Transfer matrix for Roman Pot detectors

Barak Schmookler

How to calculate $1^{\text {st }}$ order reconstruction matrix

>As one example of analysis in the far-forward region, we want to be able to reconstruct 3 quantities at the interaction point (IP) - the relative rigidity $\left(R_{\text {Rig }}\right)$ and the scattering angles $\left(\theta_{x, i p}, \theta_{y, i p}\right)$ - as a function of the positions and angles measured at the Roman Pot (RP)

- We use the 275 GeV setting and generate single protons as follows

1. Fluctuate $R_{\text {Rig }}$ with $\theta_{x, i p}=\theta_{y, i p}=0$
2. Fluctuate $\theta_{x, \text { ip }}$, with $\mathrm{R}_{\mathrm{Rig}}=\theta_{\mathrm{y}, \mathrm{ip}}=0$
3. Fluctuate $\theta_{y, \text { ip }}$, with $R_{\text {Rig }}=\theta_{x, \text { ip }}=0$
$>$ We can then calculate the positions (at one of the RPs - we choose the second one) and angles at the RP as function of the IP quantities. Inverting these relations will allow us to determine the reconstruction matrix.

Current IP6 configuration

First configuration: $\mathrm{R}_{\text {Rel }}$ generation

1	21	11	0	3	4
2	21	2212	0	0	0
3	21	22	1	0	0
4	1	11	1	0	0
5	1	2212	0	0	0

$$
\begin{array}{rrr}
-10 & 10 & 0.000511 \\
275 & 275.0016007 & 0.9383 \\
-15 & 5 & 0 \\
5 & 5 & 0.000511 \\
10.857 & 310.858 & 0.9383
\end{array}
$$

- Forward spectrometer set assuming 275 GeV proton beam.
- Protons are then generated with rigidity difference of [-15\%,15\%], and no transverse momentum. That is, protons are generated with a momentum ($0,0,275^{*}$ (1+relative rigidity)).
- The eic-smear format SIMPLE format is useful for this purpose.
- Next, a minimal (i.e. smallest possible change in energy) Lorentz transformation is applied so that the proton beam goes at 25 mR ad relative to the z-direction. This causes the generated protons to have some transverse momentum, which is a function of the rigidity difference.

Changes to default simulation

$>$ For these studies, it is simplest to only turn on the far-forward region. Also, we turn off all smearing effects in order to get the 'true' transport matrix.
$>$ Step-by-step, we do the following:

1. In steering macro, remove central detector and set world volume to

G4_Galactic and turn off far-forward beam pipes
2. Use crossing angle in G4_Input.C, but turn off all other beam effects

Dependence on $R_{\text {Rel }}$-I

Dependence on $R_{\text {Rel }}$ - II

Dependence on $R_{\text {Rel }}$ - III

Dependence on $\theta_{\text {x,ip }}-I$

Dependence on $\theta_{\mathrm{x}, \mathrm{ip}}$ - II

Dependence on $\theta_{x, \text { ip }}$ - III

Dependence on $\theta_{\gamma, \text { ip }}$ - I

Dependence on $\theta_{\gamma, \text { ip }}$ - II

Dependence on $\theta_{Y, i p}$ - III

Calculated reconstruction matrix

$$
\begin{gathered}
{\left[\begin{array}{l}
x_{r p 2} \\
\theta_{x, r p} \\
y_{r p 2} \\
\theta_{y, r p}
\end{array}\right]=\left[\begin{array}{ccc}
2.77 & 0 & 0.201 \\
0.169 & 0 & 0.182 \\
0 & 0.513 & 0 \\
0 & -0.072 & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{x, i p} \\
\theta_{y, i p} \\
R_{\text {Rel }}
\end{array}\right]+\left[\begin{array}{c}
0.027 \\
-0.418 \\
-0.007 \\
-0.007
\end{array}\right]} \\
{\left[\begin{array}{c}
x_{r p 2} \\
\theta_{x, r p} \\
y_{r p 2} \\
\theta_{y, r p}
\end{array}\right]_{c o r r}=\left[\begin{array}{c}
x_{r p 2} \\
\theta_{x, r p} \\
y_{r p 2} \\
\theta_{y, r p}
\end{array}\right]-\left[\begin{array}{c}
0.027 \\
-0.418 \\
-0.007 \\
-0.007
\end{array}\right]} \\
{\left[\begin{array}{c}
\theta_{x, i p} \\
\theta_{y, i p} \\
R_{R e l}
\end{array}\right]=\left[\begin{array}{ccc}
0.387 & -0.428 & 0 \\
0 & 0 & 1.95 \\
-0.359 & 5.89 & 0
\end{array}\right]\left[\begin{array}{c}
x_{r p 2} \\
\theta_{x, r p} \\
y_{r p 2}
\end{array}\right]_{c o r r}}
\end{gathered}
$$

Positions in cm
Angles in mRad
Rigidity in \%

Current IP8 configuration

IR8 RP1 (in second set of RPs) x position vs. $R_{\text {Rel }}$

100 GeV Results

275 GeV Results

> Good linear dependence
$>$ Independent of beam energy
$>$ Large offset from zero
$>$ Acceptance cut off at large $\left|R_{\text {Rel }}\right|$

