Study of Baseline2 Tracker using Fast Simulation and first attempts with DD4HEP

Shyam Kumar, Annalisa Mastroserio University and INFN Bari, Italy

Inputs for Fast Simulation

double BMT_r[4] = {47.72, 49.57, 75.61, 77.46};

Original code

 $\sigma_{r\phi} = \sigma_z = 150 \,\mu m$

Baseline-2.0

20

40

B: Barrel, P: Positive, N: Negative

https://github.com/alisw/AliRoot/tree/master/ITSMFT/ITS/FT1

Conceptual Design Report for the Upgrade of the ALICE ITS (Pages 53-58)

https://cds.cern.ch/record/1431539/files/LHCC-G-159.pdf

Baseline 2 Tracker Simulation

80

60

Inputs for Fast Simulation

// and iinally considered as dead layer

```
its.AddLayer((char*)"bpipe", 3.1,0.0022/sin_theta); // thickness 760 mum; x/x0 = 0.076/35 = 0.0022;
its.AddLayer((char*)"vertex",
                                 0, 0); // dummy vertex for matrix calculation
// new ideal Pixel properties?
Double_t x_x0VTX
                  = 0.0005; // Per laver VTX
Double t x x0BARR = 0.0055; // Per layer BARR
Double t x x0MM
                    = 0.004; // Per layer Micromegas
Double t resRPhiVTX
                       = 10.0e-4/sqrt(12);
Double t resRPhiBARR
                       = 10.0e-4/sqrt(12);
Double t resRPhiMM
                       = 150.0e-4;
Double t resZVTX
                       = 10.0e-4/sqrt(12);
Double t resZBARR
                       = 10.0e-4/sqrt(12);
Double t resZMM
                       = 150.0e-4;
Double t eff
                       = 1.0;
11
11
its.AddLayer((char*)"VTX1", 3.3 , x_x0VTX/sin_theta, resRPhiVTX, resZVTX,eff);
its.AddLayer((char*)"VTX2", 4.35, x_x0VTX/sin_theta, resRPhiVTX, resZVTX,eff);
its.AddLayer((char*)"VTX3", 5.40 , x x0VTX/sin theta, resRPhiVTX, resZVTX,eff);
its.AddLayer((char*)"BARR1", 13.34, x x0BARR/sin theta, resRPhiBARR, resZBARR,eff);
its.AddLayer((char*)"BARR2", 17.96, x_x0BARR/sin_theta, resRPhiBARR, resZBARR,eff);
its.AddLayer((char*)"MM1", 47.72, x_x0MM/sin_theta, resRPhiMM, resZMM,eff);
its.AddLayer((char*)"MM2", 49.57 , x x0MM/sin theta, resRPhiMM, resZMM,eff);
its.AddLayer((char*)"MM3", 75.61 , x_x0MM/sin_theta, resRPhiMM, resZMM,eff);
its.AddLayer((char*)"MM4", 77.46 , x_x0MM/sin_theta, resRPhiMM, resZMM,eff);
```

22/02/22

- The code works for Barrel layers where track model is implemented
- Main Idea is to start the track with collision vertex and angle theta (eta), propagate to the Radius correspond to the transverse momentum
- Start back propagation with an extrapolation to each layer and updating the measurement in covariance matrix due to detector spatial resolution and multiple scattering effect (Kalman filter) see more detail in back up
- \blacktriangleright Finally propagate the track to the vertex and evaluate the DCA, Momentum, p_T resolution
- I tried this code for Baseline2 tracker performance and with adding an extra TOF laver also some other studies in back up
- We can also add TPC but need to configure several parameters, so it can be very useful for a quick check

p_T Resolution

Fun4All Points (All Markers), Blue dotted line (DD4HEP), Magenta (Fast Simulation-dotted lines)

22/02/22

Momentum Resolution

Fun4All Points (All Markers), Blue dotted line (DD4HEP), Magenta (Fast Simulation-dotted lines)

Assuming $1/p_{t}$ and Tan λ uncorrelated (slide 13)

Transverse Pointing Resolution vs p_{τ}

Fun4All Points (All Markers), Blue dotted line (DD4HEP), Magenta (Fast Simulation-dotted lines)

22/02/22

Transverse Pointing Resolution vs Momentum

Fun4All Points (All Markers), Magenta (Fast Simulation-dotted lines)

22/02/22

Longitudinal Pointing Resolution vs p_{τ}

Fun4All Points (All Markers), Magenta (Fast Simulation-dotted lines)

22/02/22

Baseline2+BTOF

22/02/22

Baseline2+Barrel ToF Layer

22/02/22

Baseline2+Barrel ToF Layer

22/02/22

Transverse Pointing Resolution vs p_{τ}

22/02/22

Transverse Pointing Resolution vs Momentum

22/02/22

DD4HEP

- Previously, I presented simulation study using Fun4All
- Since we are using DD4HEP therefore, I started learning about the framework
- Installed the software and started looking at the examples
- Finally produced a material budget plot using material scan on the next slide
- Still learning and getting more familiar with it

Material Map using DD4HEP

Thanks Shuji

Summary

- Compared Fun4All, Fast-Simulation, DD4HEP results in the Barrel region.
- Study of Baseline2 Tracker+ Barrel Time of flight using fast simulation code.
- Started working and getting experience with DD4HEP with running example of material scan.
- Additional training sessions and guidance from the software working group will be very helpful to contribute in the future developments for tracking in the central framework.

Thank You !!!

22/02/22

Baseline 2 Tracker Simulation

22/02/22

22/02/22

Baseline 2 Tracker Simulation

22/02/22

Baseline 2 Tracker Simulation

30

22/02/22

22/02/22

22/02/22

22/02/22

DCA Evaluation

Reference point (primary vertex in our case), DCA point (x_0,y_0) and (x_c,y_c) are not in straight line

$$\phi_0 = \tan^{-1} \left(\frac{p_y}{p_x} \right)$$

Signed DCA = δ

$$\sin \phi_0 = \frac{-(x_0 - x_r)}{\delta}$$

 $\cos\phi_0 = \frac{(y_0 - y_r)}{\delta}$

$$(x_0 - x_r) \times (-\sin \phi_0) = -\delta \sin \phi_0 \times (-\sin \phi_0)$$
$$(y_0 - y_r) \times (\cos \phi_0) = \delta \cos \phi_0 \times (\cos \phi_0)$$

$$\delta = -(x_0 - x_r)(\sin \phi_0) + (y_0 - y_r)(\cos \phi_0)$$

(x_r,y_r) = (0,0) Primary Vertex

$$\delta = -x_0(\sin\phi_0) + y_0(\cos\phi_0)$$

In ALICE local y is rotated by α (= ϕ_0) w.r.t Global hence local y is simply the DCA_{xy}

$$y_l = -x_g \sin \alpha + y_g \cos \alpha = -x_g \sin \phi_0 + y_g \cos \phi_0$$

https://desy.de/~fedorch/L3_helix.pdf

Material Budget

22/02/22

Material Budget

22/02/22

Material Budget

22/02/22

Micromegas Material Budget

void DetectorK::SolveViaBilloir(Int_t flagD0,Int_t print, Bool_t allPt, Double_t meanPt, char* detLayer)

static AliExternalTrackParam probTr; // track to propagate

enum {kY,kZ,kSnp,kTgl,kPtl}; // track parameter aliases (5 because one fixed by position) enum {kY2,kYZ,kZ2,kYSnp,kZSnp,kSnp2,kYTgl,kZTgl,kSnpTgl,kTgl2,kYPtl,kZPtl,kSnpPtl,kTglPtl,kPtl2}; // cov.matrix

Track Parameters (Local): $(y, z, \sin \phi, \tan \lambda, q/p_T)$

Local coordinates rotated by alpha with respect to Global coordinates

Covariance matrix = 5X5 matrix; 5(5+1)/2 = 15 independent entries

double *trPars = (double*)probTr.GetParameter(); // Reset to 0
double *trCov = (double*)probTr.GetCovariance(); // Reset to 0

```
trPars[kY] = 0; // start from Y = 0
```

```
trPars[kZ] = 0; // Z = 0
```

trPars[kSnp] = 0; // track along X axis at the vertex

trPars[kTgl] = tgl; // dip (for eta dependence) // put tiny errors to propagate to the some larger than outer radius

trPars[kPtI] = charge/pt; // q/pt

trCov[kY2] = trCov[kZ2] = trCov[kSnp2] = trCov[kTgl2] = trCov[kPtl2] = 1e-9;

Baseline 2 Tracker Simulation

probTr.Print(); // Print at each propoagation

Global to Local Coordinates (ALICE)

 f_{x} : local x

In ALICE: Local coordinate system rotated by α w.r.t Global coordinate system (see figure)

- * external param0: local Y-coordinate of a track (cm) *
- * external param1: local Z-coordinate of a track (cm) *
- * external param2: local sine of the track momentum azimuthal angle *
- * external param3: tangent of the track momentum dip angle *
- * external param4: 1/pt (1/(GeV/c))

On cylinderical surface:

 $f_x^2 + y^2 = R^2$

AliExternalTrackParam.cxx lines: 1944-1950

Bool_t AliExternalTrackParam::GetXYZ(Double_t *r) const {
// This function returns the global track position
r[0]=fX; r[1]=fP[0]; r[2]=fP[1]; // local coordinates
return Local2GlobalPosition(r,fAlpha);

$$\begin{pmatrix} X_g \\ Y_g \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} X_l \\ Y_l \end{pmatrix}$$

https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliDPGtoolsTrackProperties AliVParticle.cxx 65-85

Bool_t AlivParticle::Local2GlobalPosition(Double_t r[3], Double_t alpha) const {
//This function performs local->global transformation of the track position.
// When called, the arguments are: r[0] = local x, r[1] = local y, r[2] = local z, alpha - rotation angle.
// The result is returned as: r[0] = global x, r[1] = global y, r[2] = global z
Double_t cs=TMath::Cos(alpha), sn=TMath::Sin(alpha), x=r[0];
r[0]=x*cs - r[1]*sn; r[1]=x*sn + r[1]*cs; // From the above matrix
return kTRUE;

22/02/22

if (!PropagateToR(&probTr,last->radius + kTrackingMargin,bGauss,1)) continue;

Initial Track Pa AliExternalTrackPa	<mark>rameters f</mark> aram: x =	rom Verex to	some larger alpha = 0	than LastLaye	r	
parameters:	Θ	Θ	0	Θ	-2.82829	
covariance:	1e-09	-	-	-		
	Θ	1e-09				Initial Parameter
	0	Θ	1e-09			
	0	0	0	1e-09		
	0	0	0	0	1e-09	
Final Track Para	meters fro	m Verex to so	ome larger tha	n LastLaver		
AliExternalTrackPa	aram: x =	75.2963	alpha = 1.64	817		
parameters:	-18.6015	0	0.918308	0	-2.82829	
covariance: 1.4	45209e-05					Decemptor at larger then last lover
	0	9.40765e-06				Parameter at larger than last layer
2.4	42158e-07	0	4.15864e-09			
	0	9.69879e-08	0	1e-09		
-4.9	93245e-08	0	-1.13892e-09	0	1e-09	
Resetting Large	Errors in	Covariance Ma	trix	-		
AliExternalTrackPa	aram: x =	75.2963	alpha = 1.64	817		
parameters:	-18,6015	0	0.918308	0	-2.82829	
covariance:	25	-		-		
	0	25				Reset Large errors on diagonal
	õ	0	0.49			
	0	Õ	0	0.49		
	0	0	0	0	7441.3	

					=	
Propagating I	Parameters to I	L <mark>ayer</mark> : MM4				
AllExternalTra	ackParam: x = :	12.1296	alpha = 2.81196			
parameters:	-76.5044	Θ	-0.0151575	0	-2.82829	December (bestern) to be the second
covariance:	4.29182					Propagate the track to last layer MM4
	Θ	25.174				
	-0.598681	0	1			
	Θ	-0.291983	0	0.49		
	-11.8819	0	36.1987	Θ	7441.3	
Update the tra	ack by measurer	ment {0.000,0	.000000} err {2.	250e-04 0.000	e+00 2.250e-	
04}	Veccument					
Afterupdate i	Measurment	77 40	$a_{1}^{1} = 1 0004$			
ALIEXternatira	ackParam: x =	//.40	$a_{1}pna = 1.3984$	•	0.00000	
parameters:	5.32907e-15	Θ	0.985177	O	-2.82829	Linete meneri vite Decel
covariance:	0.00022452					Opale measurement with Rphi Resol
	0	0.000224998				and Z-resolution
	-3.43136e-05	0	0.0269812			
	0	-2.60967e-06	Θ	0.486613		
	-0.00396946	Θ	5.92662	0	7408.48	
After MS cor	rection					
AliExternalTr	ackParam: x =	77.46	alpha = 1.39	84		
parameters:	5.32907e-15		0 0.985177	0	-2.82829	
covariance:	0.00022452					MC Correction on Coverience
	0	0.00022499	8			MS CORECTION ON COVARIANCE
	-3,43136e-05		0 0.026982			
	0	-2.60967e-0	6 0	0.486643		
	-0.00396946		5.92662	0	7408.48	

_____ Propagating Parameters to Laver: MM3 AliExternalTrackParam: x = 5.05774alpha = 2.7968-0.209348 -2.82829parameters: -75.44060 Θ 922.642 covariance: 32,9623 0 -30.19110 1 0 -4.005090 0.486643 -2540.8985.372 Θ 0 7408.48 Update the track by measurement {-0.000,0.0000000} err {2.250e-04 0.000e+00 2.250e-04} AfterUpdate Measurment AliExternalTrackParam: x = 75.61alpha = 1.29295parameters: -3.55271e-15 0 0.961647 Θ -2.82829covariance: 0.000224988 0 0.000224998 -3.08722e-05 0 0.000954481 0 -2.73385e-05 0 6.64355e-06 -0.00926262 Θ 0.626257 Θ 411.442 After MS correction alpha = 1.29295AliExternalTrackParam: x = 75.61parameters: -3.55271e-15 Θ 0.961647 0 -2.82829 covariance: 0.000224988 0.000224998 0 -3.08722e-05 0 0.000955804 0 -2.73385e-05 0 2.42271e-05 -0.00926262 0 0.626257 Θ 411,442 _____ Propagating Parameters to Laver: MM2 AliExternalTrackParam: x = -16.2013alpha = 2.58589parameters: -46.8477 Θ -0.939651 0 -2.82829 10000 covariance: Θ 0.0353047 -100 0 1 0 -0.000922295 0 2.42271e-05 -2028.4Θ 20,284 0 411,442 Update the track by measurement {0.000,0.000000} err {2.250e-04 0.000e+00 2.250e-04} AfterUpdate Measurment AliExternalTrackParam: x = 49.57alpha = 0.682142parameters: 1.77636e-15 0 0.630457 0 -2.82829 covariance: 0.000225 0 0.000223575 6.88419e-06 0 9.31123e-07 -0 -5.84064e-06 0 2.85811e-07 0.000139639 0 3.35822e-05 0 0.0012792 After MS correction AliExternalTrackParam: x = 49.57alpha = 0.682142parameters: 1.77636e-15 Θ 0.630457 0 -2.82829covariance: 0.000225 0 0.000223575 6.88419e-06 0 4.33051e-06 -0 -5.84064e-06 0 5.92773e-06 0 3.35822e-05 0.0012792 0.000139639 0

Propagate the track to last layer MM3 (Extrapolation)

Upate measurement with Rphi Resol and Z-resolution

MS Correction on Covariance

Propagate the track to last layer MM2 (Extrapolation)

Upate measurement with Rphi Resol and Z-resolution

MS Correction on Covariance

_____ Propagating Parameters to Layer: MM1 AliExternalTrackParam: x = 36.1238 alpha = 1.36428 -31.1812 0 -0.0598694 0 -2.82829 parameters: covariance: 0.000143443 0 0.000283906 -1.16453e-05 0 9.59208e-06 -0 -1.97923e-05 0 5.92773e-06 -2.53012e-05 0 7.03417e-05 0 0.0012792 Update the track by measurement {0.000,0.000000} err {2.250e-04 0.000e+00 2.250e-04} AfterUpdate Measurment AliExternalTrackParam: x = 47.72 alpha = 0.652189 parameters: 7.10543e-15 0 0.606928 0 -2.82829 covariance: 6.02046e-05 0 0.000125522 -5.14069e-06 0 5.92016e-06 0 -8.75068e-06 0 5.15797e-06 -1.4028e-05 0 5.55674e-05 0 0.00127801 After MS correction AliExternalTrackParam: x = 47.72 alpha = 0.652189 parameters: 7.10543e-15 0 0.606928 0 -2.82829 covariance: 6.02046e-05 0 0.000125522 -5.14069e-06 0 9.39292e-06 0 -8.75068e-06 0 1.0656e-05 -1.4028e-05 0 5.55674e-05 0 0.00127801 _____ Propagating Parameters to Layer: BARR2 AliExternalTrackParam: x = 8.56122 alpha = 1.30438 parameters: -15.7882 0 -0.746948 0 -2.82829 covariance: 0.0483868 0 0.00982786 -0.00256685 0 0.00014094 0 -0.000321659 0 1.0656e-05 -0.00701983 0 0.000407438 0 0.00127801 Update the track by measurement {0.000,0.000000} err {8.333e-08 0.000e+00 8.333e-08} AfterUpdate Measurment AliExternalTrackParam: x = 17.96 alpha = 0.230459 parameters: 8.88178e-16 0 0.228425 0 -2.82829 covariance: 8.33327e-08 0 8.33326e-08 -1.35793e-08 0 1.02338e-05 0 -2.72742e-09 0 1.28396e-07 -2.53621e-08 0 5.13216e-05 0 0.000259601 After MS correction
 AliExternalTrackParam: x = 17.96
 alpha = 0.230459

 parameters: 8.88178e-16
 0
 0.228425
 0
 -2.82829
 covariance: 8.33327e-08 0 8.33326e-08 -1.35793e-08 0 1.61476e-05 0 -2.72742e-09 0 6.36774e-06 -2.53621e-08 0 5.13216e-05 0 0.000259601

```
_____
Propagating Parameters to Layer: BARR1
AliExternalTrackParam: x = 12.7813 alpha = 0.460918
                               0 -0.119651 0 -2.82829
 parameters: -3.82008
 covariance: 0.000429075
                 0 0.000141002
           -9.69794e-05 0 2.19614e-05
              0 -2.99555e-05 0 6.36774e-06
           -0.000273818 0 6.36978e-05 0 0.000259601
Update the track by measurement {-0.000,0.000000} err {8.333e-08 0.000e+00 8.333e
083
AfterUpdate Measurment
AliExternalTrackParam: x = 13.34 alpha = 0.17049
parameters: -8.88178e-16 0 0.169665 0 -2.82829
covariance: 8.33157e-08
               0 8.32841e-08
           -1.95093e-08 0 4.60987e-08
               0 -1.76935e-08 0 7.52226e-09
           -5.54927e-08 0 1.80916e-06 0 8.48982e-05
After MS correction
AliExternalTrackParam: x = 13.34 alpha = 0.17049
parameters: -8.88178e-16 0 0.169665 0 -2.82829
 covariance: 8.33157e-08
                0 8.32841e-08
           -1.95093e-08 0 6.02551e-06
                0 -1.76935e-08 0 6.16416e-06
           -5.54927e-08 0 1.80916e-06 0 8.48982e-05
_____
Propagating Parameters to Laver: VTX3
AliExternalTrackParam: x = 5.20112 alpha = 0.34098
 parameters: -1.45203 0 -0.202109 0 -2.82829
 covariance: 0.000407215
                  0 0.000389512
           -5.26038e-05 0 6.90001e-06
                    0 -4.89949e-05 0 6.16416e-06
           -3.87427e-05 0 7.90259e-06 0 8.48982e-05
Update the track by measurement {0.000,0.000000} err {8.333e-08 0.000e+00 8.333e-
08}
AfterUpdate Measurment
AliExternalTrackParam: x = 5.4 alpha = 0.0687341
parameters: 2.22045e-16 0 0.06868 0 -2.82829
 covariance: 8.3315e-08
              0 8.33155e-08
           -1.13826e-08 0 1.10179e-07
              0 -1.04799e-08 0 2.63541e-09
           -8.22974e-09 0 2.95303e-06 0 8.1213e-05
After MS correction

        Alter ms correction

        AliExternalTrackParam: x = 5.4
        alpha = 0.0687341

        parameters: 2.22045e-16
        0
        0.06868
        0
        -2.82829

 covariance: 8.3315e-08
                  0 8.33155e-08
           -1.13826e-08 0 5.4207e-07
                    0 -1.04799e-08 0 4.36574e-07
           -8.22974e-09 0 2.95303e-06 0 8.1213e-05
```

```
_____
Propagating Parameters to Layer: VTX2
AliExternalTrackParam: x = 4.33534 alpha = 0.137468
                               alpha = 0.137468
0 -0.0267574 0 -2.82829
 parameters: -0.356796
 covariance: 7.42595e-07
                    0 5.88435e-07
           -6.32379e-07 0 6.07915e-07
                                   0 4.36574e-07
                     0 -4.69714e-07
            -3.52598e-06 0 3.72835e-06 0 8.1213e-05
Update the track by measurement {0.000,0.000000} err {8.333e-08 0.000e+00 8.333e-
083
AfterUpdate Measurment
AliExternalTrackParam: x = 4.35 alpha = 0.0553538
 parameters: 5.55112e-17 0 0.0553256 0 -2.82829
 covariance: 7.48741e-08
                     0 7.29958e-08
            -6.39017e-08 0 1.23769e-07
                  0 -5.82684e-08 0 1.08139e-07
            -3.56718e-07 0 1.02929e-06 0 6.61704e-05
 After MS correction

        AliExternalTrackParam: x = 4.35
        alpha = 0.0553538

        parameters: 5.55112e-17
        0
        0.0553256
        0
        -2.82829

 covariance: 7.48741e-08
                   0 7.29958e-08
            -6.39017e-08 0 5.55981e-07
             0 -5.82684e-08 0 5.41678e-07
            -3.56718e-07 0 1.02929e-06 0 6.61704e-05
_____
 Propagating Parameters to Layer: VTX1
AliExternalTrackParam: x = 3.29221 alpha = 0.110708
 parameters: -0.226611 0 -0.0267376 0 -2.82829
 covariance: 8.41094e-07
                   0 7.93974e-07
            -6.71943e-07 0 5.83092e-07
                     0 -6.27641e-07 0 5.41678e-07
            -1.76851e-06 0 1.65641e-06 0 6.61704e-05
Update the track by measurement {0.000,0.000000} err {8.333e-08 0.000e+00 8.333e-
08}
AfterUpdate Measurment
AliExternalTrackParam: x = 3.3 alpha = 0.0419834 parameters: 2.77556e-17 0 0.0419711
                                0 0.0419711 0 -2.82829
 covariance: 7.57888e-08
                     0 7.54177e-08
            -6.06585e-08 0 9.47829e-08
                   0 -5.96181e-08 0 9.26527e-08
            -1.59733e-07 0 3.71284e-07 0 6.27886e-05
 After MS correction

        AliExternalTrackParam:
        x = 3.3
        alpha = 0.0419834

        parameters:
        2.77556e-17
        0
        0.0419711
        0
        -2.82829

 covariance: 7.57888e-08
                     0 7.54177e-08
            -6.06585e-08 0 5.27246e-07
                     0 -5.96181e-08 0 5.25879e-07
                        0 3.71284e-07
            -1.59733e-07
                                                      0 6.27886e-05
```


Geometry Details (B-2.0)

https://wiki.bnl.gov/athena/index.php/Tracking

Barrel Tracker (B-2.0, numbers from ATHENA Canyonlands_v1.2 @ Tag)

R (cm)	Length (cm)	Resolution	Active Area Material (X/X0 %)
3.3	28.0	10 um pixel pitch	0.05
4.35	28.0	10 um pixel pitch	0.05
5.4	28.0	10 um pixel pitch	0.05
13.34	34.34	10 um pixel pitch	0.55
17.96	46.68	10 um pixel pitch	0.55

Silicon Tracker (3 Vertex + 2 Barrel Layers)

Micromegas Barrel (4 barrel layers)

R (cm)	Length (cm)	Resolution	Active Area Material (X/X0 %)
47.72	127.47	150 um (r-phi) x 150 um (z)	0.4
49.57	127.47	150 um (r-phi) x 150 um (z)	0.4
75.61	201.98	150 um (r-phi) x 150 um (z)	0.4
77.46	201.98	150 um (r-phi) x 150 um (z)	0.4

Forward Trackers (P-2.0, Numbers from ATHENA Canyonlands_v1.2@ Tag)

Silicon Dicks

Inner R (cm)	Outer R (cm)	Z Position (cm)	Resolution	Active Area Material (X/X0 %)		
3.18	18.62	25.0	10 um pixel pitch	0.24		
3.18	36.50	49.0	10 um pixel pitch	0.24		
3.47	43.23	73.0	10 um pixel pitch	0.24		
5.08	43.23	103.65	10 um pixel pitch	0.24		
6.58	43.23	134.33	10 um pixel pitch	0.24		
8.16	43.23	165.0	10 um pixel pitch	0.24		

Silicon Disk Support Material

Material	Thickness (cm)	Geometry
Al	0.2	cone from (z [cm], rho [cm]) = (16.8, 12.58) to (58.42, 43.23) and cylinder from (58.42, 43.23) to (165, 43.23)

MPGD Trackers

Inner R (cm)	Outer R (cm)	Z Position (cm)	Resolution	Active Area Material (X/X0 %)
44.68	76.91	105.76	250 um (r) x 50 um (r-phi)	0.4
44.68	76.91	161.74	250 um (r) x 50 um (r-phi)	0.4
19.34	195.5	332.0	250 um (r) x 50 um (r-phi)	0.4

22/02/22

Backward Trackers (N-2.0, Numbers from ATHENA Canyonlands_v1.2 @ Tag)

Inner R (cm)	Outer R (cm)	Z Position (cm)	Resolution	Active Area Material (X/X0 %)
3.18	18.62	-25.0	10 um pixel pitch	0.24
3.18	36.50	-49.0	10 um pixel pitch	0.24
3.18	43.23	-73.0	10 um pixel pitch	0.24
3.95	43.23	-109.0	10 um pixel pitch	0.24
5.26	43.23	-145.0	10 um pixel pitch	0.24

Silicon Disks

Silicon Disk Support Material

Material	Thickness (cm)	Geometry
Al	0.2	cone from (z [cm], rho [cm]) = (-16.8, 12.58) to (-58.42, 43.23) and cylinder from (-58.42, 43.23) to (-145, 43.23)

MPGD Trackers

Inner R (cm)	Outer R (cm)	Z Position (cm)	Resolution	Active Area Material (X/X0 %)
44.68	76.91	-103.0	250 um (r) x 50 um (r-phi)	0.4
44.68	76.91	-141.74	250 um (r) x 50 um (r-phi)	0.4