "Phase 1": Beam commissioning
- 2017: Detector roll-in
- 2018: "Phase 2"
 - Background study w. partial detector
 - First collisions/data
- 2019: "Phase 3"
 - Nominal start of operations
 - 2021: Inst. lumi. record: >4.7x10³⁴cm⁻²s⁻¹
 - 2021: Non-Y(4S) Energy scan
- 2022-2023: "Long Shutdown 1"
 - Detector/accelerator upgrades
- 2023~2027: Resume operations, target: 5 ab⁻¹
- 2027+: "Long Shutdown 2" upgrade (?), continue up to 50 ab⁻¹

How do we study quarkonium experimentally? **Production Mechanisms**

- Multiple methods to produce quarkonium/exotics at Belle II
- Production mode provides important information (e.g. J^{PC}, type)

• Several of these are unique to Belle II

How do we study quarkonium experimentally? Decay Modes Exclusive $\Upsilon(5S) \rightarrow \pi^+\pi^-\Upsilon(1S)$

Decay modes

- Transitions: radiative (γ), hadronic ($\pi\pi$, π^0 , η , ...)
- Below-threshold: ee/µµ and hadronic
- Above-threshold: DD/BB dominate
- Inclusive analyses (complete decay chain)
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(pS) \rightarrow \mu^+\mu^-$
 - "Full Event Interpretation": collective B decays
 - Low statistics, but very clean
- Exclusive analyses ("missing" momentum)
 - E.g.: $e^+e^- \rightarrow \pi^+\pi^- X$
 - E.g.: $m_X = m_{miss} = sqrt[(p_{ee} p_{\pi\pi})^2]$
 - Knowledge of beam energy: full reconstruction not required

9

Belle II Potential – B Decay

- High-statistics continuation from B-Factories
- Competition from LHCb, advantages for modes with neutrals
 - Confirm Z_c states and search for neutral partners
 - Absolute branching fractions $B \rightarrow X(3872,3915) K$
 - X(3872) width and lineshape measurement with $D^0\overline{D}^0\pi^0$

N/20 MeV/c² 01100 BELLE 50

C=+'

Double cc

Pacific

Northwest

Initial state radiation

Belle II Potential – Other Processes

• ISR

- Continuous mass range >4.9 GeV/c²
- Higher masses/channels (e.g. $\gamma_{ISR}\Sigma_c\overline{\Sigma}_c$)
- Confirm Z_c states (e.g. $e^+e^- \rightarrow h_c \pi \pi$)
- Double-cc̄
 - $e^+e^- \rightarrow (c\overline{c})_{J=1}(c\overline{c})_{J=0}$ production rule
 - Discovery of X(3940, 4160)
 - Expand to other $c\overline{c}$, search for new states
- Two-Photon
 - J^{PC} of X(3915)
 - Confirm φJ/ψ state?
 - D^(*)D^(*) final states

Belle II Potential – Non-Υ(4S) Energies

- B-Factories extended their physics programs with non- $\Upsilon(4S)$ data
 - BaBar Υ (3S): discovery of $\eta_{\rm b}$ (1S)
 - Belle Υ(5S): discovery of h_b(1P, 2P), η_b(2S), Z_b(10610, 10650)[±]
 - KEKB/Belle energy scan data: Y_b(10753)

gd

Cross

Belle II Potential – 10.75 GeV

- Belle: seven ~1fb⁻¹ scan points below $\Upsilon(5S)$
- New structure observed in $\pi^+\pi^-\Upsilon(\ell^+\ell^-)$ transitions

	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 \\ -1.3}\substack{+1.0 \\ -1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0}_{-6.8}{}^{+0.7}_{-1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

Varying BB cross sections

 $\sigma(\Upsilon(1S)\pi^{+}\pi^{-})$ (pb) \sim \rightarrow \rightarrow

 $\sigma(\Upsilon(2S)\pi^{+}\pi^{-})$ (pb) or

10.6

10.5

• Revisit this energy region with greater statistics

Belle II / Bryan FULSOM (PNNL) / Exotics @ EIC / 2022.08.15

Why is the Y_b(10753) important?

- Uncertain nature
 - Molecular interpretation? Does not coincide with a threshold...
 - No clear conventional bb candidate
 - Potential tetraquark?

Conventional interpretations: Chen, Zhang & He, PRD 101, 014020 (2020) Li et al., EPJC 80, 59 (2020) Liang, Ikeno & Oset, PLB 803, 135340 (2020) **"Exotic" interpretations:** Wang, CPC 43, 123102 (2019) Ali, Maiani, Parkhomenko & Wang, PLB 802, 135217 (2020) Bicudo, Cardoso & Wagner, arXiv:2008.05605 (2020) Giron & Lebed, PRD 102, 014036 (2020)

• Big picture: relationship to puzzles in XYZ/charmonium system

Belle II Energy Scan Nov. 10-29, 2021 (JST)

Considerations

- Potential for early physics impact by Belle II
- Limited luminosity requirement (O(15/fb))
- Υ(6S) requires accelerator infrastructure upgrade
- Energy scan operation was successful
 - Unique high stat. points between previous Belle energies

Belle II / Bryan FULSOM (PNNL) / Exotics @ EIC / 2022.08.15

Belle II Energy Scan – First Results Observation of e⁺e⁻ $\rightarrow \omega \chi_{b,l}$ and search for $X_b \rightarrow \omega \Upsilon(1S)$

- Theoretical Predictions
 - $\mathscr{B}(Y(10753) \rightarrow \omega \chi_{b,l}) \sim 10^{-3}$ predicted for 4S-3D bb mixture
 - BESIII: $e^+e^- \rightarrow Y(4220) \rightarrow \pi\pi J/\psi$, $\gamma X(3872)$, $\omega \chi_{c0}$...implies X(3872) partner "X_b"?
- Belle II Results

- Observation of $\omega \chi_{b1,2}(\gamma \Upsilon(1S))$ decay in energy scan data
- Born cross section consistent with Y(10753) enhancement
- No evidence for $\gamma X_{\rm b} \rightarrow \omega Y(1S)$

Belle II Energy Scan – Future Results

- Active analyses based on energy scan data
 - Quarkonium spectroscopy (conventional and exotic)
 - Hadronic and radiative transitions
 - Inclusive and exclusive final states
 - Precision study of vector bottomonium
- Data at $\Upsilon(6S)$
 - Accelerator upgrades during "Long Shutdown"
 - I1 GeV will be accessible
 - Revisit this region with 10x statistics?

Golden Modes $B\overline{B}$ decomposition $\pi^+\pi^-$ Dalitz $Y_b \to \omega \eta_b(1S)$ $Y_b \to \omega \chi_{bJ}(1P)$ Silver Modes $Y_b \to \pi^+ \pi^- X$ (inclusive) $Y_b \to \eta X$ (inclusive) $Y_b \to \eta \Upsilon(1S, 2S) (\to \ell^+ \ell^-)$ $Y_b \to \eta' \Upsilon(1S) (\to \ell^+ \ell^-)$ $Y_b \to \Upsilon(1S)$ (inclusive) **Bronze** Modes $Y_b \to \gamma X_b$ $Y_b \to \pi^0 \pi^0 \Upsilon(pS) (\to \ell^+ \ell^-)$ $Y_b \to \pi^0 \pi^0 X$ (inclusive) $Y_b \to \pi^0 X$ (incl. or excl.)

 $e^+e^- \to \pi^+\pi^-\Upsilon(pS)(\to \ell^+\ell^-)$ $Y_b \to KK(\phi)\Upsilon(pS)(\to \ell^+\ell^-)$

Other Belle II Quarkonium Progress

Belle II: Charmonium(-like) Future

- B-Factories started the XYZs...but do not hold a monopoly!
 - Many statistics dominated B-decay modes covered by LHCb
 - BES III energy scans extending range above 4.9 GeV
- Still well-known for this legacy (e.g., X(3872) still the most cited paper), and essential for full understanding of these new states
- Key future contributions
 - Modes with neutrals (e.g., neutral Z partners, π^0 transitions/decays)
 - Unique double-charmonium ($e^+e^- \rightarrow c\overline{c} \ c\overline{c}$) and two-photon ($e^+e^- \rightarrow e^+e^- \ c\overline{c}$) production
 - Statistics-dominated: results will come with additional luminosity

Belle II: Bottomonium(-like) Future

- Belle II holds a special advantage
 - Able to exploit tunable beam energy in 9.4 11.2 GeV energy region
 - Main possibility to study Υ , Y_b , and Z_b states
 - Understanding of relationship between c- and b-sector spectroscopy
- Ability to run at non- $\Upsilon(4S)$ energies has been demonstrated
- Opens multiple possibilities
 - Revisit Y(6S) with 10x+ statistics
 - LFV/spectroscopy in Y(2S,3S) decays
 - Higher statistics scan of entire region and $\Upsilon(5S)$
 - E_{CM} to $\Lambda_b \overline{\Lambda}_b$ (beyond requires SuperKEKB upgrades)

20

- Belle II: next generation B-Factory
 - Advantages with clean event reconstruction, neutrals, unique production
 - Data collection underway since 2019, will continue through this decade
- Quarkonium / "XYZs" are a main component of the physics program
 - Belle II is poised to continue the successes of Belle
 - Energy scan recently performed to understand features near 10.75 GeV
 - Success serves as motivation for other non- $\Upsilon(4S)$ data: $\Upsilon(6S)$ and beyond
- Stay tuned for results at conferences this year

Thank you

