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Overview

I’m thrilled to now be part of BNL & NPPS group!

* My former activities: &I!Thﬁé
 Research at ATLAS

e Quali task: Evaluate taulD performance
* PhD thesis: Search for BSM A/H to tautau
* Other activities

* Deep Learning applications for LIDAR sensors KO aT@C h

 Computing challenges at DUNE (\
I * My planned involvement

NEUTRINO



Activities at ATLAS

* Search for BSM A/H to tautau in fully hadronic decay channel:
e Best limits in large part of MSSM parameter space

e Special challenges:

« Background from QCD o r

* Mass reconstruction (= 2v per event)
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Machine Learning for LIDARS - |
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Machine Learning for LIDARs - Il

Supervised learning approach
* Need large labelled data set

Developed Simulation
* MC potatoe generator
* Physics engine

 Detector simulation




Machine Learning for LIDARs - Il
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Deep Underground Neutrino Experiment

Sanford Underground
Research Facility

Fermilab
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Three primary physics goals:

* Determine CP violation in neutrino sector

* Investigate supernovae
e Search for proton decay .

NEUTRINOS!




DUNE Far Detector

* ~1 mile underground
* Four LAr TPC modules
e 17 kt LAr each
e 150 modules (APA) each

=180kV

wire #

time / ms




Computing Challenges for DUNE - |

DUNE will observe neutrino interactions at highest rate so far
e Overall amount of data is not too high (10-30 PB / year)
e But: DUNE trigger records (events) are large:
e 150 APAs with 2560 wires each
Read-out 12-bit ADCs every 0.5 us for ~6 ms
Roughly 6 GB uncompressed data per module per trigger record

Reading one full event into memory not feasible!

Sub-event processing necessary

Experiment RAW event size
ATLAS 3 MB
protoDUNE 200 MB

DUNE 6 GB

DUNE (Supernova) 460 TB




Computing Challenges for DUNE - li

Memory management not the only challenge:

e Future computing infrastructure unknown

* Compatibility with external software packages (Al / ML)
* Proper handling of conditions data

Goal: leverage expertise

from other experiments
through HSF




Conditions Data - Intro

“Conditions data is any additional data needed to process event data”

* Many different sources of conditions data
* Not yet fully understood, what information is really needed
* This must be figured out before designing a common approach
* ProtoDUNE is a good testing ground
* Currently: no unified approach — patchwork of different solutions

Heterogeneous sources of conditions data

Source (raw data) Indexed by N

Common conditions database:
Run metadata Run number
Slow controls Time stamp * Interface as homogeneous as
Detector status APA number possible

Geometry Global




Conditions Data - Sources

Run configuration

and history ‘1: Hardware
t_Online_ | |
Offline
Calibration
Dat lit
ata Quality > Conditions
Slow Controls
. |
. |
IFBeam Use .
: 4
. Analysis
Data Discovery Conditions?
SAM currently serves My JOb for now

this purpose

graph made by Paul Laycock / Norm Buchanan 12




Slow Controls (SC)

* SCADA system records raw data (indexed by time stamp)

e Stored in ‘SC archive’
* SC experts operate SCADA, not the the database

« Data base group (we) have to provide the database + offline access
* Problem: raw data written w/ very high granularity

* Way more granular than needed for offline processing

Ideal SO'Uthn SC Sufficient for offline
s DB processing

protoDUNE

Relevant for detector
experts only




HSF Recommendations — Cond. Data Model

* Dedicated HSF conditions data activity:
https://hepsoftwarefoundation.org/activities/conditionsdb.html
* Loose coupling between client and server using RESTful interfaces
* The ability to cache queries as well as payloads
* Separation of payload queries from metadata queries

GLOBAL TAG
name (unique id)

B ov
since : open intervals only

snapshot ; used for versioning

insertion time: versioning insartion time
b=l | me

< hash: payload reference
—

validity

TAG GLOBAL TAG MAP
PAYLOAD - :
- name (unigue id) global tag name
1ash
— - endOf\Validiy : close last iov tag name
BELOE: serialized objects , —
ee—— | incertion time: versioning

object type: serialization

record: client software

time type (runflumi, time, ...)
S —

Marko Bracko et al: EP Software Foundation Community White Paper Working Group — Conditions Data



https://hepsoftwarefoundation.org/activities/conditionsdb.html

Current State of conditions database

* |gor Mandrichenko wrote “Unstructured Conditions Database (UconDB)”
 Command line and API

$ ucondb folders $ ucondb objects test $ ucondb versions test file.dat

from ucondb.webapi import UConDBClient
client = UConDBClient(

data = client.get data( , version 1d=7183)
print(f

Retrieving the data via the API: type = ‘bytes’

So far, only Run config meta data is stored in UconDB (incomplete)

lgor provided login to experiment with uploading data
Ana Paula (CSU): include DAQ conditions data
Me: include slow controls conditions data




Finding database accesses in dunesw

* Familiarizing myself with DUNE software stack
* Simulation (evGen, G4, detSim, reco) looks reasonable

* Reconstructed real events appear empty in event display

WWHWWWFWWH ‘ Hll\lllllll\ll\l ‘HI
‘IHIlHII\IIHlHII‘HI

* |dentified four obvious DB queries so far: Corrections for lifetime, dQ/dx, X, YZ




My Next Steps

Mastering the DUNE software stack
* Reproduce chain from raw to reconstructed protoDUNE data
* Conduct example data analysis (typical use case)

|ldentify which databases are accessed and why

Drafting list of requirements for a centralised conditions database
* ProtoDUNE as test ground for DUNE
Get in touch with SC team

 Understand SC conditions data needs




Thank you for your attention
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Frontier Architecture

Frontier client

Site 1 Squid )

Backend

Frontier server

{ |
! " = I
Tomcat / Site 2 Squid Erontier cllont
- Reverse- AN

proxy
Squid

|
|

Frontier client

. 4 !

* Clients contact squid — Squid only contacts Frontier server if not already cached
* Frontier decodes request — contacts Backend
* Many powerful features: Queuing, load balancing, data compression...
e 2012 CMS study found 140:1 in requests 1000:1 in data reduction
* 5 million responses from 3 Frontier servers per day (40 GB)
e Squid caches served over 700 million (40 TB)




CernVM File System (CVMFS)

* Web based global file versioning system (POSIX, read-only)
* Originally designed & optimized for distribution of software installations

* Cryptographic hashes & signatures allow use of http - cacheable

e

Stratum 0

Client

Squ id proxy (icons via hitps.:/www.fiaticon.com/authors/smashicons)




Raw Data Flow in protoDUNE : the Concept

toDUNE online
e DAQ * farm EOS yénitoring

IYYVVYVYY

(tape)

Other US
sites

Meta
Data

ENSTORE
(tape)

Fuess, S., lllingworth, R., Mengel, M., Norman, A., Potekhin, M., & Viren, B. Design of the protoDUNE raw data management infrastructure.




BDT vs RNN TaulD

BDT TaulD
® 12 'high-level input variables

RNN TaulD
® BDT input variables

® Track-level variables

Rejection

® (Cluster-level variables

RNN clearly outclasses BDT 1D
® Expect =~ 30% higher di-Tau yield — RNN1P  —— RNN3P

--- BDT1P =--- BDT3P

3
o
But: New Scale Factors were needed for £ 2
1
RNN ID by tauWG 0 0.4 0.6 0.8 1.0
(Also BDT ID SF for full Run-2 dataset) Efficiency

yosina(g suyd) Aq 1014



Hadronically Decaying Tau-Leptons

® 7: only lepton that can decay hadronically
® Mainly into Pions

® Start from 'jet’ in calorimeter

® (Clustering algorithm 'anti-k+’

® Use BDT to classify tracks into tau tracks
conversion tracks isolation tracks and
pile-up tracks

o
ATLAS Simulation Internal

T-prong 7.

AT AR i

® After Reco: Thad.vis candidates mostly jets
from quarks/gluons

.|

0L

Fraction of 7 . candidates / 0.02

® RNN lIdentification ('ID") algorithm to _ Ty
- - - _ ¥ ' 0-5 T R | saleasesleaaal PETI TN AT 1l MDA o | ==y |
discriminate against 'fakes 70701702703 04 05 06 07 08 09 1

AMNM score




TaulD Scale Factors B\ N
5 reliminary Simulation
104§ =
: ]
10°E =
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Search for BSM A/H to tautau

% 10° AﬁASE;13wVJéQ$1II‘

* Tau-Leptons very promising for £ L OV
searches for BSM Higgs } 1102 T g:*m

e Two parameters to describe MSSM (: y
Higgs sector at tree level :Z ....... I

* Focus on fully-hadronic di-tau final state 10_3?,4 - ? """ 5

« Special challenges: f S /(// %/2%
* Much background from QCD ° i S 560*& (foo =

m [GeV]

* At least two neutrinos

tan B

e Difficult masss reconstruction
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