Towards an All-Orders Flavor Formalism in the (geo)SM(EFT) \& Beyond

Jim Talbert
DAMTP, Cambridge

[2107.03951]
JHEP w/ M. Trott

+ future work!

19 May 2022 || Brookhaven National Lab || (Virtual) Theory Seminar

Flavor in the SM

$$
\left.\mathcal{L}_{S M}^{Y} \supset Y_{p r}^{u} \bar{Q}_{L, p} \tilde{H} u_{R, r}+Y_{p r}^{d} \bar{Q}_{L, p} H d_{R, r}+Y_{p r}^{e} \bar{L}_{L, p} H e_{R, r}+\text { h.c. } \quad \downarrow \quad \mathbf{U} \mathbf{3}\right)^{5}
$$

- From these (fundamental) Lagrangian terms one can use field redefinitions to show that only 9 masses, 3 mixing angles, and one CP-violating phase are needed for physical description.

$$
\begin{aligned}
& {\left[U_{\psi L}^{\dagger}\right]_{i r}\left[\mathcal{Y}^{\psi}\right]_{r p}\left[U_{\psi R}\right]_{p j} \equiv\left[D_{\psi}\right]_{i j}=\operatorname{diag}\left(y_{\psi 1}, y_{\psi 2}, y_{\psi 3}\right) \quad V_{C K M} \equiv U_{u}^{\dagger} U_{d} \equiv\left(\begin{array}{c}
V_{u d} \\
V_{u s} \\
V_{c d} \\
V_{c c} \\
V_{t d} \\
V_{t s}
\end{array} V_{c b} .\right.}
\end{aligned}
$$

13 free and unexplained parameters exist in SM Yukawa sector

Flavor Beyond the SM

- BSM flavor physics tends to come in two forms. On the one hand, one might want to explain the patterns of mass and mixing in the SM...

$$
\mathcal{G}_{B S M} \times S M \quad \mathcal{R}\left(\mathcal{G}_{B S M}\right) \sim 3, \overline{3}, 2,1, \ldots
$$

$$
\begin{gathered}
\mathcal{L}_{U V} \sim \psi \theta_{3} A+\bar{A} H A+\ldots \quad \mathcal{L}_{I R} \sim \psi \theta_{3} H \theta_{3} \psi^{c} \\
\left\langle\theta_{3}\right\rangle=v_{3} \cdot(0,0,1) \quad \square \quad \mathcal{M} \propto v_{3}^{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- On the other hand, one might want to introduce a new flavored state in the IR spectrum, to account for new physics that can be tested experimentally. Leptoquarks (e.g.) are popular these days...

$$
\Delta_{3} \sim(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)
$$

$\mathcal{G}_{S M} \equiv S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$

- In either instance, one can parameterize the effects of said new physics into an OPE composed of SM fields and gauge symmetries, the so-called SMEFT:

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_{i}^{(d)}
$$

Describing Flavor in the SM(EFT) \& Beyond

Standard Model

EFTs of Flavor

SMEFT

$$
Y^{i j} \sim\left(\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right) \quad Y^{i j} \sim \sum_{k}\left[f_{k}(\langle\theta\rangle)\right]_{1}^{i j} \quad Y^{i j} \sim Y_{S M}^{i j}+\left[C_{\psi H}^{(6)}\right]^{i j} \cdot \Lambda^{-2}
$$

- Regardless of the formalism, physical predictions for flavored processes depend on the 9 parameters associated to mass eigenstates and their quantum mixings:

$$
\left[U_{\psi L}^{\dagger}\right]_{i r}\left[\mathcal{Y}^{\psi} \mathcal{Y}^{\psi, i, j}\right]_{r p}\left[U_{\psi L}\right]_{p j}=\operatorname{diag}\left(y_{\psi 1}^{2}, y_{\psi 2}^{2}, y_{\psi 3}^{2}\right) \quad V_{C K M}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Do you know how to write $\mathrm{y}^{2}(\mathrm{Y}), \theta(\mathrm{Y}), \delta(\mathrm{Y})$?

Outline

The geoSMEFT, Intuited

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{i} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{Q}_{i}^{(d)} \quad \square \quad \mathcal{L}_{\text {SMEFT }}=\sum_{i} G_{i}(I, A, \phi, \ldots) f_{i}
$$

G: 'field space connections' built from successive insertions of Higgs fields
f: operator forms composed of Lorentz-index-carrying building blocks of the Lagrangian

$$
\bar{v}_{T} \equiv \sqrt{2\left\langle H^{\dagger} H\right\rangle}
$$

$$
D \leq 4
$$

Gauge Field-Strength Terms at $\mathrm{D}=6$ (e.g.)

$$
\begin{gathered}
\mathcal{W}^{A}=\left\{W_{1}, W_{2}, W_{3}, B\right\} \\
\equiv-\frac{1}{4} g_{A B}(H) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu}
\end{gathered}
$$

-> geometries

$$
g_{a b}=\left(1-4 \frac{C_{H W}}{\Lambda^{2}} H^{\dagger} H\right) \delta_{a b}
$$

$$
\mathcal{L}_{\mathrm{WB}}=-\frac{1}{4} W_{\mu \nu}^{a} W^{a, \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}+\frac{C_{H B}}{\Lambda^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}
$$

$$
g_{a 4}=g_{4 a}=-2 \frac{C_{H W B}}{\Lambda^{2}} H^{\dagger} \sigma_{a} H
$$

$$
+\frac{C_{H W}}{\Lambda^{2}} H^{\dagger} H W_{\mu \nu}^{a} W^{a, \mu \nu}+\frac{C_{H W B}}{\Lambda^{2}} H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} B^{\mu \nu}
$$

$$
g_{44}=1-4 \frac{C_{H B}}{\Lambda^{2}} H^{\dagger} H
$$

Connection amounts to metric in field space, whose degree of curvature depends on size

Building Up the $\mathrm{g}_{\mathrm{AB}}(\phi)$ Metric

- Consider the higher-order operators that can connect two gauge field strengths:

$\operatorname{Dim} 6+$	$\begin{array}{l}Q_{H B}^{(6+2 n)}=\left(H^{\dagger} H\right)^{n+1} B^{\mu \nu} B_{\mu \nu}, \\ Q_{H W}^{(6+2 n)}=\left(H^{\dagger} H\right)^{n+1} W_{a}^{\mu \nu} W_{\mu \nu}^{a}, \\ Q_{H W B}^{(6+2 n)}=\left(H^{\dagger} H\right)^{n}\left(H^{\dagger} \sigma^{a} H\right) W_{a}^{\mu \nu} B_{\mu \nu}\end{array}$
$\operatorname{Dim} 8+$	$Q_{H W, 2}^{(8+2 n)}=\left(H^{\dagger} H\right)^{n}\left(H^{\dagger} \sigma^{a} H\right)\left(H^{\dagger} \sigma^{b} H\right) W_{a}^{\mu \nu} W_{b, \mu \nu}$

That the operator forms saturate at all orders can be seen with Hilbert Series techniques:

	Mass Dimension					
Field space connection	6	8	10	12	14	
$g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu}$	3	4	4	4	4	

- Expanding in terms of real scalar fields, and combining into a single gauge field ($A, B=1,2,3,4$), one can write

$$
\begin{aligned}
& H\left(\phi_{I}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\phi_{2}+i \phi_{1} \\
\phi_{4}-i \phi_{3}
\end{array}\right] \\
& \mathcal{W}^{A}=\left\{W_{1}, W_{2}, W_{3}, B\right\} \\
& g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu} \\
& g_{A B}\left(\phi_{I}\right)=\left[1-4 \sum_{n=0}^{\infty}\left(C_{H W}^{(6+2 n)}\left(1-\delta_{A 4}\right)+C_{H B}^{(6+2 n)} \delta_{A 4}\right)\left(\frac{\phi^{2}}{2}\right)^{n+1}\right] \delta_{A B} \\
& +\sum_{n=0}^{\infty} C_{H W, 2}^{(8+2 n)}\left(\frac{\phi^{2}}{2}\right)^{n}\left(\phi_{I} \Gamma_{A, J}^{I} \phi^{J}\right)\left(\phi_{L} \Gamma_{B, K}^{L} \phi^{K}\right)\left(1-\delta_{A 4}\right)\left(1-\delta_{B 4}\right) \\
& +\left[\sum_{n=0}^{\infty} C_{H W B}^{(6+2 n)}\left(\frac{\phi^{2}}{2}\right)^{n}\right]\left(\phi_{I} \Gamma_{A, J}^{I} \phi^{J}\right)\left(1-\delta_{A 4}\right) \delta_{B 4},
\end{aligned}
$$

- This field-space connection is therefore valid at all-orders in v/ $\boldsymbol{\wedge}$! In the Higgsed phase the connection reduces to a number + emissions of h.

The geoSMEFT at 2 \& 3 pts

- EOM / Hilbert Series techniques allows for proof of all 2- and 3-pt field space connections!

	Mass Dimension				
Field space connection	6	8	10	12	14
$h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D^{\mu} \phi\right)^{J}$	2	2	2	2	2
$g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu}$	3	4	4	4	4
$k_{I J A}(\phi)\left(D^{\mu} \phi\right)^{I}\left(D^{\nu} \phi\right)^{J} \mathcal{W}_{\mu \nu}^{A}$	0	3	4	4	4
$f_{A B C}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \nu \rho} \mathcal{W}_{\rho}^{C, \mu}$	1	2	2	2	2
$Y_{p r}^{u}(\phi) \bar{Q} u+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{d}(\phi) \bar{Q} d+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{e}(\phi) \bar{L} e+$ h.c.	$2 N_{f}^{2}$				
$d_{A}^{e, p r}(\phi) \bar{L} \sigma_{\mu \nu} e \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{u, p r}(\phi) \bar{Q} \sigma_{\mu \nu} u \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{d, p r}(\phi) \bar{Q} \sigma_{\mu \nu} d \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$L_{p r, A}^{\psi_{R}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, R} \gamma_{\mu} \sigma_{A} \psi_{r, R}\right)$	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}
$L_{p r, A}^{\psi_{L}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, L} \gamma_{\mu} \sigma_{A} \psi_{r, L}\right)}$	$2 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$

- All-orders connections field-redefinition invariant \& yield large reduction in operators (EFT parameters)!
- Lagrangian parameters \& Feynman rules obtained at all v/^ orders before physical amplitude calculated!
- This is more than reorganization. It allows for all-orders amplitudes of fundamental processes:

$$
\bar{\Gamma}_{Z \rightarrow \bar{\psi} \psi}=\sum_{\psi} \frac{N_{c}^{\psi}}{24 \pi} \sqrt{\bar{m}_{Z}^{2}}\left|g_{\mathrm{eff}}^{Z, \psi}\right|^{2}\left(1-\frac{4 \bar{M}_{\psi}^{2}}{\bar{m}_{Z}^{2}}\right)^{3 / 2}
$$

$$
g_{\mathrm{eff}}^{Z, \psi}=\frac{\bar{g}_{Z}}{2}\left[\left(2 s_{\theta_{Z}}^{2} Q_{\psi}-\sigma_{3}\right) \delta_{p r}+\bar{v}_{T}\left\langle L_{3,4}^{\psi, p r}\right\rangle+\sigma_{3} \bar{v}_{T}\left\langle L_{3,3}^{\psi, p r}\right\rangle\right]
$$

geoSMEFT Pheno @ dim-8: [2007.00565][2107.07470][2102.02819][2203.11976]; (tadpole)[2106.10284]
Compliments work from Dawson et al.: [2110.06929] [2201.09887] [2205.01561] + ...

Flavoring the geoSMEFT

- Yukawa-like operators of the SMEFT are given by

$$
\underset{\substack{\psi_{p r}}}{6+2 n}=\left(H^{\dagger} H\right)^{n+1}\left(\bar{\psi}_{L, p} \psi_{R, r} H\right) \quad \text { with } \quad n \geq 0
$$

- In the geoSMEFT formalism this all-order tower in v / Λ is captured by Yukawa field space connections:

$$
\begin{aligned}
& Y(\phi) \bar{\psi}_{1} \psi_{2} \\
& Y_{p r}^{\psi_{1}}\left(\phi_{I}\right)=\left.\frac{\delta \mathcal{L}_{\text {SMEFT }}}{\delta\left(\bar{\psi}_{2, p}^{I} \psi_{1, r}\right)}\right|_{\mathcal{L}(\alpha, \beta, \ldots) \rightarrow 0} \\
& Y_{p r}^{\psi}\left(\phi_{I}\right)=-H\left(\phi_{I}\right)\left[Y_{\psi}\right]_{p r}^{\dagger}+H\left(\phi_{I}\right) \sum_{n=0}^{\infty} C_{\substack{\psi H \\
\hline H}}^{(6+2 n)}\left(\frac{\phi^{2}}{2}\right)^{n}
\end{aligned}
$$

- From this one can immediately derive the all-orders effective Yukawa interactions, in terms of SM and SMEFT contributions:

$$
\left[\mathcal{Y}^{\psi}\right]_{r p}=\left.\frac{\delta\left(Y_{p r}^{\psi}\right)^{\dagger}}{\delta h}\right|_{\phi_{i} \rightarrow 0}=\frac{\sqrt{h}^{44}}{\sqrt{2}}\left(\left[Y_{\psi}\right]_{r p}-\sum_{n=3}^{\infty} \frac{2 n-3}{2^{n-2}} \tilde{C}_{\substack{\psi H \\ p r}}^{(2 n), \star}\right)
$$

$$
\left[M_{\psi}\right]_{r p}=\left\langle\left(Y_{p r}^{\psi}\right)^{\dagger}\right\rangle
$$

All-Orders Flavor Formalisms

Back to Basics: Two-Flavor Approximations

Do you know how to write $\mathrm{y}^{2}(\mathrm{Y}), \theta(\mathrm{Y}), \delta(\mathrm{Y})$?

- In 2D, one can straightforwardly diagonalize the associated Yukawa couplings:

$$
\begin{gathered}
\mathcal{Y}=\frac{\sqrt{h}^{44}}{\sqrt{2}}\left[\left(\begin{array}{ll}
Y_{11} & Y_{22} \\
Y_{21} & Y_{22}
\end{array}\right)-\sum_{n=3}^{\infty} \frac{2 n-3}{2^{n-2}}\left(\begin{array}{c}
\tilde{C}_{11}^{(2 n), \star} \\
\tilde{C}_{12}^{(2 n), \star} \\
\tilde{C}_{22}^{(2 n), \star} \\
(2 n), \star
\end{array}\right)\right] \quad\left|\mathcal{Y}^{\dagger}\right| \equiv\binom{\left|y_{11}\right|\left|y_{12}\right|}{\left|y_{12}\right|\left|y_{22}\right|} \Longrightarrow U=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
-\sin \theta \cos \theta
\end{array}\right) \\
y_{i, j}^{2}=\frac{1}{2}\left(y_{11}+y_{22} \mp \sqrt{y_{11}^{2}+4 y_{12}^{2}-2 y_{11} y_{22}+y_{22}^{2}}\right), \quad t_{2 \theta}=\frac{2\left|y_{12}\right|}{\left(\left|y_{22}\right|-\left|y_{11}\right|\right)}
\end{gathered}
$$

- However, results are basis-dependent, and at $N_{f}=3$ one finds that standard techniques are ...

$$
\begin{aligned}
& \text { Results } \\
& \lambda_{1}=\frac{1}{3}\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}+e e^{*}+2 f f^{*}+g g^{*}+h h^{*}\right)+ \\
& \frac{1}{3 \sqrt[3]{2}}\left(\left(2 a^{3}\left(a^{*}\right)^{3}+6 a^{2} b b^{*}\left(a^{*}\right)^{2}+6 a^{2} c c^{*}\left(a^{*}\right)^{2}+6 a^{2} d d^{*}\left(a^{*}\right)^{2}+\right.\right. \\
& 9 a b d e^{*}\left(a^{*}\right)^{2}-3 a^{2} e e^{*}\left(a^{*}\right)^{2}+9 a c d f^{*}\left(a^{*}\right)^{2}-6 a^{2} f f^{*}\left(a^{*}\right)^{2}+ \\
& 9 a c g f^{*}\left(a^{*}\right)^{2}+6 a^{2} g g^{*}\left(a^{*}\right)^{2}+9 a b g h^{*}\left(a^{*}\right)^{2}-3 a^{2} h h^{*}\left(a^{*}\right)^{2}+ \\
& 6 a b^{2}\left(b^{*}\right)^{2} a^{*}+6 a c^{2}\left(c^{*}\right)^{2} a^{*}+6 a d^{2}\left(d^{*}\right)^{2} a^{*}-3 a e^{2}\left(e^{*}\right)^{2} a^{*}+ \\
& 9 b d e\left(e^{*}\right)^{2} a^{*}-12 a f^{2}\left(f^{*}\right)^{2} a^{*}+18 c d f\left(f^{*}\right)^{2} a^{*}+18 c f g\left(f^{*}\right)^{2} a^{*}+ \\
& 6 a g^{2}\left(g^{*}\right)^{2} a^{*}-3 a h^{2}\left(h^{*}\right)^{2} a^{*}+9 b g h\left(h^{*}\right)^{2} a^{*}+12 a b c b^{*} c^{*} a^{*}+ \\
& 3 a b d b^{*} d^{*} a^{*}+9 a^{2} e b^{*} d^{*} a^{*}+3 a c d c^{*} d^{*} a^{*}+9 a^{2} f c^{*} d^{*} a^{*}+ \\
& 9 b^{2} d b^{*} e^{*} a^{*}+3 a b e b^{*} e^{*} a^{*}+9 b c d c^{*} e^{*} a^{*}-6 a c e c^{*} e^{*} a^{*}+
\end{aligned}
$$

- A different method needs to be found. Answer: use flavor invariants!

Approach with Invariants

- A group ring $C[x]^{G}$ of polynomials \boldsymbol{x} invariant under symmetry \boldsymbol{G} is contained in the free ring $C[x]$:

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

- For certain $G, C[x]^{G}$ is finitely generated by polynomial invariants $I(x)$, such that any G-invariant polynomial $\mathbf{f}(\mathbf{x})$ can be written as a polynomial $\mathbf{g}(\mathbf{I})$, a member \mathbf{P} of the (not necessarily free) ring $\mathbf{C [I] :}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(I_{1}, \ldots, I_{n}\right) \quad P \in \mathbb{C}\left[I_{1}, \ldots, I_{r}\right]
$$

- Minimal basis of invariants can be enumerated with Hilbert series (well-known in SMEFT!):

$$
H(q)=\sum_{r=0}^{\infty} c_{r} q^{r}
$$

q = invariant 'spurion'
$r=$ polynomial degree of invariant
$c_{r}=\#$ of invariants of degree r

- For semi-simple Lie groups further results can be derived:

$$
H(q)=\frac{N(q)}{D(q)} \quad \begin{aligned}
& N(q)=1+c_{1} q+\ldots c_{d_{N}-1} q^{d_{N}-1}+q^{d_{N}} \\
& D(q)=\prod_{r=1}^{p}\left(1-q^{d_{r}}\right)
\end{aligned}
$$

$N \& Q=$ polynomials

$$
d_{N}=\text { polynomial degree of } N
$$

Toy Model with Invariants

- Consider a toy model with two mass parameters and an Abelian flavor symmetry:

$$
G=U(1) \times U(1) \quad \rightarrow \quad m_{1} \rightarrow e^{i \phi_{1}} m_{1}, \quad m_{2} \rightarrow e^{i \phi_{2}} m_{2}
$$

- Polynomials invariant under G are clearly linear combinations of monomials \sim mm*:

$$
\mathbb{C}\left[m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}\right]^{U(1) \times U(1)} \quad \longleftrightarrow \quad \begin{array}{cc}
\left(m_{1} m_{1}^{*}\right)^{r_{1}}\left(m_{2} m_{2}^{*}\right)^{r_{2}} \\
I_{1} & I_{2}
\end{array}
$$

- Furthermore there are no relations amongst l_{1} and l_{2} (freely generated ring).
- The Hilbert series is also easily constructed:

$$
\begin{aligned}
& \qquad H(q)=1+2 q^{2}+3 q^{4}+4 q^{6}+5 q^{8}+\ldots=\sum_{n=0}^{\infty}(n+1) q^{2 n}=\frac{1}{\left(1-q^{2}\right)^{2}} \\
& c_{1}=0 \\
& c_{2}=2 \text { (two invariants of degree 2), } m_{1} m_{1} * \& m_{2} m_{2}{ }^{*} \quad \begin{array}{l}
N(q)=1, d_{1}=d_{2}=2
\end{array} \\
& c_{2}=0=4 \text { objects - } 2 \text { phase redefinitions }
\end{aligned}
$$

$$
c_{1}=0
$$

A Complete Basis for Quarks

For us, the relevant
polynomials are
Yukawa couplings!

$$
\begin{gathered}
Y^{\psi} Y^{\psi \dagger} \rightarrow U^{\dagger} Y^{\psi} Y^{\psi \dagger} U \\
U(3)_{Q_{L}}
\end{gathered}
$$

$$
H(q)=h(q, q)=\frac{1+q^{12}}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}\left(1-q^{6}\right)^{4}\left(1-q^{8}\right)}
$$

- A set of 11 invariants can be found to fully parameterize the theory, including six 'unmixed' I

$$
\begin{array}{llll}
Y Y^{\dagger} \equiv \mathbb{Y}, & I_{1} \equiv \operatorname{tr}\left(\mathbb{Y}_{u}\right), & \hat{I}_{3} \equiv \operatorname{tr}\left(\operatorname{adj} \mho_{u}\right), & \hat{I}_{6} \equiv \operatorname{tr}\left(\mathbb{Y}_{u} \operatorname{adj} \mathbb{Y}_{u}\right)=3 \operatorname{det} \mathbb{Y}_{u} \\
& I_{2} \equiv \operatorname{tr}\left(\mathbb{Y}_{d}\right), & \hat{I}_{4} \equiv \operatorname{tr}\left(\operatorname{adj} \mathbb{Y}_{d}\right), & \hat{I}_{8} \equiv \operatorname{tr}\left(\mathbb{Y}_{d} \operatorname{adj} \mathbb{Y}_{d}\right)=3 \operatorname{det} \mathbb{Y}_{d}
\end{array}
$$

- as well as four 'mixed' I, relevant for extracting information about the CKM (overlap) matrix

$$
\hat{I}_{5} \equiv \operatorname{tr}\left(\mathbb{Y}_{u} \mho_{d}\right), \quad \hat{I}_{7} \equiv \operatorname{tr}\left(\operatorname{adj} \mathbb{\mho}_{u} \mho_{d}\right), \quad \hat{I}_{9} \equiv \operatorname{tr}\left(\mathbb{Y}_{u} \operatorname{adj} \mathbb{Y}_{d}\right), \quad \hat{I}_{10} \equiv \operatorname{tr}\left(\operatorname{adj} \mathbb{\mho}_{u} \operatorname{adj} \mathbb{Y}_{d}\right)
$$

- and finally one mixed, CP-odd invariant relevant to pinning down the overall sign of CP violation:

$$
I_{11}^{-}=-\frac{3 i}{8} \operatorname{det}\left[\mho_{u}, \bigvee_{d}\right]
$$

- The fundamental geoSMEFT object we can construct at all-orders is then given by

$$
\mathbb{Y}_{r p}=\frac{\llbracket}{2}\left(Y_{r i} Y_{p i}^{\star}-\sum_{n^{\prime}}^{\infty} f\left(n^{\prime}\right) Y_{r i} \tilde{C}_{i p}^{\left(2 n^{\prime}\right)}-\sum_{n}^{\infty} f(n) \tilde{C}_{i r}^{(2 n), \star} Y_{p i}^{\star}+\sum_{n, n^{\prime}}^{\infty} f(n) f\left(n^{\prime}\right) \tilde{C}_{i r}^{(2 n), \star} \tilde{C}_{i p}^{\left(2 n^{\prime}\right)}\right)
$$

All-Orders Formulae: Masses

- Unmixed invariants can be solved to obtain exact formulae for Yukawa couplings / masses:

$$
\left.\begin{array}{rl}
y_{i}^{2} & =\frac{(-2)^{1 / 3}}{3 \psi_{u}}\left(I_{1}^{2}-3 \hat{I}_{3}+(-2)^{-1 / 3} I_{1} \psi_{u}+(-2)^{-2 / 3} \psi_{u}^{2}\right), \\
y_{j, k}^{2} & =\frac{1}{12 \psi_{u}}\left((-2)^{4 / 3} I_{1}^{2}-3 \cdot(-2)^{4 / 3} \hat{I}_{3}+4 I_{1} \psi_{u}\right. \\
\mp \psi_{u} \sqrt{\left.24\left(I_{1}^{2}-3 \hat{I}_{3}\right)+\frac{6 \cdot(-2)^{5 / 3}\left(I_{1}^{2}-3 \hat{I}_{3}\right)^{2}}{\psi_{u}^{2}}-3 \cdot(-2)^{4 / 3} \psi_{u}^{2}+(-2)^{2 / 3} \psi_{u}^{2}\right)} \\
\text { Send } I_{1,3,6} \text { to I I I } 2,4,8 \text { for down } \\
\text { quark masses. }
\end{array}\right] .
$$

- Of course, the only distinction between fermions of the same family are their (measured) mass eigenvalues....

$$
y_{u}^{2} \equiv \min \left\{y_{i}^{2}, y_{j}^{2}, y_{k}^{2}\right\}, \quad y_{c}^{2} \equiv \operatorname{mid}\left\{y_{i}^{2}, y_{j}^{2}, y_{k}^{2}\right\} \quad y_{t}^{2} \equiv \max \left\{y_{i}^{2}, y_{j}^{2}, y_{k}^{2}\right\}
$$

All-Orders Formulae: Mixings \& CP

- Similarly, the mixed invariants give predictions for (CKM) mixing angles:

$$
\begin{aligned}
& s_{13}=\left[\frac{-\hat{I}_{10}-y_{b}^{2}\left(\hat{I}_{7}-\Delta_{d s}^{+} \Delta_{u c}^{+} \Delta_{u t}^{+}\right)-y_{u}^{2}\left(\hat{I}_{9}+y_{b}^{2}\left(\hat{I}_{5}-y_{b}^{2} \Delta_{c t}^{+}\right)-y_{d}^{2} y_{s}^{2} \Delta_{c t}^{+}\right)}{\Delta_{b d}^{-} \Delta_{b s}^{-} \Delta_{c u}^{-} \Delta_{u t}^{-}}\right]^{1 / 2} \Delta_{i j}^{+} \equiv y_{i}^{2} \pm y_{j}^{2} \\
& s_{23}=\left[\frac{\Delta_{t u}^{-}\left(-\hat{I}_{10}+y_{c}^{2}\left(-\hat{I}_{9}+\left(y_{b}^{4}+y_{d}^{2} y_{s}^{2}\right) \Delta_{u t}^{+}\right)+y_{b}^{2}\left(-\hat{I}_{7}+y_{c}^{2}\left(-\hat{I}_{5}+\Delta_{c t}^{+} \Delta_{d s}^{+}\right)+y_{u}^{2} \Delta_{c t}^{+} \Delta_{d s}^{+}\right)\right)}{\Delta_{c t}^{-}\left(\hat{I}_{10}+y_{u}^{2} \hat{I}_{9}+y_{b}^{2}\left(\hat{I}_{7}+y_{u}^{2}\left(\hat{I}_{5}-2 \Delta_{c t}^{+} \Delta_{d s}^{+}\right)\right)-\left(y_{u}^{4}+y_{c}^{2} y_{t}^{2}\right)\left(y_{b}^{4}+y_{d}^{2} y_{s}^{2}\right)\right)}\right]^{1 / 2} \\
& s_{12}=\left[\frac{\Delta_{d b}^{-}\left(\hat{I}_{10}+y_{s}^{2}\left(\hat{I}_{7}-y_{c}^{2} y_{t}^{2} \Delta_{d b}^{+}\right)\right)+y_{u}^{2} \Delta_{b d}^{-}\left(-\hat{I}_{9}-y_{s}^{2} \hat{I}_{5}+\Delta_{s b}^{+} \Delta_{c t}^{+} \Delta_{d s}^{+}\right)+y_{u}^{4} y_{s}^{2}\left(y_{b}^{4}-y_{d}^{4}\right)}{\Delta_{d s}^{-}\left(\hat{I}_{10}+y_{u}^{2} \hat{I}_{9}+y_{b}^{2}\left(\hat{I}_{7}+y_{u}^{2}\left(\hat{I}_{5}-2 \Delta_{c t}^{+} \Delta_{d s}^{+}\right)\right)-\left(y_{b}^{4}+y_{d}^{2} y_{s}^{2}\right)\left(y_{u}^{4}+y_{c}^{2} y_{t}^{2}\right)\right)}\right]^{1 / 2}
\end{aligned}
$$

- When combined with the CP-odd 11th invariant, one also can derive the Dirac CP-violating phase (and its sign!)

$$
s_{\delta}=\frac{4}{3} I_{11}^{-}\left[\Delta_{t c}^{-} \Delta_{t u}^{-} \Delta_{c u}^{-} \Delta_{b s}^{-} \Delta_{b d}^{-} \Delta_{s d}^{-} s_{12} s_{13} s_{23}\left(1-s_{23}^{2}\right)^{1 / 2}\left(1-s_{12}^{2}\right)^{1 / 2}\left(1-s_{13}^{2}\right)\right]^{-1}
$$

Numerical Checks

- To test the validity of our formulae, we wrote a script to compare values of Dirac parameters predicted from our formulae vs. those extracted with numerical techniques. It did so by...
(a) computing the eigenvectors of $\left[\mathcal{Y}^{(u, d)} \mathcal{Y}^{(u, d), \dagger}\right]$. These are normalized to unit vectors ∇_{i} and then the numerical matrices are defined by $U_{(u, d)} \equiv\left(\mathrm{v}_{1}^{(u, d), T}, v_{2}^{(u, d), T}, v_{3}^{(u, d), T}\right)$.
(b) computing the CKM matrix as $V_{C K M}=U_{u}^{\dagger} \cdot U_{d}$.
(c) uniquely extracting the s_{13} mixing angle from $V_{13}, s_{13}=\left|V_{13}\right|$.
(d) uniquely extracting the s_{23} mixing angle from $V_{23}, s_{23}=\left|V_{23}\right| / \sqrt{1-s_{13}^{2}}$.
(e) uniquely extracting the s_{12} mixing angle from $V_{12}, s_{12}=\left|V_{12}\right| / \sqrt{1-s_{13}^{2}}$.
(f) uniquely extracting the s_{δ} phase in a phase-convention-independent manner from the Jarlskog invariant J.
- Computations done in arbitrary flavor/weak bases (i.e. with full but arbitrary 3D structure in matrices)

$$
\text { mass dimension up to } \mathrm{n}=10
$$

- Conclusion: complete agreement up to numerical tolerance of 1010 !!
- Note that numerical checks in environments with $\left\{\bigvee_{u}^{\prime}, \bigvee_{d}^{\prime}\right\}=\left\{U_{\chi}^{u \dagger} \mho_{u} U_{\chi}^{u}, U_{\chi}^{d \dagger} \mho_{d} U_{\chi}^{d}\right\}$ also confirm LACK of ability to predict CKM angles with our formulae in this instance, as expected!

These formulae...

- are exact, and analytically relate the fundamental Lagrangian parameters to the `physical' masses, mixings, and phase (for the first time, to my knowledge).
- complete the list of all-orders Lagrangian parameters in the Dirac flavor sector of the geoSMEFT
- are basis independent (as long as the information required is present in the basis in question)
- are applicable to explicit (B)SM models and EFTs, when global U(3)_Q flavor rotations control flavor parameters.

Powerful tools in the description of (B)SM flavor physics!

Applicability

Applications: UV-completing flavor

The Universal Texture Zero Model

Fields	$\psi_{q, e, \nu}$	$\psi_{q, e, \nu}^{c}$	H_{5}	Σ	S	θ_{3}	θ_{23}	θ_{123}	θ	θ_{X}
$\Delta(27)$	3	3	1_{00}	1_{00}	1_{00}	$\overline{3}$	$\overline{3}$	$\overline{3}$	$\overline{3}$	3
Z_{N}	0	0	0	2	-1	0	-1	2	0	x

[de Medeiros Varzielas, Ross, Talbert: 1710.01741]

$3 \otimes \overline{3} \otimes 1 \rightarrow 1$

$$
\mathcal{L}_{\mathrm{UTZ}} \supset \psi_{p}\left(\frac{1}{M_{3, f}^{2}} \theta_{3}^{p} \theta_{3}^{r}+\frac{1}{M_{23, f}^{3}} \theta_{23}^{p} \theta_{23}^{r} \Sigma+\frac{1}{M_{123, f}^{3}}\left(\theta_{123}^{p} \theta_{23}^{r}+\theta_{23}^{p} \theta_{123}^{r}\right) S\right) \psi_{r}^{c} H+\mathcal{O}\left(1 / M^{4}\right)+\ldots
$$

- After flavor- and EW-symmetry breaking, the EFT/model shapes Yukawa/mass matrices of the form

$$
\mathcal{M}_{f}^{D}=\left(\begin{array}{ccc}
0 & a e^{i \gamma} & a e^{i \gamma} \\
a e^{i \gamma}\left(b e^{-i \gamma}+2 a e^{-i \delta}\right) e^{i(\gamma+\delta)} & b e^{i \delta} \\
a e^{i \gamma} & b e^{i \delta} & 1-2 a e^{i \gamma}+b e^{i \delta}
\end{array}\right)_{f}
$$

- Proof-in-principle fits to global flavor data yield post-dictions for mass (ratios) and CKM mixing angles:

$$
\begin{gathered}
\frac{m_{u}}{m_{t}}=7.16 \cdot 10^{-6}, \quad \frac{m_{c}}{m_{t}}=0.0027, \quad \frac{m_{d}}{m_{b}}=0.00090, \quad \frac{m_{s}}{m_{b}}=0.020 \\
s_{12}=0.226, \quad s_{23}=0.0191, \quad s_{13}=0.0042, \quad s_{\delta}=0.5609
\end{gathered}
$$

currently
working on an
MCMC fit to
the UTZ!

Applications: BSM States in the IR

$$
\Delta_{3} \sim(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1} / \mathbf{3}) \quad \mathcal{G}_{S M} \equiv S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

$$
\mathcal{L} \supset y_{3, i j}^{L L} \bar{Q}_{L}^{C i, a} \epsilon^{a b}\left(\tau^{k} \Delta_{3}^{k}\right)^{b c} L_{L}^{j, c}+z_{3, i j}^{L L} \bar{Q}_{L}^{C i, a} \epsilon^{a b}\left(\left(\tau^{k} \Delta_{3}^{k}\right)^{\dagger}\right)^{b c} Q_{L}^{j, c}+\text { h.c. }
$$

fit to LFU observables $+B_{s} \rightarrow \mu \mu$

- Regardless of the introduction of new IR flavor violation, Dirac mass and mixing still predictable!

EFT for CKM + PMNS + Leptoquarks

	$Q^{\prime \prime 1}$	$Q^{\prime \prime 23}$	$u_{R}^{\prime \prime 1}$	$u_{R}^{\prime \prime 2}$	$u_{R}^{\prime \prime 3}$	$d_{R}^{\prime \prime 1}$	$d_{R}^{\prime \prime 2}$	$d_{R}^{\prime \prime 3}$	ϕ_{u}	ϕ_{d}
D_{15}	$\mathbf{1}_{-}$	$\mathbf{2}_{1}$	$\mathbf{1}_{-}$	$\mathbf{1}$	$\mathbf{1}_{-}$	$\mathbf{1}_{-}$	$\mathbf{1}$	$\mathbf{1}_{-}$	$\mathbf{2}_{\mathbf{1}}$	$\mathbf{2}_{\mathbf{1}}$

[Bernigaud, de Medeiros Varzielas, Talbert: 2005.12293]

$$
Y_{u}^{\prime \prime}=P^{\dagger} \Lambda_{d} V_{C K M}^{\dagger} \cdot\left(\begin{array}{ccc}
y_{u} & 0 & 0 \\
0 & y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right) \cdot \Lambda_{U}^{\dagger} P, \quad Y_{d}^{\prime \prime}=P^{\dagger} \Lambda_{d} \cdot\left(\begin{array}{ccc}
y_{d} & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right) \cdot \Lambda_{D}^{\dagger} P \quad \square \quad \begin{gathered}
\text { (even in an } \\
\text { absurd model } \\
\text { basis!!) }
\end{gathered}
$$

Applications: Renormalization Group Flow

CKM Parameters

$$
\begin{equation*}
\dot{s}_{\delta}=s_{\delta}\left[\frac{\dot{I}_{11}^{-}}{I_{11}^{-}}-\sum_{(i j) \in s_{2}} \frac{\dot{\Delta}_{i j}^{-}}{\Delta_{i j}^{-}}-\dot{s}_{12} \frac{\left(1-2 s_{12}^{2}\right)}{s_{12} c_{12}^{2}}-\dot{s}_{23} \frac{\left(1-2 s_{23}^{2}\right)}{s_{23} c_{23}^{2}}-\dot{s}_{13} \frac{\left(1-3 s_{13}^{2}\right)}{s_{13} c_{13}^{2}}\right] \tag{e.g}
\end{equation*}
$$

$$
\mu \frac{d I_{11}^{-}}{d \mu} \simeq\left(6 a_{0}+6 b_{0}+2 a_{1} I_{1}+2 b_{1} I_{2}\right) I_{11}^{-}
$$

$$
\begin{array}{rlr}
a_{0}=\frac{3}{8 \pi^{2}}\left(I_{1}+I_{2}+\frac{I_{1}-I_{2}}{2 n_{g}}\right)-2 \frac{\alpha_{s}}{\pi}, & a_{1}=\frac{3}{16 \pi^{2}} \\
b_{0}=\frac{3}{8 \pi^{2}}\left(I_{1}+I_{2}+\frac{I_{2}-I_{1}}{2 n_{g}}\right)-2 \frac{\alpha_{s}}{\pi}, & b_{1}=\frac{3}{16 \pi^{2}}
\end{array}
$$

- Note however that latter formulae only hold for MFV theories (numerics done for SM limit)!
- Would be interesting to pursue more generic RGE studies in SMEFT (e.g. 2005.12283).

Applications: CKM Fits?

Wolfenstein Parameterization

$$
W_{j} \equiv\{\lambda, A, \bar{\rho}, \bar{\eta}\}
$$

- CKM parameter fits big business in flavor physics - critical tests of the SM.
- However, as we have seen, BSM physics encoded in Wilson coefficients impacts the definition of the CKM matrix. A consistent treatment of such effects critical for interpretation of NP bounds.

$$
\begin{gathered}
O_{i}^{\text {input }}=O_{i, \mathrm{SM}}^{\text {input }}\left(W_{j}\right)\left[\left(1+f\left(L_{k}\right)\right]=O_{i, \mathrm{SM}}^{\mathrm{input}}\left(W_{j}\right)\left[1+g\left(C_{k}\right)\right]\right. \\
\mathrm{LEFT}
\end{gathered} \begin{aligned}
& \square \\
& \text { SMEFT }
\end{aligned} \begin{aligned}
& O_{i}^{\text {input }}=O_{i, \mathrm{SM}}^{\text {input }}\left(\widetilde{W}_{j}\right) \\
& \widetilde{W}_{j}=W_{j}\left(1+\frac{\delta W_{j}}{W_{j}}\right) \\
& O_{\alpha}=O_{\alpha, \mathrm{SM}}\left(W_{j}\right)+\delta O_{\alpha, \mathrm{NP}}^{\text {direct }}=O_{\alpha, \mathrm{SM}}\left(\widetilde{W}_{j}\right)+\delta O_{\alpha, \mathrm{NP}}^{\text {indirect }}+\delta O_{\alpha, \mathrm{NP}}^{\text {direct }}
\end{aligned}
$$

$$
\delta O_{\alpha, \mathrm{NP}}^{\text {indirect }}=-\frac{\partial O_{\alpha, \mathrm{SM}}}{\partial W_{i}} \delta W_{i}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

'indirect' and 'direct' NP effects

$$
\text { contribute at the same order in } v / \Lambda!
$$

Applications: CKM Fits?

	Published for Sissa by Springer
	Received: March 2, 2019
	Accepted: May 16, 2019
	Published: May 27, 2019

The CKM parameters in the SMEFT

Sébastien Descotes-Genon, ${ }^{a}$ Adam Falkowski, ${ }^{a}$ Marco Fedele, ${ }^{a, b}$
Martín González-Alonso ${ }^{c}$ and Javier Virto ${ }^{d, e}$

$$
\Gamma\left(K \rightarrow \mu \nu_{\mu}\right) / \Gamma\left(\pi \rightarrow \mu \nu_{\mu}\right), \quad \Gamma\left(B \rightarrow \tau \nu_{\tau}\right), \quad \Delta M_{d}, \quad \Delta M_{s} .
$$

CKMfitter (SM) [14]	UTfit (SM) [15]	This work (SMEFT)
$\lambda=0.224747_{-0.000059}^{+0.000254}$	$\lambda=0.2250 \pm 0.0005$	$\tilde{\lambda}=0.22537 \pm 0.00046$
$A=0.8403_{-0.0201}^{+0.056}$	$A=0.826 \pm 0.012$	$\tilde{A}=0.828 \pm 0.021$
$\bar{\rho}=0.1577_{-0.0074}^{+0.0096}$	$\bar{\rho}=0.148 \pm 0.013$	$\tilde{\rho}=0.194 \pm 0.024$
$\bar{\eta}=0.3493_{-0.0071}^{+0.0095}$	$\bar{\eta}=0.348 \pm 0.010$	$\tilde{\eta}=0.391 \pm 0.048$

- As expected, reabsorption of BSM effects into 'SM' parameters leads to non-trivial bounds on NP when calculating other flavored processes:

$$
\begin{gathered}
\Gamma(\pi \rightarrow \mu \nu)=\left|1-\frac{\tilde{\lambda}^{2}}{2}-\frac{\tilde{\lambda}^{4}}{8}\right|^{2} \frac{f_{\pi^{ \pm}}^{2} m_{\pi^{ \pm}} m_{\mu}^{2}}{16 \pi \tilde{v}^{4}}\left(1-\frac{m_{\mu}^{2}}{m_{\pi^{ \pm}}^{2}}\right)^{2}\left(1+\delta_{\pi \mu}\right)\left[1+\widetilde{\Delta}_{\pi \mu 2}\right] \\
\mathcal{B}(\pi \rightarrow \mu \nu)=0.9998770(4)+\tau_{\pi}=2.6033(5) \cdot 10^{-8} s \\
\widetilde{\Delta}_{\pi \mu 2}=2 \operatorname{Re}\left(\epsilon_{A}^{\mu u d}\right)-\frac{2 m_{\pi^{ \pm}}^{2}}{\left(m_{u}+m_{d}\right) m_{\mu}} \operatorname{Re}\left(\epsilon_{P}^{\mu u d}\right)+4 \frac{\delta v}{v}+2 \tilde{\lambda}\left(1+\tilde{\lambda}^{2}\right) \delta \lambda+\mathcal{O}\left(\Lambda^{-4}, \tilde{\lambda}^{6}\right)
\end{gathered}
$$

- Formalism with flavored geoSMEFT can potentially push fits to higher order in v/ \wedge.
- Of relevance to potential Cabibbo Angle Anomaly — see e.g. 2109.06065.

Towards Neutrinos

Neutrino Masses and Mixings

- Neutrino mass and mixing is an experimental fact, and represents a clear departure from the naive SM. Massive experimental effort underway to pin down neutrino properties...
- Known: there is a gigantic hierarchy between neutrino mass scales and (e.g.) the top mass, and the mixing in the neutrino sector is large and non-hierarchical.

Neutrinos in the (geo)SMEFT

- Neutrino masses described by dim-5 Weinberg operator at leading-order in SMEFT:

$$
\mathcal{L}^{(5)}=\frac{c_{i j}^{(5)}}{2}\left(\ell_{i}^{T} \tilde{H}^{\star}\right) C\left(\tilde{H}^{\dagger} \ell_{j}\right)+\text { h.c. }
$$

EWSB

$$
\begin{gathered}
\mathcal{L} \supset-\frac{m_{\nu, k}}{2} \overline{\nu_{L}^{c, k}} \nu_{L}^{k}+\text { h.c. } \\
m_{\nu, k}=-\frac{v^{2}}{2}\left(U_{\nu}^{T}\right)_{k i} c_{i j}^{(5)} U_{\nu, j k}
\end{gathered}
$$

- A field-space connection that describes this mass generation at all-orders should be found...

$$
\mathcal{L} \supset \eta(\phi)_{\alpha \beta} \ell^{\alpha} \ell^{\beta} \quad
$$

- Furthermore, Hilbert series and associated basis of invariants known for $N_{f}=3$!
$H(q)=\frac{1+q^{6}+2 q^{8}+4 q^{10}+8 q^{12}+7 q^{14}+9 q^{16}+10 q^{18}+9 q^{20}+7 q^{22}+8 q^{24}+4 q^{26}+2 q^{28}+q^{30}+q^{36}}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)^{3}\left(1-q^{6}\right)^{4}\left(1-q^{8}\right)^{2}\left(1-q^{10}\right)}$
All-Orders flavor formalism analogous to quark sector within (quick) reach!

Neutrinos in the (geo)uSMEFT

- Introducing a light sterile neutrino N changes the EFT under consideration!

$$
\mathcal{L}_{N}=\frac{1}{2}\left(\bar{N}_{p} i \not \partial N_{p}-\bar{N}_{p} M_{p r} N_{r}\right)-\left[\bar{N}_{p} \omega_{p \beta} \tilde{H}^{\dagger} l_{\beta}+\text { H.c. }\right]
$$

4

- A geometric v SMEFT can (and will) be developed. Obvious field-space connections are:

\[

\]

$$
\text { for } N_{f}=3 \ldots
$$

All-orders amplitudes in such a theory

 could be a big boon to precision neutrino phenomenology!!

- The Hilbert Series for the complete three-generation Lagrangian was found in 1010.3161 .

Summary and outlook

- One can construct basis-independent flavor formalisms using invariant theory.
- These formalisms depend exclusively on flavor symmetry and free parameters.
- As a result, they hold at all-orders in effective field theories, e.g. the (geo)SMEFT.
- We have presented analytic formulae for the Dirac masses and mixings present in the (geo)SM(EFT). They are useful in any number of (B)SM contexts.
- Phenomenological applications are obvious, including fits to mass and mixing.
- The extension of the formalism to neutrino physics is ongoing, and rich in application.
- Flavor \& neutrino physics offer prime opportunities for low- and high-energy complementarity!

THANK YOU!

Backup Slides

Applications: Flavor Violation Pheno

LL RGE evolution for Yukawa and Wilson Coefficients known:

$$
\begin{gathered}
Y_{d}\left(\mu_{\mathrm{EW}}\right)=Y_{d}(\Lambda)-\delta Y_{d} \frac{3 y_{t}^{2}}{32 \pi^{2}} \ln \left(\frac{\mu_{\mathrm{EW}}}{\Lambda}\right)+\ldots \\
{\left[\widetilde{\mathcal{C}}_{a}\left(\mu_{\mathrm{EW}}\right)\right]_{i j}=\left[\mathcal{C}_{a}(\Lambda)\right]_{i j}+\frac{\left(\beta_{a b}\right)^{i j k l}}{16 \pi^{2}} \ln \left(\frac{\mu_{\mathrm{EW}}}{\Lambda}\right)\left[\mathcal{C}_{b}(\Lambda)\right]_{k l}}
\end{gathered}
$$

At EW scale, Yukawa (and Wilson Coefficients) must be rerotated to (physical) fermion mass-eigenstates!

$$
\left[\mathcal{C}_{a}\left(\mu_{\mathrm{EW}}\right)\right]_{i j}=U_{i k}^{\dagger}\left[\widetilde{\mathcal{C}_{a}}\left(\mu_{\mathrm{EW}}\right)\right]_{k l} U_{l j}
$$

$$
\begin{gathered}
U_{d_{L}}=\left(\begin{array}{ccc}
-0.93+0.37 i & 1.6 \cdot 10^{-5}+2.5 \cdot 10^{-7} i & -3.8 \cdot 10^{-4} \\
-1.2 \cdot 10^{-5}+1.1 \cdot 10^{-5} i & -0.93+0.37 i & 1.6 \cdot 10^{-3}-6.7 \cdot 10^{-4} i \\
2.7 \cdot 10^{-4}-2.6 \cdot 10^{-4} i & -1.6 \cdot 10^{-3}+6.1 \cdot 10^{-4} i & -0.93+0.37 i
\end{array}\right) \\
\text { compare to } \quad \kappa_{R G E}^{i j}=\frac{\lambda_{t}^{i j}}{16 \pi^{2}} \ln \left(\frac{\mu_{\mathrm{EW}}}{\Lambda}\right) \approx 9 \cdot 10^{-4}-2 \cdot 10^{-5} i
\end{gathered}
$$

Flavour Violating Effects of Yukawa Running in SMEFT

Jason Aebischer ${ }^{a}$ and Jacky Kumar ${ }^{b}$

${ }^{a}$ Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA ${ }^{b}$ Physique des Particules, Universite de Montreal, C.P. 6128, succ. centre-ville, Montreal, QC, Canada H3C 3J7

- The resulting NP bounds derived from (e.g.) $\Delta \mathrm{F}=2$ or b->sll processes are very important!
- Q1: what is the correspondence between RGE of flavor invariants and (known) non-MFV relations?
- Q2: what is the phenomenological impact of higher-order RGE of physical parameters?

Partial Sq. vs. Full Dim-8: Fermionic Z Decay

- Consider all-order geoSMEFT width for Z-boson decay to fermions:

$$
\bar{\Gamma}_{Z \rightarrow \bar{\psi} \psi}=\sum_{\psi} \frac{N_{c}^{\psi}}{24 \pi} \sqrt{\bar{m}_{Z}^{2}}\left|g_{\mathrm{eff}}^{Z, \psi}\right|^{2}\left(1-\frac{4 \bar{M}_{\psi}^{2}}{\bar{m}_{Z}^{2}}\right)^{3 / 2}
$$

$$
g_{\mathrm{eff}}^{Z, \psi}=\frac{\bar{g}_{Z}}{2}\left[\left(2 s_{\theta_{Z}}^{2} Q_{\psi}-\sigma_{3}\right) \delta_{p r}+\bar{v}_{T}\left\langle L_{3,4}^{\psi, p r}\right\rangle+\sigma_{3} \bar{v}_{T}\left\langle L_{3,3}^{\psi, p r}\right\rangle\right]
$$

- Expand complete dependence at dim-6, dim-8:
- Compare (e.g.) dependence on $\left(\mathrm{C}^{(6)} \mathrm{HwB}^{2}\right)^{2}$ using partial square vs. full dim-8 analysis:

Partial Square

Complete Analysis
$\left.\left|g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right|_{\text {partial square }}^{2} \supset \frac{g_{1}^{2} g_{2}^{2}\left(\tilde{C}_{H W B}^{(6)}\right)^{2}}{\left(g_{Z}^{\mathrm{SM}}\right)^{6}} \delta_{p r}\left[g_{Z}^{\mathrm{SM}}\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle_{\mathrm{SM}}+\left(g_{2}^{2}-g_{1}^{2}\right) Q_{\psi}\right)\right]^{2} \quad\left|g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right|_{\mathcal{O}\left(v^{4} / \Lambda^{4}\right)}^{2} \supset \frac{g_{1}^{2} g_{2}^{2}\left(\tilde{C}_{H W B}^{(6)}\right)^{2}\left(g_{2}^{2}-g_{1}^{2}\right)^{2} Q_{\psi}^{2}}{\left(g_{Z}^{\mathrm{SM}}\right)^{6}} \delta_{p r}+\left(\tilde{C}_{H W B}^{(6)}\right)^{2}\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle_{\mathrm{SM}}^{2} \delta_{p r}$

$$
\begin{aligned}
& \left\langle g_{\text {eff }}^{Z, \mathrm{pr}}\right\rangle_{\mathrm{SM}}=\bar{g}_{Z}^{\mathrm{SM}}\left[\left(s_{\theta}^{\mathrm{SM}}\right)^{2} Q_{\psi}-\frac{\sigma_{3}}{2}\right] \delta_{p r} \\
& \left\langle g_{\mathrm{eff}, \mathrm{pr}}^{Z, \psi}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}=\frac{\left\langle\bar{g}_{Z}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}}{\bar{g}_{Z}^{\mathrm{SM}}}\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{Z, \psi}\right\rangle_{\mathrm{SM}} \delta_{p r}+\bar{g}_{Z}^{\mathrm{SM}} Q_{\psi}\left\langle s_{\theta_{Z}}^{2}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)} \delta_{p r}+\frac{\bar{g}_{Z}^{\mathrm{SM}}}{2}\left[\tilde{C}_{\vec{H}}^{1,(6)}-\sigma_{p r} \tilde{C}_{\vec{p}}^{3,(6)} \underset{p r}{ }\right] \\
& \left\langle g_{\text {eff,pr }}^{Z, \psi}\right\rangle_{\mathcal{O}\left(v^{4} / \Lambda^{4}\right)}=\frac{\left\langle\bar{g}_{Z}\right\rangle_{\mathcal{O}\left(v^{4} / \Lambda^{4}\right)}}{\bar{g}_{Z}^{\text {SM }}}\left\langle g_{\text {eff,pr }}^{Z, \psi}\right\rangle_{\text {SM }} \delta_{p r}+\bar{g}_{Z}^{\mathrm{SM}} Q_{\psi}\left\langle s_{\theta_{Z}}^{2}\right\rangle_{\mathcal{O}\left(v^{4} / \Lambda^{4}\right)} \delta_{p r}+\left\langle\bar{g}_{Z}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}\left\langle s_{\theta_{Z}}^{2}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)} Q_{\psi} \delta_{p r}
\end{aligned}
$$

Towards PMNS Fits in the (geo)(v)SMEFT

NuFIT 5.1 (2021)

www.nu-fit.org

	Normal Ordering (best fit)		Inverted Ordering $\left(\Delta \chi^{2}=2.6\right)$	
	bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.012}$	$0.269 \rightarrow 0.343$
$\theta_{12} /{ }^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
$\sin ^{2} \theta_{23}$	$0.573_{-0.023}^{+0.018}$	$0.405 \rightarrow 0.620$	$0.578_{-0.021}^{+0.017}$	$0.410 \rightarrow 0.623$
$\theta_{23} /{ }^{\circ}$	$49.2_{-1.3}^{+1.0}$	$39.5 \rightarrow 52.0$	$49.5_{-1.2}^{+1.0}$	$39.8 \rightarrow 52.1$
$\sin ^{2} \theta_{13}$	$0.02220_{-0.00062}^{+0.0068}$	$0.02034 \rightarrow 0.02430$	$0.02238_{-0.00062}^{+0.0064}$	$0.02053 \rightarrow 0.02434$
$\theta_{13} /{ }^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.60_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
$\delta_{\mathrm{CP}} /{ }^{\circ}$	194_{-25}^{+52}	$105 \rightarrow 405$	287_{-32}^{+27}	$192 \rightarrow 361$

- Given complete flavor formalism(s) in the (geo)(v)SMEFT, the natural project would be to do a precision fit to mass and mixing, as in CKM case.
- Re-absorption of BSM effects likely important in interpretation of neutrino NSI and associated bounds on new physics...
- Knowledge of matching and RGE to

(geo)(v)SMEFT

 relevant neutrino processes required!