Taming the complex dynamics of scattering events

Pier Monni (CERN)

HET Seminar - BNL, June 2022

Particle physics at the Large Hadron Collider (LHC)

- LHC about to resume operations:
- Huge boost in experimental precision foreseen (only $\sim 5 \%$ of the total luminosity delivered so far)
- Key open questions to be addressed:
- Establish the Higgs sector
- Broad searches for New Physics (NP)
- Stress test of the Standard Model (SM)

Broad spectrum searches for NP signatures

- Detailed scan of accessible regions parameter space
- e.g. global EFT fits, dedicated searches \& specific NP models
- test of consistency structure of the theory (op. mixing and correlations)
[Ellis, Madigan, Mimasu, Sanz, You '21]

Main challenge: controlling the fine structure of collider events

Vast technological progress (jointly Theory \otimes Experiment)

E.g. Impressive progress in theoretical calculations

forma dereopments

event generators

E.g. Impressive progress in theoretical calculations

This talk focuses on another crucial aspect: Event Generators

forma deredoments

andscape of NP modes

Anatomy of a scattering reaction at the LHC

Anatomy of a scattering reaction at the LHC

- Short distance (hard)
- scales probed: $\mathrm{O}\left(10^{2}\right)-\mathrm{O}\left(10^{3}\right) \mathrm{GeV}$
- stage sensitive to NP

evolution towards a physical observable state (mainly QCD)

- Long distance (soft)
- transition from $\mathrm{O}\left(10^{2}\right)-\mathrm{O}\left(10^{3}\right) \mathrm{GeV}$ to $\mathrm{O}(1) \mathrm{GeV}$
- hard scattering gets "showered" with soft [and/or collinear] radiation
- Output: what is actually measured

Event generators simulate all stages of the event formation

- Not a standard theory calculation:
- return events, i.e. particle momenta with a physical probability distribution
- allow the computation of many (~any) observables at once, as opposed to a few of them in perturbative calculations
- deeply different mathematical formulation, difficult to exploit state of the art QFT technology
- Crucial pillar of modern collider physics, e.g. full simulation of experimental analysis, phase-space extrapolation, training of tools (e.g. Machine Learning)

Strength: Back bone of nearly all LHC analyses

[ATLAS '22]

Weakness: Inaccuracies are now often the leading systematics

- The improving experimental performance highlights limitations of event generators
- Soon to be the bottleneck of LHC physics programme
- Jet Energy Scale uncertainty (\rightarrow affecting many measurements)
- ... this is but one example

Robust training of Machine Learning (ML) algorithms

- ML technology provides a great boost in sensitivity w.r.t. orthodox analysis techniques
- However, this comes often with a dependence on the modelling, i.e. Monte Carlo generator, raising the question of accuracy
- e.g. dependence of 4-pronged tagger on training model \& pseudo-data
- New generation of tools paramount to push this technology in the precision era of LHC

Extrapolation of experimental measurements

- MC generators used to extrapolate experimental data from fiducial to inclusive phase space (easy comparison with theory and interpretation)
- Inaccuracies may lead to dangerous biases
- e.g. discrepancy in $t \bar{t}$ spin-correlations: new physics or mis-modelling ? (more later)

Parton level $\Delta \phi\left(\Gamma^{+}, \Gamma\right) / \pi[\mathrm{rad} / \pi]$

The overarching question: Can we do better?

How do we even define the accuracy of event generators?

- Evolution spans several orders of magnitude in energy scale
- Different perturbation theories needed in different regimes (e.g. fixed-order, logarithmic power counting, subleading power corr.ns)
- We should demand that event generators reproduce these limits correctly
- This talk addresses the two main elements: the hard scattering \& the parton shower

The parton shower stage

The parton shower component

- Large hierarchy of scales ($\mu_{\text {hard }} \gg \mu_{\text {soft }}$)
- Yet, fully perturbative regime ($\mu_{\text {soft }} \gg \Lambda_{\mathrm{QCD}}$)
- Initial conditions for hadronisation
- Several successful public tools:

Herwig

Pythia

Sherpa [also DiRe, Deductor]

How do they work? [dipole shower case]

- Algorithms based on concepts invented in the mid ' 80 s. Many variants built across the years
e. g. [Sjostrand ' 85 ; Marchesini, Webber ' 88 ; Lonnblad ' 89] e.g. $\mathrm{H} \rightarrow \mathrm{bb}$ decay
- Schematically [non-linear evolution]:
-Recursive iteration of $2 \rightarrow 3$ branching probabilities [i.e. LO splitting functions]
- Evolve towards smaller values of a resolution variable [e.g. dipole transverse momentum]
- Kinematic map to restore on-shellness [i.e. recoil scheme]
- Iterate until hadronisation scale is reached

How do they work? [dipole shower case]

- Algorithms based on concepts invented in the mid ' 80 s. Many variants built across the years
e. g. [Sjostrand ' 85 ; Marchesini, Webber ' 88 ; Lonnblad ' 89]
e.g. $\mathrm{H} \rightarrow \mathrm{b} b \mathrm{decay}$
- Schematically [non-linear evolution]:
-Recursive iteration of 2 $\rightarrow 3$ branching probabilities [i.e. LO splitting functions]
- Evolve towards smaller values of a resolution variable [e.g. dipole transverse momentum]
- Kinematic map to restore on-shellness [i.e. recoil scheme]
- Iterate until hadronisation scale is reached

Energy scale

How do they work? [dipole shower case]

- Algorithms based on concepts invented in the mid ' 80 s. Many variants built across the years
e. g. [Sjostrand ' ${ }^{5}$; Marchesini, Webber ' ${ }^{8}$; Lonnblad ' ${ }^{8}$]
e.g. $\mathrm{H} \rightarrow \mathrm{b} b \mathrm{~b}$ decay

Energy scale

How do they work? [dipole shower case]

- Algorithms based on concepts invented in the mid ' 80 s. Many variants built across the years
e. g. [Sjostrand '85; Marchesini, Webber '88; Lonnblad '89]
- Schematically [non-linear evolution]:
-Recursive iteration of 2 $\rightarrow 3$ branching probabilities [i.e. LO splitting functions]
- Evolve towards smaller values of a resolution variable [e.g. dipole transverse momentum]
- Kinematic map to restore on-shellness [i.e. recoil scheme]
- Iterate until hadronisation scale is reached
e.g. $H \rightarrow b b$ decay

Energy scale

How do they work? [dipole shower case]

- Algorithms based on concepts invented in the mid ' 80 s. Many variants built across the years
e. g. [Sjostrand ' ${ }_{5}$; Marchesini, Webber ' ${ }^{88}$; Lonnblad '89]
- Schematically [non-linear evolution]:
-Recursive iteration of $2 \rightarrow 3$ branching probabilities [i.e. LO splitting functions]
- Evolve towards smaller values of a resolution variable [e.g. dipole transverse momentum]
- Kinematic map to restore on-shellness [i.e. recoil scheme]
e.g. $\mathrm{H} \rightarrow \mathrm{b} b \mathrm{decay}$

What's the logarithmic accuracy of a PS?

- Identify the appropriate QCD perturbative expansion in the multi-scale regime

Perturbation theory: small coupling, large scale hierarchy [logarithmic counting]

- How can we formulate the concept of accuracy for whole classes of observables at once? e.g. for
- fraction of events passing a jet veto in a rapidity window?
- azimuthal correlation between two sub-jets?
- event shapes?
- ...

A geometric definition of leading-logarithmic (LL) accuracy

- Radiation phase space conveniently organised in the Lund Plane (LP)
[Anderson, Gustafson, Lonnblad, Pettersson '89]
- $L L \rightarrow$ emissions widely separated in both directions of the LP $\rightarrow \mathcal{O}(50-100 \%)$ uncertainties

Definition used in QCD resummations, e. g.
[Banfi, Salam, Zanderighi '04; Banfi, McAslan, PM, Zanderighi (JHEP 2015)]

A geometric definition of NLL accuracy

- NLL \rightarrow emissions strongly separated in a single direction of the LP $\rightarrow \mathcal{O}(10 \%)$ uncertainties
e.g. in rapidity at similar transverse momentum

e.g. in transverse momentum at similar rapidities

$$
\text { Line } \longrightarrow \int \mathrm{d} \ln k_{t} \sim \int \mathrm{~d} \eta \sim L / \text { emission }
$$

A geometric definition of NLL accuracy

- NLL \rightarrow emissions strongly separated in a single direction of the $L P \rightarrow \mathcal{O}(10 \%)$ uncertainties
e.g. in rapidity at similar transverse momentum e.g. in transverse momentum at similar rapidities

Do existing showers satisfy this?

$$
\text { Line } \longrightarrow \int \mathrm{d} \ln k_{t} \sim \int \mathrm{~d} \eta \sim L / \text { emission }
$$

Definition used in QCD resummations, e. g.

The double-emission matrix element

- Simplest check: probability density for radiating two (soft) gluons
- Compare the result of common showers (e.g. Pythia8, DiRE) to that of a QCD calculation
- Ratio is expected to be $=1$ for NLL showers [Dasgupta, Dreyer, Hamilton, PM, Salam (JHEP 2018)]

Ratio of PS (Py8) radiation pattern to QCD result @ NLL

The double-emission matrix element

Ratio of PS (Py8) radiation pattern to QCD result @ NLL

- Simplest check: probability density for radiating two (soft) gluons
- Compare the result of common showers (e.g. Pythia8, DiRE) to that of a QCD calculation
- Ratio is expected to be $=1$ for NLL showers [Dasgupta, Dreyer, Hamilton, PM, Salam (JHEP 2018)]

Common parton showers are

 only LL accurate \rightarrow large uncertainties $O(50-100 \%)$

Consequences for accuracy: a jet substructure example

- Consider azimuthal distance between two hardest sub-jets
- e.g. Z-boson decay: "quark" jets
- O(60\%) differences with NLL result (large theory uncertainty)

Consequences for accuracy: a jet substructure example

- Consider azimuthal distance between two hardest sub-jets
- e.g. H-boson decay: "gluon" jets
- unphysical dependence on jet flavour (potential bias for machine learning)

Formulating NLL parton showers

- Connection between parton showers and perturbative calculations (i.e. resummation) has been an open problem for the past 30 years, i.e. different mathematical language

Anomalous dimensions Renormalisation
Group equations
Power counting

- Mapping of one field into another leads to criteria (e.g. backup) for the building blocks of a PS \ddagger
- Methods to create novel algorithms with higher formal accuracy: the PanScales showers
[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez (PRL 2020)]

Back to sub-jet's azimuthal correlations

PanScales showers perfectly agree with NLL, while Pythia/Dire do not

[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez (PRL 2020)]

Repeat the test across several collider observables (e e^{-}- collider case)

[Sjostrand et al. (2020); Hoeche, Prestel (2015)]
Dipole

A new generation of NLL showers: PanScales

A new generation of NLL showers: PanScales

Further developments: towards a full NLL PanScales shower

[Hamilton, Medves, Salam, Scyboz, Soyez (2020)] NLL accuracy tests - Nods method

[van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez (2022)]

Related work on log accuracy in:
[Bewick, Ferrario Ravasio, Richardson, Seymour (2019);
Forshaw, Holguin, Plaetzer (2020); Nagy, Soper (2020)]

\& PanGlobal $(\beta=0) \quad \uparrow$ PanLocal (ant. $\beta=0.5$)
PanLocal (dip. $\beta=0.5) ~ \square$ Toy shower

Towards few-percent accuracy: NNLL building blocks

differential collinear fragmentation

[Dasgupta, El-Menoufi (2021); van Beekveld, Dasgupta, ElMenoufi , PM, Salam (in progress)]

NNLL soft (non-g|obal) evolution [a 20 years old problem]

Radiative corrns to hard scattering [preserving PS accuracy]
[Banfi, Dreyer, PM (JHEP 2021 + JHEP 2022)]
Related work by several groups: [Jadach et al. (2015); Li, Skands (2016); Hoeche, Prestel+Krauss+Dulat+Gellersen (2017-2021)]

The hard scattering

The hard partonic scattering

The hard partonic scattering

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation] e.g. illustration for Higgs+jet production at NLO
(one order less than our target)

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation] e.g. illustration for Higgs+jet production at NLO

Radiation included by radiative corrections

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation]
e.g. illustration for Higgs+jet production at NLD

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation]

> Accuracy broken by double counting across radiation phase space [and virtual corrections]

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation]

- Not tampering "too much" with the parton shower [i.e. without spoiling its accuracy, so far LL]

Radiative corrections \& interplay with parton showering

- Computation of radiative corrections to the hard process, while
- Avoiding double-counting with parton shower [PS emits further radiation]

H

Explosion of complexity at NNLO [many contributions/configurations, double counting more convoluted]

- Not tampering "too much" with the parton shower [i.e. without spoiling its accuracy, so far LL]

At the same time, we want to keep computational aspects
under control [e.g. fraction of negative weights, stability, ...]

An LHC example: top-quark pair production

- Main top-quark production mechanism at LHC
[Ferrario Ravasio, Jezo, Nason, Oleari '18]
- Several NP scenarios couple to top quark. Important ingredient of EFT fits
- Inaccuracy of generators already a nuisance

NNLO event generation

- Variety of methods to handle the production of colourless systems (e.g. EW bosons, Higgs boson)
[Hamilton, Nason, Re, Zanderighi ' ${ }^{13}$; Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi ' ${ }^{13}$; Hoeche, Li, Prestel '14; PM, Nason, Re, Wiesemann, Zanderighi '19; PM, Re, Wiesemann '20; Campbell, Hoeche, Li, Preuss, Skands '21]
- NNLO event generator for top-pair production has remained a challenge for many years
- Colour charges in initial and final state: involved quantum interference
- Interplay with parton shower highly non trivial
- Many body decays: computationally hard
E.g. first NLO generator for $t \bar{\tau}$ formulated in 2003, it took more than 17 years to achieve NNLO!

The MiNNLOps method

- Main observation: exploit link between perturbative methods and Monte Carlo language
- Recast NNLO calculation as the first two steps of a parton shower [i.e. radiation ordered in resolution variable, Sudakov factors]
- Fix d.o.f. by matching it to a NNLO perturbative calculation [i.e. resummation properties of q_{T} as a resolution variable]
- Advantages:

$\boxed{\square}$ Accurate: Fully differential NNLO QCD
\triangle Fast: Marginal loss in complexity w.r.t. NLO computation
$\boxed{\square}$ Flexible: Possible to tackle complex reactions

MiNNLOps: NNLO generator for $t \bar{t}$ production

[Mazzitelli, PM, Nason, Re, Wiesemann, Zanderighi (PRL 2021 + JHEP 2022)]

- Validation: verify agreement with perturbative QCD calculations for inclusive observables (i.e. without experimental selection cuts)
- total cross section:

- rapidity distribution of the top pair

> Excellent agreement with pQCD, drastic reduction of theory uncertainties w.r.t. NLO!

MiNNLOps: broad comparison to experimental data

[Mazzitelli, PM, Nason, Re, Wiesemann, Zanderighi (JHEP 2022)]

Possible resolution of a long-standing tension in spin correlations?

- Ongoing studies show good theory/data agreement for correlations
[Mazzitelli, PM, Nason, Re, Wiesemann, Zanderighi (JHEP 2022)]

Conclusions and Outlook

- Modern problems in collider physics demand rethinking the approach to a crucial bridge between theory and experiment: Monte Carlo event generators
- Novel ideas are paving the way to a new generation of tools with a higher and controllable formal accuracy, led by powerful techniques in connection with perturbative QCD:
- New methods to diagnose parton-shower (PS) accuracy and design NLL algorithms
- PS@NLL is today a nearly-solved problem, accessible via public tools in the future. Gearing up for higher orders (NNLL) corrections requires tackling many intriguing conceptual challenges
- Considerable progress in the matching of PS to NNLO calc ${ }^{n}$ for coloured final states. Open problems ahead:
- Consistently preserve higher-order PS accuracy (e.g. matching to PanScales showers)
- First considerations about higher ($\mathrm{N}^{3} \mathrm{LO}$) orders matching have started to emerge

Backup

An example: local-recoil dipole showers

- (planar) squared amplitudes built recursively via a Markovian chain of emissions (\& virtuals via unitarity)

An example: local-recoil dipole showers

- Keep the recoil local, i.e. for each new emission use the map

$$
\text { dipole }\left\{\widetilde{p}_{i}, \widetilde{p}_{j}\right\} \longrightarrow \begin{aligned}
p_{k} & =a_{k} \tilde{p}_{i}+b_{k} \tilde{p}_{j}+k_{\perp} \\
p_{i} & =a_{i} \tilde{p}_{i}+b_{i} \tilde{p}_{j}-f k_{\perp} \\
p_{j} & =a_{j} \tilde{p}_{i}+b_{j} \tilde{p}_{j}-(1-f) k_{\perp}
\end{aligned}
$$

- Typical problem (source of the issues in the heat plot): dipole partitioned in the dipole c.o.m. frame

The PanLocal algorithm

- Keep the recoil local, i.e. for each new emission use the map

$$
\operatorname{dipole}\left\{\widetilde{p}_{i}, \widetilde{p}_{j}\right\} \longrightarrow \begin{aligned}
p_{k} & =a_{k} \tilde{p}_{i}+b_{k} \tilde{p}_{j}+k_{\perp} \\
p_{i} & =a_{i} \tilde{p}_{i}+b_{i} \tilde{p}_{j}-f k_{\perp} \\
p_{j} & =a_{j} \tilde{p}_{i}+b_{j} \tilde{p}_{j}-(1-f) k_{\perp}
\end{aligned}
$$

- Key element \#1: partitioning ($\bar{\eta}=0$) occurs at equal angles to the dipole ends in the event c.o.m. frame

- In the limit of strong angular ordering and commensurate k_{T} 's, g_{2} takes the recoil from the hard quark

The PanLocal algorithm

- Keep the recoil local, i.e. for each new emission use the map

$$
\operatorname{dipole}\left\{\widetilde{p}_{i}, \widetilde{p}_{j}\right\} \longrightarrow \begin{aligned}
p_{k} & =a_{k} \tilde{p}_{i}+b_{k} \tilde{p}_{j}+k_{\perp} \\
p_{i} & =a_{i} \tilde{p}_{i}+b_{i} \tilde{p}_{j}-f k_{\perp} \\
p_{j} & =a_{j} \tilde{p}_{i}+b_{j} \tilde{p}_{j}-(1-f) k_{\perp}
\end{aligned}
$$

- Key element \#1: partitioning ($\bar{\eta}=0$) occurs at equal angles to the dipole ends in the event c.o.m. frame

- However, if g_{2} is produced at larger angles than g_{1}, the recoil is still taken from g_{1} in a logarithmic (NLL) region of phase space

The PanLocal algorithm

- Keep the recoil local, i.e. for each new emission use the map

$$
\operatorname{dipole}\left\{\widetilde{p}_{i}, \widetilde{p}_{j}\right\} \longrightarrow \begin{aligned}
p_{k} & =a_{k} \tilde{p}_{i}+b_{k} \tilde{p}_{j}+k_{\perp} \\
p_{i} & =a_{i} \tilde{p}_{i}+b_{i} \tilde{p}_{j}-f k_{\perp} \\
p_{j} & =a_{j} \tilde{p}_{i}+b_{j} \tilde{p}_{j}-(1-f) k_{\perp}
\end{aligned}
$$

- Key element \#2: modify the evolution variable (instead of dipole k_{T})

$$
\begin{aligned}
& k_{t}=\rho v e^{\beta|\bar{\eta}|} \sim v e^{\beta\left|\eta^{w . t . t . ~ e m i t t e r ~}\right|} \\
& \rho=\left(\frac{s_{i} s_{j}}{Q^{2} s_{i \bar{j}}}\right)^{\frac{\beta}{2}}
\end{aligned}
$$

$$
\uparrow^{\ln k_{t}}
$$

The PanLocal algorithm

- Keep the recoil local, i.e. for each new emission use the map

$$
\operatorname{dipole}\left\{\widetilde{p}_{i}, \widetilde{p}_{j}\right\} \longrightarrow \begin{aligned}
p_{k} & =a_{k} \tilde{p}_{i}+b_{k} \tilde{p}_{j}+k_{\perp} \\
p_{i} & =a_{i} \tilde{p}_{i}+b_{i} \tilde{p}_{j}-f k_{\perp} \\
p_{j} & =a_{j} \tilde{p}_{i}+b_{j} \tilde{p}_{j}-(1-f) k_{\perp}
\end{aligned}
$$

- Key element \#2: modify the evolution variable (instead of dipole k_{T})
- Ordering in v now implies that $\mathrm{k}_{\mathrm{t} 2} \ll \mathrm{k}_{\mathrm{t} 1}$ [i.e. no recoil]
- Interplay of partition $\oplus o r d e r i n g ~ e n s u r e s ~ t h a t ~ t h e ~ r e c o i l ~ i s ~$ always taken from the hard extremities [OK at NLL]

