Towards an All-Orders Flavor Formalism in the (geo)SM(EFT) & Beyond

Jim Talbert DAMTP, Cambridge

[2107.03951] JHEP w/ M. Trott + future work!

19 May 2022 || Brookhaven National Lab || (Virtual) Theory Seminar

Flavor in the SM

$$\mathcal{L}_{SM}^{Y} \supset Y_{pr}^{u} \overline{Q}_{L,p} \widetilde{H} u_{R,r} + Y_{pr}^{d} \overline{Q}_{L,p} H d_{R,r} + Y_{pr}^{e} \overline{L}_{L,p} H e_{R,r} + \text{h.c.}$$

 From these (fundamental) Lagrangian terms one can use field redefinitions to show that only 9 masses, 3 mixing angles, and one CP-violating phase are needed for physical description.

13 free and unexplained parameters exist in SM Yukawa sector

U(3)⁵

(Vud Vus Vub)

$$\mathcal{L}_{IR} \sim \psi \,\theta_3 \,H \,\theta_3 \,\psi^c \tag{10}$$

 $\sum \frac{C_i^{(a)}}{\Lambda^{d-4}} \mathcal{Q}_i^{(d)}$

Describing Flavor in the SM(EFT) & Beyond

Standard Model	EFTs of Flavor	SMEFT
$Y^{ij} \sim \begin{pmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{pmatrix}$	$Y^{ij} \sim \sum_{k} \left[f_k \left(\left\langle \theta \right\rangle \right) \right]_{1}^{ij}$	$Y^{ij} \sim Y^{ij}_{SM} + \left[C^{(6)}_{\psi H}\right]^{ij} \cdot \Lambda^{-2}$

 Regardless of the formalism, physical predictions for flavored processes depend on the 9 parameters associated to mass eigenstates and their quantum mixings:

$$[U_{\psi L}^{\dagger}]_{ir} [\mathcal{Y}^{\psi} \mathcal{Y}^{\psi,\dagger}]_{rp} [U_{\psi L}]_{pj} = \operatorname{diag} \left(y_{\psi 1}^{2}, y_{\psi 2}^{2}, y_{\psi 3}^{2}\right) \qquad V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Do you know how to write $y^2(Y)$, $\theta(Y)$, $\delta(Y)$?

It's not as easy as one might think (for three flavors)!

Connection amounts to **metric in field space**, whose degree of curvature depends on size of v/Λ . The **SM** is therefore a **FLAT** direction!

Building Up the g_{AB}(φ) Metric

• Consider the higher-order operators that can connect two gauge field strengths:

Dim 6+	$Q_{HB}^{(6+2n)} = (H^{\dagger}H)^{n+1}B^{\mu\nu} B_{\mu\nu},$ $Q_{HW}^{(6+2n)} = (H^{\dagger}H)^{n+1}W_{a}^{\mu\nu} W_{\mu\nu}^{a},$	That the operator forms saturate at all orders can be seen with Hilbert Series techniques:					
	$Q_{\mu\nu\nu}^{(6+2n)} = (H^{\dagger}H)^{n} (H^{\dagger}\sigma^{a}H) W_{a}^{\mu\nu} B_{\mu\nu}$			Mass	5 Dimer	ision	
_		Field space connection	6	8	10	12	14
Dim 8+	$Q_{HW,2}^{(8+2n)} = (H^{\dagger}H)^{n} (H^{\dagger}\sigma^{a}H) (H^{\dagger}\sigma^{b}H) W_{a}^{\mu\nu} W_{b,\mu\nu}$	$g_{AB}(\phi) \mathcal{W}^A_{\mu u} \mathcal{W}^{B,\mu u}$	3	4	4	4	4

 Expanding in terms of real scalar fields, and combining into a single gauge field (A,B = 1,2,3,4), one can write

$$H(\phi_{I}) = \frac{1}{\sqrt{2}} \begin{bmatrix} \phi_{2} + i\phi_{1} \\ \phi_{4} - i\phi_{3} \end{bmatrix} \qquad g_{AB}(\phi_{I}) = \begin{bmatrix} 1 - 4\sum_{n=0}^{\infty} \left(C_{HW}^{(6+2n)}(1 - \delta_{A4}) + C_{HB}^{(6+2n)}\delta_{A4} \right) \left(\frac{\phi^{2}}{2} \right)^{n+1} \end{bmatrix} \delta_{AB} \\ + \sum_{n=0}^{\infty} C_{HW,2}^{(8+2n)} \left(\frac{\phi^{2}}{2} \right)^{n} \left(\phi_{I}\Gamma_{A,J}^{I}\phi^{J} \right) \left(\phi_{L}\Gamma_{B,K}^{L}\phi^{K} \right) (1 - \delta_{A4})(1 - \delta_{B4}) \\ + \sum_{n=0}^{\infty} C_{HWB}^{(6+2n)} \left(\frac{\phi^{2}}{2} \right)^{n} \right] \left(\phi_{I}\Gamma_{A,J}^{I}\phi^{J} \right) (1 - \delta_{A4})\delta_{B4},$$

• This field-space connection is therefore valid at **all-orders in v/** Λ ! In the Higgsed phase the connection reduces to a number + emissions of *h*.

[2001.01453] [2203.06771]

The geoSMEFT at 2 & 3 pts

[2001.01453]

EOM / Hilbert Series techniques allows for proof of all 2- and 3-pt field space connections!

		Mass	s Dimer	nsion	
Field space connection	6	8	10	12	14
$h_{IJ}(\phi)(D_{\mu}\phi)^{I}(D^{\mu}\phi)^{J}$	2	2	2	2	2
$g_{AB}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B,\mu u}$	3	4	4	4	4
$k_{IJA}(\phi)(D^{\mu}\phi)^{I}(D^{\nu}\phi)^{J}\mathcal{W}^{A}_{\mu\nu}$	0	3	4	4	4
$f_{ABC}(\phi)\mathcal{W}^{A}_{\mu u}\mathcal{W}^{B, u ho}\mathcal{W}^{C,\mu}_{ ho}$	1	2	2	2	2
$Y_{pr}^{u}(\phi)\overline{Q}u+$ h.c.	$2 N_f^2$	$2 N_f^2$	$2 N_f^2$	$2 N_f^2$	$2 N_{f}^{2}$
$Y^d_{pr}(\phi) ar{Q} d+ ext{ h.c.}$	$2N_f^2$	$2N_f^2$	$2N_{f}^{2}$	$2N_{f}^{2}$	$2N_{f}^{2}$
$\hat{Y}_{pr}^{e}(\phi)\bar{L}e+$ h.c.	$2N_f^2$	$2N_{f}^{2}$	$2N_{f}^{2}$	$2N_{f}^{2}$	$2N_f^2$
$d_A^{e,pr}(\phi) \bar{L} \sigma_{\mu\nu} e \mathcal{W}_A^{\mu\nu} + \text{h.c.}$	$4N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_A^{u,pr}(\phi) \bar{Q} \sigma_{\mu\nu} u \mathcal{W}_A^{\mu\nu} + \text{h.c.}$	$4N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_A^{d,pr}(\phi) \bar{Q} \sigma_{\mu\nu} d\mathcal{W}_A^{\mu\nu} + \text{h.c.}$	$4N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$L_{pr,A}^{\psi_R}(\phi)(D^\mu\phi)^J(\bar{\psi}_{p,R}\gamma_\mu\sigma_A\psi_{r,R})$	N_f^2	N_f^2	N_f^2	N_f^2	N_f^2
$\hat{L}_{pr,A}^{\psi_L}(\phi)(D^{\mu}\phi)^J(\bar{\psi}_{p,L}\gamma_{\mu}\sigma_A\psi_{r,L})$	$2 N_{f}^{2}$	$4 N_f^2$	$4 N_f^2$	$4 N_{f}^{2}$	$4 N_{f}^{2}$

- All-orders connections field-redefinition invariant & yield large reduction in operators (EFT parameters)!
- Lagrangian parameters & Feynman rules obtained at all v/Λ orders before physical amplitude calculated!
- This is more than reorganization. It allows for all-orders amplitudes of fundamental processes:

$$\bar{\Gamma}_{Z \to \bar{\psi}\psi} = \sum_{\psi} \frac{N_c^{\psi}}{24\pi} \sqrt{\bar{m}_Z^2} |g_{\text{eff}}^{Z,\psi}|^2 \left(1 - \frac{4\bar{M}_{\psi}^2}{\bar{m}_Z^2}\right)^{3/2} \qquad g_{\text{eff}}^{Z,\psi} = \frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3)\delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right] \\ \stackrel{\bullet}{\bigstar} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bigstar} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet$$

geoSMEFT Pheno @ dim-8: [2007.00565][2107.07470][2102.02819][2203.11976]; (tadpole)[2106.10284]

Compliments work from Dawson et al.: [2110.06929] [2201.09887] [2205.01561] + ...

Flavoring the geoSMEFT

Yukawa-like operators of the SMEFT are given by

$$Q_{\psi H}^{6+2n} = \left(H^{\dagger}H\right)^{n+1} \left(\bar{\psi}_{L,p}\psi_{R,r}H\right) \quad \text{with} \quad n \ge 0$$

• In the geoSMEFT formalism this all-order tower in v/Λ is captured by Yukawa field space connections:

			Mass	s Dimer	ision	
$Y(\phi)\overline{\psi}_1\psi_2$	Field space connection	6	8	10	12	14
$Y_{pr}^{\psi_1}(\phi_I) = \frac{\delta \mathcal{L}_{\text{SMEFT}}}{\delta(\overline{\psi}_{2,p}^I \psi_{1,r})} \Big _{\mathcal{L}(\alpha,\beta,\dots) \to 0}$	$\begin{array}{l} Y^u_{pr}(\phi)\bar{Q}u+\text{h.c.}\\ Y^d_{pr}(\phi)\bar{Q}d+\text{h.c.}\\ Y^e_{pr}(\phi)\bar{L}e+\text{h.c.} \end{array}$	$ \begin{array}{ c c c c } 2 N_{f}^{2} \\ 2 N_{f}^{2} \\ 2 N_{f}^{2} \end{array} $	$ \begin{array}{ c c c c } 2 N_{f}^{2} \\ 2 N_{f}^{2} \\ 2 N_{f}^{2} \end{array} $	$ \begin{array}{ c c c } 2 N_{f}^{2} \\ 2 N_{f}^{2} \\ 2 N_{f}^{2} \end{array} $	$ \begin{array}{ c c c c c } 2 N_{f}^{2} \\ 2 N_{f}^{2} \\ 2 N_{f}^{2} \end{array} $	$ \begin{array}{ c c c c } 2 N_{f}^{2} \\ 2 N_{f}^{2} \\ 2 N_{f}^{2} \end{array} $
	∞		(12)	n		

$$Y_{pr}^{\psi}(\phi_{I}) = -H(\phi_{I}) \left[Y_{\psi}\right]_{pr}^{\dagger} + H(\phi_{I}) \sum_{n=0}^{\infty} C_{\psi_{H}}^{(6+2n)} \left(\frac{\phi^{2}}{2}\right)^{n}$$

 From this one can immediately derive the all-orders effective Yukawa interactions, in terms of SM and SMEFT contributions:

$$[\mathcal{Y}^{\psi}]_{rp} = \frac{\delta(Y_{pr}^{\psi})^{\dagger}}{\delta h}\Big|_{\phi_i \to 0} = \frac{\sqrt{h}^{44}}{\sqrt{2}} \left([Y_{\psi}]_{rp} - \sum_{n=3}^{\infty} \frac{2n-3}{2^{n-2}} \tilde{C}_{\psi_{pr}}^{(2n),\star} \right)$$

flavor not taken any further in 2001.01453!

 $[M_{\psi}]_{rp} = \langle (Y_{pr}^{\psi})^{\dagger} \rangle$

What about actual mass eigenstates and mixing parameters?

All-Orders Flavor Formalisms

Back to Basics: Two-Flavor Approximations

Do you know how to write $y^2(Y)$, $\theta(Y)$, $\delta(Y)$?

• In 2D, one can straightforwardly diagonalize the associated Yukawa couplings:

$$\mathcal{Y} = \frac{\sqrt{h}^{44}}{\sqrt{2}} \left[\begin{pmatrix} Y_{11} & Y_{22} \\ Y_{21} & Y_{22} \end{pmatrix} - \sum_{n=3}^{\infty} \frac{2n-3}{2^{n-2}} \begin{pmatrix} \tilde{C}_{11}^{(2n), \star} & \tilde{C}_{21}^{(2n), \star} \\ \tilde{C}_{12}^{(2n), \star} & \tilde{C}_{22}^{(2n), \star} \end{pmatrix} \right] \qquad |\mathcal{Y}\mathcal{Y}^{\dagger}| \equiv \begin{pmatrix} |y_{11}| & |y_{12}| \\ |y_{12}| & |y_{22}| \end{pmatrix} \implies U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$y_{i,j}^{2} = \frac{1}{2} \left(y_{11} + y_{22} \mp \sqrt{y_{11}^{2} + 4y_{12}^{2} - 2y_{11}y_{22} + y_{22}^{2}} \right), \qquad t_{2\theta} = \frac{2 |y_{12}|}{(|y_{22}| - |y_{11}|)}$$

However, results are basis-dependent, and at N_f = 3 one finds that standard techniques are ...

Results✓ Step-by-step solutionλ₁ =
$$\frac{1}{3}$$
 (a a* + b b* + c c* + d d* + e e* + 2 f f* + g g* + h h*) + $\frac{1}{3\sqrt[3]{2}}$ ((2 a³ (a*)³ + 6 a² b b* (a*)² + 6 a² c c* (a*)² + 6 a² d d* (a*)² +9 a b d e* (a*)² - 3 a² e e* (a*)² + 9 a c d f* (a*)² - 6 a² f f* (a*)² +9 a b d e* (a*)² - 3 a² e e* (a*)² + 9 a b g h* (a*)² - 3 a² h h* (a*)² +9 a b d e* (a*)² + 6 a² g g* (a*)² + 9 a b g h* (a*)² - 3 a² h h* (a*)² +9 a b d e(e*)² a* - 12 a f² (f*)² a* + 6 a d² (d*)² a* - 3 a e² (e*)² a* +9 b d e(e*)² a* - 12 a f² (f*)² a* + 18 c d f (f*)² a* + 18 c f g (f*)² a* +9 b d de* a* + 9 a² e b* d* a* + 3 a c d c* d* a* + 9 a² f c* d* a* +9 b² d b* e* a* + 3 a b e b* e* a* + 9 b c d c* e* a* - 6 a c e c* e* a* +9 b² d b* e* a* + 3 a b e b* e* a* + 9 b c d c* e* a* - 6 a c e c* e* a* +

• A different method needs to be found. Answer: use **flavor invariants**!

• A group ring *C[x]^G* of polynomials *x* invariant under symmetry *G* is contained in the free ring *C[x]*:

$$\mathbb{C}[x_1,\ldots,x_n]^G \subseteq \mathbb{C}[x_1,\ldots,x_n]$$

For certain G, C[x]^G is <u>finitely generated</u> by polynomial invariants *I(x)*, such that any G-invariant polynomial *f(x)* can be written as a polynomial *g(I)*, a member P of the (not necessarily free) ring *C[I]*:

$$f(x_1,\ldots,x_n) = g(I_1,\ldots,I_n) \qquad P \in \mathbb{C}[I_1,\ldots,I_r]$$

• Minimal basis of invariants can be enumerated with *Hilbert series* (well-known in SMEFT!):

$$H(q) = \sum_{r=0}^{\infty} c_r q^r$$

q = invariant 'spurion' r = polynomial degree of invariant c_r = # of invariants of degree r

• For semi-simple Lie groups further results can be derived:

$$H(q) = \frac{N(q)}{D(q)} \qquad N(q) = 1 + c_1 q + \dots + c_{d_N - 1} q^{d_N - 1} + q^{d_N}$$
$$D(q) = \prod_{r=1}^p (1 - q^{d_r})$$

N & Q = polynomials $d_N = polynomial degree of N$ $d_D = polynomial degree of D = sum of d_r$ p = # free parameters

Toy Model with Invariants

[...] [0706.4313] [0907.4763]

Consider a toy model with two mass parameters and an Abelian flavor symmetry:

$$G = U(1) \times U(1) \quad \longrightarrow \quad m_1 \to e^{i\phi_1} m_1, \qquad m_2 \to e^{i\phi_2} m_2$$

Polynomials invariant under G are clearly linear combinations of monomials ~ mm* :

$$\mathbb{C}[m_1, m_1^*, m_2, m_2^*]^{U(1) \times U(1)} \quad \longleftrightarrow \quad \begin{array}{c} (m_1 m_1^*)^{r_1} (m_2 m_2^*)^{r_2} \\ I_1 & I_2 \end{array}$$

- Furthermore there are no relations amongst I_1 and I_2 (freely generated ring).
- The Hilbert series is also easily constructed:

$$H(q) = 1 + 2q^2 + 3q^4 + 4q^6 + 5q^8 + \dots = \sum_{n=0}^{\infty} (n+1)q^{2n} = \frac{1}{(1-q^2)^2}$$
$$N(q) = 1, \ d_1 = d_2 = 2$$

 $c_1 = 0$ $c_2 = 2$ (two invariants of degree 2), $m_1m_1^* \& m_2m_2^*$ $c_3 = 0$ $c_4 = 1, w_1 = w_2^* = 2$ p = 2 = 4 objects - 2 phase redefinitions

A Complete Basis for Quarks

For us, the relevant polynomials are $\begin{array}{l} Y^{\psi}Y^{\psi\dagger} \rightarrow U^{\dagger}Y^{\psi}Y^{\psi\dagger}U \\ Yukawa \ couplings! \end{array} \qquad H(q) \ = \ h(q,q) = \frac{1+q^{12}}{(1-q^2)^2(1-q^4)^3(1-q^6)^4(1-q^8)} \end{array}$

• A set of 11 invariants can be found to fully parameterize the theory, including six 'unmixed' I

$$YY^{\dagger} \equiv \mathbb{Y}_{1} \qquad \qquad I_{1} \equiv \operatorname{tr}(\mathbb{Y}_{u}) , \qquad \hat{I}_{3} \equiv \operatorname{tr}(\operatorname{adj}\mathbb{Y}_{u}) , \qquad \hat{I}_{6} \equiv \operatorname{tr}(\mathbb{Y}_{u}\operatorname{adj}\mathbb{Y}_{u}) = 3 \operatorname{det}\mathbb{Y}_{u} \\ I_{2} \equiv \operatorname{tr}(\mathbb{Y}_{d}) , \qquad \hat{I}_{4} \equiv \operatorname{tr}(\operatorname{adj}\mathbb{Y}_{d}) , \qquad \hat{I}_{8} \equiv \operatorname{tr}(\mathbb{Y}_{d}\operatorname{adj}\mathbb{Y}_{d}) = 3 \operatorname{det}\mathbb{Y}_{d}$$

as well as four 'mixed' I, relevant for extracting information about the CKM (overlap) matrix

$$\hat{I}_5 \equiv \operatorname{tr}\left(\mathbb{Y}_u \,\mathbb{Y}_d\right), \quad \hat{I}_7 \equiv \operatorname{tr}\left(\operatorname{adj} \mathbb{Y}_u \,\mathbb{Y}_d\right), \quad \hat{I}_9 \equiv \operatorname{tr}\left(\mathbb{Y}_u \operatorname{adj} \mathbb{Y}_d\right), \quad \hat{I}_{10} \equiv \operatorname{tr}\left(\operatorname{adj} \mathbb{Y}_u \operatorname{adj} \mathbb{Y}_d\right)$$

and finally one mixed, CP-odd invariant relevant to pinning down the overall sign of CP violation:

$$I_{11}^{-} = -\frac{3i}{8} \det \left[\mathbb{Y}_u, \mathbb{Y}_d \right]$$
 proportional to to the Jarlskog Invariant J!

The fundamental geoSMEFT object we can construct at all-orders is then given by

$$\mathbb{Y}_{rp} = \frac{\mathbb{h}}{2} \left(Y_{ri} Y_{pi}^{\star} - \sum_{n'}^{\infty} f(n') Y_{ri} \tilde{C}_{ip}^{(2n')} - \sum_{n}^{\infty} f(n) \tilde{C}_{ir}^{(2n),\star} Y_{pi}^{\star} + \sum_{n,n'}^{\infty} f(n) f(n') \tilde{C}_{ir}^{(2n),\star} \tilde{C}_{ip}^{(2n')} \right)$$

All-Orders Formulae: Masses

Unmixed invariants can be solved to obtain exact formulae for Yukawa couplings / masses:

$$y_{i}^{2} = \frac{(-2)^{1/3}}{3\psi_{u}} \left(I_{1}^{2} - 3\hat{I}_{3} + (-2)^{-1/3} I_{1}\psi_{u} + (-2)^{-2/3} \psi_{u}^{2} \right), \qquad \text{Valid for up-quark masses.}$$

$$y_{j,k}^{2} = \frac{1}{12\psi_{u}} ((-2)^{4/3} I_{1}^{2} - 3 \cdot (-2)^{4/3} \hat{I}_{3} + 4I_{1}\psi_{u}$$

$$\mp \psi_{u} \sqrt{24 \left(I_{1}^{2} - 3\hat{I}_{3} \right) + \frac{6 \cdot (-2)^{5/3} \left(I_{1}^{2} - 3\hat{I}_{3} \right)^{2}}{\psi_{u}^{2}} - 3 \cdot (-2)^{4/3} \psi_{u}^{2} + (-2)^{2/3} \psi_{u}^{2}}}$$

$$\psi_{u} = \left(-2I_{1}^{3} + 9I_{1}\hat{I}_{3} - 9\hat{I}_{6} + 3\sqrt{-3I_{1}^{2}\hat{I}_{3}^{2} + 12\hat{I}_{3}^{3} + 4I_{1}^{3}\hat{I}_{6} - 18I_{1}\hat{I}_{3}\hat{I}_{6} + 9\hat{I}_{6}^{2}} \right)^{1/3}$$

 Of course, the only distinction between fermions of the same family are their (measured) mass eigenvalues....

$$y_u^2 \equiv \min\{y_i^2, y_j^2, y_k^2\}, \qquad y_c^2 \equiv \min\{y_i^2, y_j^2, y_k^2\} \qquad y_t^2 \equiv \max\{y_i^2, y_j^2, y_k^2\}$$

All-Orders Formulae: Mixings & CP [2107.03951]

Similarly, the mixed invariants give predictions for (CKM) mixing angles:

$$s_{13} = \left[\frac{-\hat{I}_{10} - y_b^2 \left(\hat{I}_7 - \Delta_{ds}^+ \Delta_{uc}^+ \Delta_{uc}^+\right) - y_u^2 \left(\hat{I}_9 + y_b^2 \left(\hat{I}_5 - y_b^2 \Delta_{ct}^+\right) - y_d^2 y_s^2 \Delta_{ct}^+\right)}{\Delta_{bd}^- \Delta_{bs}^- \Delta_{cu}^- \Delta_{ut}^-}\right]^{1/2} \qquad \Delta_{ij}^\pm = y_i^2 \pm y_j^2$$

$$s_{23} = \left[\frac{\Delta_{tu}^{-}\left(-\hat{I}_{10} + y_{c}^{2}\left(-\hat{I}_{9} + (y_{b}^{4} + y_{d}^{2}y_{s}^{2})\Delta_{ut}^{+}\right) + y_{b}^{2}\left(-\hat{I}_{7} + y_{c}^{2}\left(-\hat{I}_{5} + \Delta_{ct}^{+}\Delta_{ds}^{+}\right) + y_{u}^{2}\Delta_{ct}^{+}\Delta_{ds}^{+}\right)\right)}{\Delta_{ct}^{-}\left(\hat{I}_{10} + y_{u}^{2}\hat{I}_{9} + y_{b}^{2}\left(\hat{I}_{7} + y_{u}^{2}\left(\hat{I}_{5} - 2\Delta_{ct}^{+}\Delta_{ds}^{+}\right)\right) - (y_{u}^{4} + y_{c}^{2}y_{t}^{2})\left(y_{b}^{4} + y_{d}^{2}y_{s}^{2}\right)\right)}\right]^{1/2}$$

$$s_{12} = \left[\frac{\Delta_{db}^{-}\left(\hat{I}_{10} + y_{s}^{2}\left(\hat{I}_{7} - y_{c}^{2}y_{t}^{2}\Delta_{db}^{+}\right)\right) + y_{u}^{2}\Delta_{bd}^{-}\left(-\hat{I}_{9} - y_{s}^{2}\hat{I}_{5} + \Delta_{sb}^{+}\Delta_{ct}^{+}\Delta_{ds}^{+}\right) + y_{u}^{4}y_{s}^{2}\left(y_{b}^{4} - y_{d}^{4}\right)}{\Delta_{ds}^{-}\left(\hat{I}_{10} + y_{u}^{2}\hat{I}_{9} + y_{b}^{2}\left(\hat{I}_{7} + y_{u}^{2}\left(\hat{I}_{5} - 2\Delta_{ct}^{+}\Delta_{ds}^{+}\right)\right) - \left(y_{b}^{4} + y_{d}^{2}y_{s}^{2}\right)\left(y_{u}^{4} + y_{c}^{2}y_{t}^{2}\right)}\right]^{1/2}$$

 When combined with the CP-odd 11th invariant, one also can derive the Dirac CP-violating phase (and its sign!)

$$s_{\delta} = \frac{4}{3} I_{11}^{-} \left[\Delta_{tc}^{-} \Delta_{tu}^{-} \Delta_{cu}^{-} \Delta_{bs}^{-} \Delta_{bd}^{-} \Delta_{sd}^{-} s_{12} s_{13} s_{23} \left(1 - s_{23}^{2} \right)^{1/2} \left(1 - s_{12}^{2} \right)^{1/2} \left(1 - s_{13}^{2} \right)^{1/2} \left(1 - s_{$$

Here one notices the proportionality to the Jarlskog as well!

Numerical Checks

- To test the validity of our formulae, we wrote a script to compare values of Dirac parameters predicted from our formulae vs. those extracted with numerical techniques. It did so by...
 - (a) computing the eigenvectors of $[\mathcal{Y}^{(u,d)}\mathcal{Y}^{(u,d),\dagger}]$. These are normalized to unit vectors \mathbf{v}_i and then the numerical matrices are defined by $U_{(u,d)} \equiv \left(\mathbf{v}_1^{(u,d),T}, \mathbf{v}_2^{(u,d),T}, \mathbf{v}_3^{(u,d),T}\right)$.
 - (b) computing the CKM matrix as $V_{CKM} = U_u^{\dagger} \cdot U_d$.
 - (c) uniquely extracting the s_{13} mixing angle from V_{13} , $s_{13} = |V_{13}|$.
 - (d) uniquely extracting the s_{23} mixing angle from V_{23} , $s_{23} = |V_{23}|/\sqrt{1-s_{13}^2}$.
 - (e) uniquely extracting the s_{12} mixing angle from V_{12} , $s_{12} = |V_{12}|/\sqrt{1-s_{13}^2}$.
 - (f) uniquely extracting the s_{δ} phase in a phase-convention-independent manner from the Jarlskog invariant J.
- Computations done in arbitrary flavor/weak bases (i.e. with full but arbitrary 3D structure in matrices)

mass dimension up to n = 10

new physics between 2-10 TeV

• **Conclusion**: complete agreement up to numerical tolerance of 10¹⁰ !!

• Note that numerical checks in environments with $\{\mathbb{Y}'_u, \mathbb{Y}'_d\} = \{U^{u\dagger}_{\chi} \mathbb{Y}_u U^{u}_{\chi}, U^{d\dagger}_{\chi} \mathbb{Y}_d U^{d}_{\chi}\}$ also confirm LACK of ability to predict CKM angles with our formulae in this instance, as expected! 17

These formulae...

- are exact, and analytically relate the fundamental Lagrangian parameters to the `physical' masses, mixings, and phase (for the first time, to my knowledge).
- complete the list of all-orders Lagrangian parameters in the Dirac flavor sector of the geoSMEFT
- are basis independent (as long as the information required is present in the basis in question)
- are applicable to explicit (B)SM models and EFTs, when global U(3)_Q flavor rotations control flavor parameters.

Powerful tools in the description of (B)SM flavor physics!

Equations for $\begin{array}{l} UTZ \\ Equations \\ for \\ UTZ \end{array}$

• After flavor- and EW-symmetry breaking, the EFT/model shapes Yukawa/mass matrices of the form

$$\mathcal{M}_{f}^{D} = \begin{pmatrix} 0 & a e^{i\gamma} & a e^{i\gamma} \\ a e^{i\gamma} & (b e^{-i\gamma} + 2a e^{-i\delta}) e^{i(\gamma+\delta)} & b e^{i\delta} \\ a e^{i\gamma} & b e^{i\delta} & 1 - 2a e^{i\gamma} + b e^{i\delta} \end{pmatrix}_{f}$$

Proof-in-principle fits to global flavor data yield post-dictions for mass (ratios) and CKM mixing angles:

oplications: BSM States in the IR [2107.03951]

 $\mathcal{L} \supset y_{3,ij}^{LL} \bar{Q}_L^{C\,i,a} \epsilon^{ab} (\tau^k \Delta_3^k)^{bc} L_L^{j,c} + z_{3,ij}^{LL} \bar{Q}_L^{C\,i,a} \epsilon^{ab} ((\tau^k \Delta_3^k)^\dagger)^{bc} Q_L^{j,c} + \text{h.c.}$

Regardless of the introduction of new IR flavor violation, Dirac mass and mixing still predictable!

EFT for CKM + PMNS + Leptoquarks

	$Q^{''1}$	$Q^{''23}$	$u_R^{\prime\prime 1}$	$u_R^{\prime\prime 2}$	$u_R^{''3}$	$d_R^{\prime\prime 1}$	$d_R^{''2}$	$d_R^{''3}$	ϕ_u	ϕ_d
D_{15}	1_	2_1	1_	1	1_	1_	1	1_	2_1	2_1

[Bernigaud, de Medeiros Varzielas, Talbert: 2005.12293]

 $\mathcal{L}_{Y} \supset a_{u} \bar{Q}_{L}^{''1} u_{R}^{''1} + b_{u} \left[\bar{Q}_{L}^{''23} \phi_{u} \right]_{1} u_{R}^{''2} + c_{u} \left[\bar{Q}_{L}^{''23} \phi_{u} \right]_{1} u_{R}^{''3}$

 $+ a_d \bar{Q}_L^{''1} d_R^{''1} + b_d \left[\bar{Q}_L^{''23} \phi_d \right]_1 d_R^{''2} + c_d \left[\bar{Q}_L^{''23} \phi_d \right]_1 d_R^{''3},$

Applications: Renormalization Group Flow

Note however that latter formulae only hold for MFV theories (numerics done for SM limit)!

Would be interesting to pursue more generic RGE studies in SMEFT (e.g. 2005.12283).

22

Applications: CKM Fits?

Wolfenstein Parameterization

 $W_j \equiv \{\lambda, A, \bar{\rho}, \bar{\eta}\}$

2020 PDG Global Fit

12. CKM Quark-Mixing Matrix

Revised March 2020 by A. Ceccucci (CERN), Z. Ligeti (LBNL) and Y. Sakai (KEK).

contribute at the same order in $v/\Lambda!$

23

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(1 + \frac{1}{2}\lambda^2)(\bar{\rho} - i\bar{\eta}) \\ -\lambda + A^2\lambda^5(\frac{1}{2} - \bar{\rho} - i\bar{\eta}) & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 + A\lambda^4(\frac{1}{2} - \bar{\rho} - i\bar{\eta}) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \begin{pmatrix} 0.97401 \pm 0.00011 & 0.22650 \pm 0.00048 & 0.00361_{-0.00009}^{+0.00011} \\ 0.22636 \pm 0.00048 & 0.97320 \pm 0.00011 & 0.04053_{-0.00061}^{+0.00083} \\ 0.00854_{-0.00016}^{+0.00023} & 0.03978_{-0.00060}^{+0.00082} & 0.999172_{-0.000035}^{+0.00024} \end{pmatrix}$$

• CKM parameter fits big business in flavor physics — critical tests of the SM.

 $\delta O_{\alpha,\mathrm{NP}}^{\mathrm{indirect}} = -\frac{\partial O_{\alpha,\mathrm{SM}}}{\partial W_i} \delta W_i + \mathcal{O}(\Lambda^{-4})$

 However, as we have seen, BSM physics encoded in Wilson coefficients impacts the definition of the CKM matrix. A consistent treatment of such effects critical for interpretation of NP bounds.

Applications: CKM Fits?

[1812.08163]

Published for SISSA by 🖉 Springer	$\Gamma(K \to \mu \nu_{\mu}) / \Gamma(\pi \to \mu \nu_{\mu}), \Gamma(B \to \tau \nu_{\tau}), \Delta M_d, \Delta M_s.$					
RECEIVED: March 2, 2019 ACCEPTED: May 16, 2019 PUBLISHED: May 27, 2010	CKMfitter (SM) [14]UTfit (SM) [15]This work (SMEFT)					
1 Oblished. May 27, 2019	$\lambda = 0.224747^{+0.000254}_{-0.000059} \lambda = 0.2250 \pm 0.0005 \tilde{\lambda} = 0.22537 \pm 0.00046$					
The CKM parameters in the SMEFT	$A = 0.8403^{+0.0056}_{-0.0201} \qquad A = 0.826 \pm 0.012 \qquad \tilde{A} = 0.828 \pm 0.021$					
Sébastien Descotes-Genon ^a Adam Falkowski ^a Marco Fedele a,b	$\bar{\rho} = 0.1577^{+0.0096}_{-0.0074}$ $\bar{\rho} = 0.148 \pm 0.013$ $\tilde{\rho} = 0.194 \pm 0.024$					
Martín González-Alonso ^{c} and Javier Virto ^{d,e}	$\bar{\eta} = 0.3493^{+0.0095}_{-0.0071}$ $\bar{\eta} = 0.348 \pm 0.010$ $\tilde{\eta} = 0.391 \pm 0.048$					

 As expected, reabsorption of BSM effects into 'SM' parameters leads to non-trivial bounds on NP when calculating other flavored processes:

• Formalism with flavored geoSMEFT can potentially push fits to higher order in v/Λ .

• Of relevance to potential Cabibbo Angle Anomaly — see e.g. 2109.06065.

Neutrino Masses and Mixings

- Neutrino mass and mixing is an experimental fact, and represents a clear departure from the naive SM. Massive experimental effort underway to pin down neutrino properties...
- Known: there is a gigantic hierarchy between neutrino mass scales and (e.g.) the top mass, and the mixing in the neutrino sector is large and non-hierarchical.

neutrinos key to understanding critical BSM physics

Neutrinos in the (geo)SMEFT

• Neutrino masses described by dim-5 Weinberg operator at leading-order in SMEFT:

• A field-space connection that describes this mass generation at all-orders should be found...

$$\mathcal{L} \supset \eta(\phi)_{\alpha\beta} \, \ell^{\alpha} \ell^{\beta}$$

$$Field space connection \qquad 5 \qquad 7 \qquad 9 \qquad 11 \qquad 13$$

$$\eta(\phi)_{\alpha\beta} \, \ell^{\alpha} \ell^{\beta} + \text{h.c.} \qquad 2 \cdot 2N_f \quad ? \qquad ? \qquad ? \qquad ?$$

$$for N_f = 3...$$

• Furthermore, Hilbert series and associated basis of invariants known for $N_f = 3!$

$$H(q) = \frac{1 + q^6 + 2q^8 + 4q^{10} + 8q^{12} + 7q^{14} + 9q^{16} + 10q^{18} + 9q^{20} + 7q^{22} + 8q^{24} + 4q^{26} + 2q^{28} + q^{30} + q^{36}}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)^2 (1 - q^{10})}$$

All-Orders flavor formalism analogous to quark sector within (quick) reach!

Neutrinos in the (geo)vSMEFT

Introducing a light sterile neutrino N changes the EFT under consideration!

$$\mathcal{L}_{N} = \frac{1}{2} (\bar{N}_{p} i \partial N_{p} - \bar{N}_{p} M_{pr} N_{r}) - [\bar{N}_{p} \omega_{p\beta} \tilde{H}^{\dagger} l_{\beta} + \text{H.c.}]$$

• A geometric *v*SMEFT can (and will) be developed. Obvious field-space connections are:

$$\mathcal{L} \supset Y_{pr}^{\nu}(\phi) \,\overline{L} \, N + M_{pr}(\phi) \,\overline{N} \, N$$

_	Field space connection	6	8	10	12	14	
	$Y_{pr}^{\nu}(\phi) \overline{L} N + \text{h.c.}$	$2 N_f^2$?	?	?	?	
	$M_{pr}(\phi) \overline{N} N + \text{h.c.}$	$2 \cdot 2N_f$?	?	?	?	

for $N_f = 3...$

All-orders amplitudes in such a theory could be a big boon to precision neutrino phenomenology!!

 $\tilde{H} - \frac{1}{N_p} N \xrightarrow{\ell^{\pm}} \frac{\ell^{\pm}}{\gamma} V_1$

The Hilbert Series for the complete three-generation Lagrangian was found in 1010.3161.

It's all about scales!

Mass Dimension

 W^{\mp}

5261596067 #of mass-dimension 14 operators in Nf = 3 nuSMEFT — Thanks to ECO!! [2005.09521]

Summary and outlook

- One can construct basis-independent flavor formalisms using invariant theory.
- These formalisms depend exclusively on flavor symmetry and free parameters.
- As a result, they hold at all-orders in effective field theories, e.g. the (geo)SMEFT.
- We have presented analytic formulae for the Dirac masses and mixings present in the (geo)SM(EFT). They are useful in any number of (B)SM contexts.
- Phenomenological applications are obvious, including fits to mass and mixing.
- The extension of the formalism to neutrino physics is ongoing, and rich in application.
- Flavor & neutrino physics offer prime opportunities for low- and high-energy complementarity!

THANK YOU!

- The resulting NP bounds derived from (e.g.) $\Delta F=2$ or b->sll processes are very important!
- Q1: what is the correspondence between RGE of flavor invariants and (known) non-MFV relations?
- Q2: what is the phenomenological impact of higher-order RGE of physical parameters?

[2007.00565]

Partial Sq. vs. Full Dim-8: Fermionic Z Decay

Consider all-order geoSMEFT width for Z-boson decay to fermions:

$$\bar{\Gamma}_{Z \to \bar{\psi}\psi} = \sum_{\psi} \frac{N_c^{\psi}}{24\pi} \sqrt{\bar{m}_Z^2} |g_{\text{eff}}^{Z,\psi}|^2 \left(1 - \frac{4\bar{M}_{\psi}^2}{\bar{m}_Z^2} \right)^{3/2} \qquad g_{\text{eff}}^{Z,\psi} = \frac{\bar{g}_Z}{2} \left[(2s_{\theta_Z}^2 Q_{\psi} - \sigma_3)\delta_{pr} + \bar{v}_T \langle L_{3,4}^{\psi,pr} \rangle + \sigma_3 \bar{v}_T \langle L_{3,3}^{\psi,pr} \rangle \right] \\ \stackrel{\bullet}{\uparrow} \qquad \stackrel{\bullet}{\downarrow} \quad \stackrel{\bullet}{\downarrow} \quad \stackrel{\bullet}{\downarrow} \quad \stackrel{\bullet}{\downarrow} \qquad \stackrel{\bullet}{\downarrow} \quad \stackrel{\bullet}{\downarrow$$

Expand complete dependence at dim-6, dim-8:

$$\langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\text{SM}} = \bar{g}_Z^{\text{SM}} \left[(s_\theta^{\text{SM}})^2 \, Q_\psi - \frac{\sigma_3}{2} \right] \, \delta_{pr}$$

$$\langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^2/\Lambda^2)} = \frac{\langle \bar{g}_Z \rangle_{\mathcal{O}(v^2/\Lambda^2)}}{\bar{g}_Z^{\text{SM}}} \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\text{SM}} \,\delta_{pr} + \bar{g}_Z^{\text{SM}} \,Q_\psi \,\langle s_{\theta_Z}^2 \rangle_{\mathcal{O}(v^2/\Lambda^2)} \,\delta_{pr} + \frac{\bar{g}_Z^{\text{SM}}}{2} \left[\tilde{C}_{H\psi}^{1,(6)} - \sigma_3 \,\tilde{C}_{H\psi}^{3,(6)} \right]$$

$$\langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^4/\Lambda^4)} = \frac{\langle \bar{g}_Z \rangle_{\mathcal{O}(v^4/\Lambda^4)}}{\bar{g}_Z^{\text{SM}}} \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\text{SM}} \, \delta_{pr} + \bar{g}_Z^{\text{SM}} \, Q_\psi \, \langle s_{\theta_Z}^2 \rangle_{\mathcal{O}(v^4/\Lambda^4)} \, \delta_{pr} + \langle \bar{g}_Z \rangle_{\mathcal{O}(v^2/\Lambda^2)} \, \langle s_{\theta_Z}^2 \rangle_{\mathcal{O}(v^2/\Lambda^2)} \, Q_\psi \delta_{pr} \\ + \frac{\langle \bar{g}_Z \rangle_{\mathcal{O}(v^2/\Lambda^2)}}{2} \left[\tilde{C}_{H\psi}^{1,(6)} - \sigma_3 \, \tilde{C}_{H\psi}^{3,(6)} _{pr} pr \right] + \frac{g_Z^{\text{SM}}}{4} \left[\tilde{C}_{H\psi}^{1,(8)} - \sigma_3 \, \tilde{C}_{H\psi}^{2,(8)} - \sigma_3 \, \tilde{C}_{H\psi}^{3,(8)} _{pr} pr \right] \right]$$

Compare (e.g.) dependence on (C⁽⁶⁾_{HWB})² using partial square vs. full dim-8 analysis:

Partial Square

Complete Analysis

$$|g_{\text{eff,pr}}^{\mathcal{Z},\psi}|_{\text{partial square}}^{2} \supset \frac{g_{1}^{2} g_{2}^{2} (\tilde{C}_{HWB}^{(6)})^{2}}{(g_{Z}^{\text{SM}})^{6}} \delta_{pr} \left[g_{Z}^{\text{SM}} \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\text{SM}} + (g_{2}^{2} - g_{1}^{2}) Q_{\psi}\right]^{2} \qquad |g_{\text{eff,pr}}^{\mathcal{Z},\psi}|_{\mathcal{O}(v^{4}/\Lambda^{4})}^{2} \supset \frac{g_{1}^{2} g_{2}^{2} (\tilde{C}_{HWB}^{(6)})^{2} (g_{2}^{2} - g_{1}^{2})^{2} Q_{\psi}^{2}}{(g_{Z}^{\text{SM}})^{6}} \delta_{pr} + (\tilde{C}_{HWB}^{(6)})^{2} \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\text{SM}}^{2} \delta_{pr}$$

There are even *cancellations* such that term $\sim Q$ doesn't exist in full expansion...

Towards PMNS Fits in the (geo)(v)SMEFT

NuFIT 5.1 (2021)

	Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.6)$
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
$\theta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$
$\sin^2 \theta_{13}$	$0.02220\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \rightarrow 0.02434$
$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
$\delta_{\mathrm{CP}}/^{\circ}$	194^{+52}_{-25}	$105 \to 405$	287^{+27}_{-32}	$192 \to 361$

- Given complete flavor formalism(s) in the (geo)(v)SMEFT, the natural project would be to do a precision fit to mass and mixing, as in CKM case.
- Re-absorption of BSM effects likely important in interpretation of neutrino NSI and associated bounds on new physics...
- Knowledge of matching and RGE to relevant neutrino processes required!

