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Particle physics and cosmological history
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• Studying particle interactions will help us understand the evolution of our universe
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Particle interactions

• Particles dominated in the early universe

• Particle interactions had profound downstream effects



Studying particle interactions
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• Studied particle interactions at E ~ 100 GeV
• Indirectly probes the early universe t ~ 0.01 ns

• Leading to the Standard Model of Particle Physics
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• However, this is only an assumption, the real cosmological history may differ
• Direct probes are needed to say definitively

• Assuming that the early universe particles follow the Standard Model gives us 
the Standard Cosmological History



Alternate cosmological histories
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• We know the Standard Model is incomplete

• Direct measurements only confirm a Standard Cosmology back to 
Big Bang Nucleosynthesis (BBN)
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• Alternate cosmological histories may help provide explanations

?



Why consider alternate cosmological histories?
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• Scientifically important
• Experimentally we can, so scientifically we should

• Long-term benefits
• Exploring possibilities will help probe what actually happened
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Dark Matter

• Immediate practical benefits
• Might lead to profitable results alleviating current 

constraints 



How to modify cosmological history?
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• Common example: Add new particle species
• Standard WIMP Dark Matter
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• Weirder example: Modify strengths of forces
• Features of the early universe caused the strengths of the 

forces to evolve, eventually settling to what we see today 

• This talk: Modify the Electroweak (EW) force to alleviate WIMP DM constraints

E.g Joshua Berger, Andrew J. Long, Jessica Turner: 2019. 
Djuna Croon, JNH, Seyda Ipek, Timothy M.P. Tait: 2019.

https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1911.01432
https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1911.01432


Overview

06 / 25Jessica N. Howard June 02, 2022

• WIMPs are an attractive model for dark matter (DM)
• Simple extension of the Standard Model (SM) yields a WIMP miracle

We find that a period of electroweak confinement 
contemporary with WIMP freeze-out 

helps restore the WIMP miracle

• Experiments have endangered the scenario leading to the WIMP miracle

• However, this assumes a “standard” cosmological history



WIMP dark matter (DM) freeze-out
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Standard freeze-out 
knobs
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Dark Matter Relic Abundance

• A classic WIMP model considers DM as a Weakly charged particle



WIMP dark matter (DM) freeze-out
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• A classic WIMP model considers DM as a Weakly charged particle

• This was assuming a standard cosmological history

Standard freeze-out 
knobs

mχ
Force

Coupling strength

Ωχh2

Standard cosmology

SU(2)L

• Force coupling is uniquely fixed
• Getting the correct relic abundance uniquely fixes the DM mass

Strongly constrained  
by experiments}

Dark Matter Relic Abundance



WIMP dark matter (DM) freeze-out
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• A classic WIMP model considers DM as a Weakly charged particle

• This was assuming a standard cosmological history

Standard freeze-out 
knobs

mχ
Force

Coupling strength

Ωχh2
SU(2)L

• Force coupling is uniquely fixed
• Getting the correct relic abundance uniquely fixes the DM mass

Strongly constrained  
by experiments}

Dark Matter Relic Abundance

• If instead there was an alternate cosmological history where the Weak force coupling 
was different during freeze-out, freedom in DM mass would be restored

Standard cosmology

Alternate cosmology



Schematic outline of calculation
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Direct experimental 
constraintsEW confinement phase

WIMP Freeze-out

Big 
Bang

1015 GeV 100 GeV 1 GeV 1 MeVT
1

g2
eff

= ( 1
g2 − ⟨ϕ⟩

M ) M > TeV⊃ − 1
2

1
g2

eff
Tr(WμνWμν)L

⟨ϕ⟩ ≪ M/g Electroweak (EW) Force is at normal strength

⟨ϕ⟩ ∼ M/g Electroweak (EW) Force is much stronger

⟨ϕ⟩ ≠ 0

χΠDM

EW Force confines 
DM into “pions”

DM pions interact / freeze-out
ΠDM

ΠDM

ΠSM

ΠSM

χχΠDM

EW confined phase ends, pions deconfine

⟨ϕ⟩ → 0

This causes EW confinement
(analogous to QCD)



Prior work on EW confinement
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• One work[1] explored cosmological implications of an early EW confinement phase
• Coupling strength is linked to the vev of a scalar field, , undergoing a phase transition in the early universeϕ

• Historical work: L.F. Abbott, E. Farhi: 1981a, 1981b.     M. Claudson, E. Farhi, R L. Jaffe: 1986.     Gerard 't Hooft: 1998.

[1] Joshua Berger, Andrew J. Long, Jessica Turner.  A phase of confined electroweak force in the early Universe.  arXiv: 1906.05157.

1
g2

eff
= ( 1

g2 − ⟨ϕ⟩
M ) M > TeVEnergy scale parameter:⊃ − 1

2
1

g2
eff

Tr(WμνWμν)L

• Agnostic to phase transition specifics

https://www.sciencedirect.com/science/article/abs/pii/0370269381904925?via=ihub
https://www.sciencedirect.com/science/article/abs/pii/0550321381905800?via=ihub
https://doi.org/10.1103/PhysRevD.34.873
https://arxiv.org/abs/hep-th/9812204
https://www.sciencedirect.com/science/article/abs/pii/0370269381904925?via=ihub
https://www.sciencedirect.com/science/article/abs/pii/0550321381905800?via=ihub
https://doi.org/10.1103/PhysRevD.34.873
https://arxiv.org/abs/hep-th/9812204
https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1906.05157


Main takeaways from [1]
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• Confinement causes spontaneous flavor symmetry breaking: 

• Massless GSBs*:  

• One massive pseudo-GSB (  analog)

SU(2Nf) → Sp(2Nf)
(4N2

f − 1) − (2N2
f + Nf) = 2N2

f − Nf − 1 = 65
η′ 

[1] Joshua Berger, Andrew J. Long, Jessica Turner.  A phase of confined electroweak force in the early Universe.  arXiv: 1906.05157.

Our work throws a WIMP-like DM particle into the mix

• Strong EW force causes quark and lepton doublets to confine into pion-like objects

• Confinement breaks SM gauge symmetry: 
• 4 massless gauge bosons + 5 massive gauge bosons

SU(3)C × U(1)Y → SU(2)C × U(1)Q

( for SM  )Nf = 6

*Neglecting gauge interactions 
and Yukawas

• Loop induced corrections from gauge interactions + Yukawas give 58/65 “pions” masses

https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1906.05157


WIMP dark matter in this scenario
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• Our DM candidate is a pair of vector-like -charged Weyl fermions
• SM quantum numbers  with mass  

SU(2)L
SU(3)C × SU(2)L × U(1)Y = {1, 2, ± 1/2} mDM

χΠDM

χ1 χ2

= iχ†
1 σ̄μDμχ1 + iχ†

2 σ̄μDμχ2 + mDM χ1χ2 + h . c .Lχ

• During EW confinement,  and  confine with SM quarks and leptons into 
bound states
• These are analogous to mesons and baryons of QCD
• The lightest of these states are mesons:   and 

χ1 χ2

Π η′ 

• In analogy with chiral perturbation theory, we collect these into a 
complex antisymmetric scalar field  where Σij i, j = 1, . . . , 2Nf

Number of flavors of doublets SU(2)L



Confinement details
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• Confinement spontaneously breaks flavor symmetry 
• Follows intuition from chiral symmetry breaking in QCD and confirmed with lattice simulations

• Encoded by  obtaining a vev  satisfying 

SU(2Nf) → Sp(2Nf)

Σij (Σ0)ij Σ†
0Σ0 = Σ0Σ†

0 = 1

• Neglecting other SM gauge interactions and Yukawa couplings we get   massless 
Goldstone bosons (GSBs) and  massive pseudo-GSB, analogous to the  of QCD. 

2N2
f − Nf − 1

1 η′ 

1 generation

{l, qr, qg, qb, χ1, χ2}

3 generations
{l1, qr

1, qg
1 , qb

1 , l2, qr
2, qg

2 , qb
2 , l3, qr

3, qg
3 , qb

3 , χ1, χ2}

15 mesons

⇒

2Nf = 6

SU(6) → Sp(6)

⇒

91 mesons

⇒

2Nf = 14

SU(14) → Sp(14)

⇒

  ’s and 2N2
f − Nf − 1 Π 1 η′ 

SU(2Nf) → Sp(2Nf)

2Nf



Confinement details
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⊃ f2

4 Tr [DμΣ†DμΣ] + Λ3
WTr [MΣ + Σ†MT] + κΛ2

W f2Re [det Σ]LIR L+Δ Σ = exp i
η′ 

Nf f
exp [∑

a
2i

ΠaXa

f ] Σ0

  generators of the broken symmetry 
, 

Xa

SU(2Nf )/Sp(2Nf ) a : 1, . . . , 2N2
f − Nf − 1

• L gauge corrections from  and  explicitly break  giving some GSBs massesΔ SU(3)C U(1)Y SU(2Nf)

• Confinement breaks  eating some of the massless GSBsSU(3)C × U(1)Y → SU(2)C × U(1)Q

L  Δ = CGΛ2
W f2 g2

s

16π2 ∑
a=1,2,3

Tr[LaΣ†LaTΣ] +CAΛ2
W f2 e2

Q

16π2 Tr[QΣ†QΣ]

+CWΛ2
W f2 g2

s /2
16π2 ∑

±
∑
i=1,2

Tr[Li±Σ†Li±Σ]+CZΛ2
W f2 e2

Q/s2
Qc2

Q

16π2 Tr[JΣ†JΣ]
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• LIR is invariant under an unbroken  , convenient to organize the pions by their chargesU(1)χ

• We can then construct linear combinations of the pion fields with definite  chargeU(1)χ

Unbroken    chargeχ

Πb → Πb + iθχδΠb δΠb = 2ΠaTr[[Qχ, Xa], Xb]

• Expanding  to first order impliesΣ

Π±
1 := 1

2
(Πmass

5 ∓ iΠmass
8 ) Π±

2 := 1
2

(Πmass
6 ∓ iΠmass

7 ) Π±
3 := 1

2
(Πmass

9 ∓ iΠmass
12 ) Π±

4 := 1
2

(Πmass
10 ∓ iΠmass

11 )

Σ ⟶ Σ′ ≈ Σ + iθχ (QχΣ + ΣQχ) + . . . Qχ = diag( 0, . . . , 0, 1, − 1)
U(1)χ
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Pion masses and remaining gauge symmetries
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η′ 

4 SM pions

2 SM/DM pions
2 SM/DM pions

4 SM/DM pions

1 SM pion
1 DM pion

Gauge charges Masses



Deriving pion interactions
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• We are interested in reactions which deplete the DM density i.e. ΠDMΠDM → ΠSM ΠSM

• Transforming into definite DM charge basis implies we want  Π+ Π− → Π0 Π0

• We calculate the velocity averaged effective cross-section, taking into account coannihilation
• We assume non-relativistic, s-wave scattering

⊃ f2

4 Tr [DμΣ†DμΣ] + Λ3
WTr[MΣ + Σ†MT] + κΛ2

W f2Re[det Σ]LIR L+Δ⇒
= 4

f 2 Tr1(a, b, c, d) ΠaΠb∂μ[Πc]∂μ[Πd] + 2mDMΛ3
W

3f 4 Tr2(a, b, c, d) ΠaΠbΠcΠdL2 → 2ΠaΠb → Πc Πd

• We then use this in solving the Boltzmann equation for the final co-moving number density of ΠDM

• For the benchmarks chosen we can safely neglect annihilation to gauge bosons



χΠDM

WIMP freeze-out in this scenario
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• Freeze-out happens while  and  are confined in pion form
• Lightest pion containing  survives freeze-out:    (mass = )

• Calculate  numerically taking into account possible coannihilation

χ1 χ2
χ ΠDM,1 m1

ΩΠDM,1
h2

• After freeze-out, EW confined phase ends and pions deconfine
• Entropy dump from deconfinement is negligible which prevents further 

freeze-out of the ’sχ

• In general,  so we adjust the relic abundance accordinglymΠDM,1
> mDM Ωχh2 = mDM

m1
ΩΠDM,1

h2

Time100 GeV

EW SSBEW confinement phase

WIMP Freeze-out
⟨ϕ⟩ → 0

χ



Parameter scan
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• Performed a parameter scan in [log10 ( mDM
GeV ), log10 ( f

GeV )]

[1] Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. arXiv: 1807.06209

ln L = − 1
2 [

Ωχh2 (mDM, f) − ΩPDGh2

ΔΩh2 ]• Using the log-likelihood as the objective function

ΩPDGh2 ± ΔΩh2 = 0.1200 ± 0.0012 [1]

• Under some minimal assumptions:    and mDM < ΛW f = 1
4π

ΛW

https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209


Results
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Experimental constraints: Direct detection
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[1] David Smith, Neal Weiner. Inelastic Dark Matter. arXiv: hep-ph/0101138

• No effect on freeze-out for sufficiently large mass scales

Reminder:  are -doublets with hypercharge 
with full strength Z-boson couplings  trouble, but…

χ1,2 SU(2)L
⇒
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• Avoided if there is a small Majorana mass  today[1]mM ≪ mDM

• Can be induced by a dimension 5 interaction with the Higgs

= 1
M1

(H†χ1)(H†χ1) + 1
M2

(Hχ2)(Hχ2) + h . c .LΔM

https://arxiv.org/abs/hep-ph/0101138
https://arxiv.org/abs/hep-ph/0101138


Other experimental constraints
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[1] ATLAS: arXiv:1908.08215 and CMS: arXiv: 1807.07799

LHC bounds
• Analogous signature to charginos

• No constraints for [1]

• Likely out of reach for future colliders

mDM > 420 GeV

Indirect detection
• Might be in reach of future gamma ray observatories Eff
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https://arxiv.org/abs/1908.08215
https://arxiv.org/abs/1807.07799
https://arxiv.org/abs/1908.08215
https://arxiv.org/abs/1807.07799
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Main takeaway
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What did this alternate cosmological history get us?

• Maintains the correct DM relic abundance


• Increases the possible mass range of DM


• Restores some freedom to WIMP models



Conclusion
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• Considering alternate cosmological histories 
is important and can be advantageous

• Modification to cosmological history can help 
restore the WIMP miracle

• Not ruled out by current experiments

Questions?
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Code outline
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• Because of the many possible combinations of  we perform the calculation of 
 numerically via Python

{a, b, c, d}
ΠaΠb → Πc Πd

• The code calculates  for 
each parameter space point 

 and compares it to 
PDG value 

Ωχh2

( f, mDM)

preScan.py

ut
ili

ty
Fu

nc
tio

ns
/

calcMatrices.py calcF1F2hat.py convertToDMBasis.py

D
at

a/
np

yF
ile

s/One Generation Case: 
FhatMatrices_DMBasis_Ngen1.npy

Three Generation Case: 
FhatMatrices_IntBasis_Ngen3.npy 

VMatrix_massToDM_Ngen3.npy

omegaH2.py
ut

ili
ty

Fu
nc

tio
ns

/

calcPionMassSq.py transformFs.py relicDMAbundance.pycoannihilation.py

crossSection.py

Ωh2

Used in ULYSSES  
parameter scan

• Parameter scan done with 
ULYSSES with a PyMultiNest 
back-end

GitHub: jnhoward/SU2LDM_public
DOI: 10.5281/zenodo.5965537

https://github.com/jnhoward/SU2LDM_public
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