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Quantum Field Theory is a universal mathematical structure that
follows from two central pillars of modern physics

Quantum Mechanics

Special Relativity
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It is the main framework in Elementary Particles, Statistical
Mechanics, Condensed Matter, Stochastic Processes, and
Cosmology.
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There are many possible models in QFT. A fundamental question
is to understand how they are related.

For example, we can start from some given model and deform the
Feynman integral (or the Hamiltonian) by

〈e
∫
ddx

∑
i λ

iOi 〉
where the Oi are various functions of the degrees of freedom.
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The most fundamental and confusing observation is that the λi are
not really well defined numbers [Landau et al, Gell-Mann Low,
Kadanoff, Wilson...]!!

Their actual numerical value depends on the resolution of the
experiment.
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As we decrease the resolution (i.e. we coarse grain) the various
options are

Irrelevant: the coupling λ decreases as we go to long
distances.

Relevant: the coupling λ increases as we go to long distances.

Exactly Marginal: the coupling does not change: it is a
genuine number.

The last option is pretty rare but it appears in supersymmetric
theories and in 2d models such as the Ashkin-Teller model.
Note: the irrelevant (relevant) couplings could decrease (increase)
as a power law or logarithmically in the resolution.
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Typically: Only finitely many relevant couplings!

By removing all the relevant couplings by hand (turning knobs/fine
tuning) we find a theory that at sufficiently long distances no
longer depends on the resolution.
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We call such points that are invariant under coarse graining fixed
points. A more correct way to think about such flows and fixed
points is as a gradient flow
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Example 1: A Ferromagnet.

Ld spins with nearest-neighbor interaction energy J > 0 if they are
misaligned.
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Example 2: The water-vapor transition.
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Example 3: The confinement-deconfinement transition in SU(2)
Yang-Mills theory.

Hadrons turn into a plasma of gluons.
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All of these examples have at some Tc the same fixed point,
which is the 3d Ising model! Long range correlations develop and
micro structure becomes irrelevant.
Ginzburg-Landau theory:

H =

∫
ddx

(
r(∇M)2 + cM2 + λM4 + ...

)
The partition function

Z =

∫
[dM]e−H

encodes all the thermodynamics properties at the phase transition.
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Some experimentally interesting quantities are the exponents
α, β, γ, δ, η, ν

C ∼ (T − Tc)−α , M ∼ (Tc − T )β , χ ∼ (T − Tc)−γ ,

M ∼ h1/δ , 〈M(~n)M(0)〉 ∼ 1

|~n|d−2+η
, ξ ∼ (T − Tc)−ν .
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Amazingly, one discovers four relations between these 6 quantities:

α + 2β + γ = 2 ,

γ = β(δ − 1) ,

γ = ν(2− η) ,

νd = 2− α .
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The explanation of this miracle is that at Tc the symmetry of the
system is enhanced:

SO(3)× R3 → SO(3)× R3 × R+ ,

with
R+ : x → λx

and λ ∈ R+.
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The dilation charge associated to R+ is called ∆. It can be
diagonalized. If we have a local operator O in the theory, ∆(O)
would uniquely determine its two-point correlator

〈O(n)O(0)〉 ∼ 1

n2∆(O)
.

Local operators could also have spin s, but we suppress it in the
meantime.
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We can make contact with our previous terminology:

Relevant: ∆ ≤ 3

Irrelevant: ∆ ≥ 3

(For ∆ = 3 a separate analysis of 〈O(n)O(n′)O(n′′)〉 is necessary.)

The relevant operators appear in phase diagrams and the irrelevant
ones disappear at long distances.

(irrelevant operators can be dangerously irrelevant and affect the phase diagram, but not the fixed point – e.g.

perovskite materials)
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In the 3d Ising model, there are two relevant operators: M(x) and
ε(x).

∆M = 0.518... , ∆ε = 1.413...

Ferromagnet: magnetic field and temperature.

water-vapor: pressure and temperature.

SU(2) Yang-Mills: fundamental quark mass and temperature.

These two numbers are ”fundamental constants.”
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The four miraculous relations among α, β, γ, δ, η, ν can be simply
understood from scale invariance:

α =
d − 2∆ε

d −∆ε
,

β =
∆M

d −∆ε
,

γ =
d − 2∆M

d −∆ε
,

δ =
d −∆M

∆M
,

η = 2− d + 2∆M ,

ν =
1

d −∆ε
.
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This is how these relations were originally explained.

There has been a lot of recent progress based on the observation
that the symmetry is actually bigger!!

SO(3)× R3 → SO(3)× R3 × R+ → SO(4, 1)

Theories with this big symmetry are called (3d) Conformal Field
Theories (CFTs). There are many such theories. The 3d Ising
model is perhaps the simplest nontrivial example. [Polyakov?!]
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Applications of Conformal Field Theories:

Quantum phase transitions

Many fixed points of the renormalization group can be constructed
starting from lattice quantum systems and tuning to second order
phase transitions at zero temperature. This can be done in 1+1,
2+1, and 3+1 dimensions.
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We will now consider point-like defects/impurities in a system at a
second-order phase transition.

<latexit sha1_base64="/qT1OxzBzsy0mz2bBgYaU5f8pyg=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1UQhJKIqBuh6Ka4qtgXNCFMJpN26CQTZiaFEvIDbvwVNy4UcevenX/j9LHQ1gMXzpxzL3Pv8RNGpbKsb6OwtLyyulZcL21sbm3vmLt7LclTgUkTc8ZFx0eSMBqTpqKKkU4iCIp8Rtr+4Hbst4dESMrjhholxI1QL6YhxUhpyTOPatd3npU5Q4JhI3dwwBWcvh7y05qX+Skb5J5ZtirWBHCR2DNSBjPUPfPLCThOIxIrzJCUXdtKlJshoShmJC85qSQJwgPUI11NYxQR6WaTa3J4rJUAhlzoihWcqL8nMhRJOYp83Rkh1Zfz3lj8z+umKrxyMxonqSIxnn4UpgwqDsfRwIAKghUbaYKwoHpXiPtIIKx0gCUdgj1/8iJpnVXsi4p9f16u3sziKIIDcAhOgA0uQRXUQB00AQaP4Bm8gjfjyXgx3o2PaWvBmM3sgz8wPn8AVyabIA==</latexit>

H = J0
~T · ~S + Hbulk
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Impurities are localized in space and they are lines in space-time.
Therefore, in QFT, we think about impurities as line operators/line
defects in space-time.

Zohar Komargodski From the Kondo Problem to Wilson Lines — Defects in Many-Body Systems



The subject of line defects has been historically extremely
productive. The Kondo line defect in 2d has led to the
renormalization group [Wilson...], to substantial progress on
integrability [Andrei, Tsvelick-Wiegmann...], and of course to the
development of conformal symmetry at the end points of the RG
flow.
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We will touch briefly upon several subjects:

RG flows on line defects and a new theorem.

Magnetic field defects as an application.
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Consider a straight line in a d-dimensional CFT. It can be
conformal or non-conformal. A conformal line preserves

SL(2,R)× SO(d − 1)

(we assume the line has no transverse spin). A non-conformal line
preserves

R× SO(d − 1) .

It describes a point-like impurity in space at zero temperature, with
a critical bulk. At long distances, the impurity becomes critical.
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A central question is if the impurity becomes trivial (=screened) at
long distances.

We will consider below a simple example of an impurity: a
localized magnetic field in a quantum anti-ferromagnet.

As we go to longer distances, what are the effects of such a
magnetic field?

Zohar Komargodski From the Kondo Problem to Wilson Lines — Defects in Many-Body Systems



An interesting quantity that we can define is “defect entropy.” We
make the line into a Euclidean circle of radius R and compute the
expectation value of the circle:

s =

(
1− R

∂

∂R

)
log〈L〉 .

The differential operator
(
1− R ∂

∂R

)
ensures that the answer is

independent of the “cutoff” i.e. details on the lattice scale.
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At the fixed point of the impurity renormalization group the
value of s is R-independent.

For trivial impurities (=screened impurities) we have s = 0.

It is hard to imagine how s is going to be measured in
quantum phase transitions, but it is theoretically a very useful
device.

The main claim to fame of this defect entropy is that

R
∂s

∂R
≤ 0

Therefore also sir < suv .
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s(M0R)→
{
suv as R → 0
sir as R →∞

The renormalization group flow is implemented by changing the
radius of the circle of the defect worldline.

The trivial line defect is just the unit line operator. It is completely
transparent. It has s = 0.

Corollary: If the line is trivial in the short distance limit then
sir < 0 and hence any relevant perturbation cannot lead to a
screened impurity.
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The localized magnetic field in a quantum anti-ferromagnet is an
example of a defect with suv = 0. More generally: integrate a bulk
operator with ∆ < 1 on the line:

S = Sbulk + M1−∆O
0

∫
dtO(t)

An external magnetic field corresponds to O = φ1 in the O(N)
Wilson-Fisher fixed point and indeed we know ∆(φ1) < 1.
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The Pinning Field in O(N) Models

Consider the O(N) model in 2 ≤ d ≤ 4 with an external localized
magnetic field:

S = SO(N) + h

∫
dtφ1(t)

where SO(N) stands for the critical bulk O(N) model in d

space-time dimensions and φ1 is the first component of ~φ.

This is a relevant perturbation in 2 ≤ d ≤ 4. This must flow to a
nontrivial infrared conformal defect in any 2 ≤ d < 4. Hence, the
external magnetic field cannot be “screened” and cannot disappear.
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The Pinning Field in O(N) Models

This is physically realizable as a localized magnetic field at zero
temperature at a bulk quantum critical point and it can be tested
in quantum critical points and also in Monte Carlo [....Assaad,
Herbut; Parisen Toldin, Assaad, Wessel....].

This infrared fixed point will have no nontrivial relevant operators
whatsoever.
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The Pinning Field in O(N) Models

In principle, understanding the infrared is a strongly coupled
problem.
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The Pinning Field in O(N) Models

Here is a sample of results at large N and d = 3 in the deep
infrared:

s = −0.1536N +O(N0)

∆(φ̂1) = 1.542...+O(N−1)

Note: s is arbitrarily negative at large N.
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The Pinning Field in O(N) Models

Combining all the data we amassed suggests that in d = 3 one
should expect ∆(φ̂1) ∼ 1.5 with rather weak N dependence. This
is the first nontrivial O(N − 1) singlet operator. It is roughly
consistent with Monte Carlo simulations and this along with
several other predictions should be testable.
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Spin Impurities

Another important line defect especially for the O(3) magnet
comes about as follows: We begin with QM with a spin s
representation of SO(3), so just a QM system with Hilbert space
of dimension 2s + 1. We then couple the SO(3) generators Sa to
the interacting bulk:

S = SO(3) − γ
∫

dtSa(t)φa(t) .

This is the line operator

TrsPe
γ
∫
dtSaφa .

It is similar to Wilson lines but it is just a line defect in a magnet.
It is essentially a 2+1 dimensional generalization of the Kondo
problem.
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Spin Impurities

Physically this is realizable by putting an external atom of spin s in
a quantum anti-ferromagnet at the critical point. While there is a
lot to say about this problem here I will mention one general result.
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Spin Impurities

At s →∞ the spin impurity breaks up into two almost-decoupled
DCFTs, one being the pinning field DCFT we studied above and
the other being just the theory of a free spin s. There is a
systematic 1/s expansion. This statement leads to many
predictions that can be checked in the future.
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Spin Impurities

Some very special case of this was verified in QMC in a paper that
appeared today by Manuel Weber and Matthias Vojta.
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Wilson Lines

I will close with one brief comment about Wilson lines. Let us for
instance consider Wilson lines in some conformal gauge theory with
gauge group SU(2):

TrsPe
i
∫
dtSaAa

Alternatively we can seek a conformal defect labeled by s with a
Coulomb field

A0 ∼
g2
YMs

r

However for large s there will be pair creation due to this huge
electric field a-la Schwinger.
So what is the space of Wilson line defects seems like an open
question.
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Thank you for your attention!
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