Deuteron series

Episode 3:

Exploring the origin of the EMC effect with electron-deuteron DIS at the EIC

Kong Tu BNL 02. 28. 2022

Collaboration with A. Jentsch, M. Strikman, and C. Weiss

Status

BeAGLE has been developing actively, especially the light ion.

Deuteron series

Episode 1:

Gluon distribution and its modification in deuteron, what role does SRC play in gluons? [*Phys. Lett. B 811 (2020) 135877*]

Episode 2:

Minimizing nuclear effect in deuteron – pathway towards free nucleon structure [*Phys.Rev.C 104 (2021) 6, 065205 Editor's Suggestion*]

Episode 3:

Origin of the EMC effect and its connection to the off-shell nucleons. [Focus of this talk]

Extra credit:

Gluonic structure of the deuteron from UPC in d+Au at STAR [accepted in PRL]

Heavy nuclei series

Episode 1:

Incoherent VM production and nuclear breakups in Pb. [*Phys.Rev.D 104 (2021) 11, 114030*]

Episode 2:

Forward particle productions in nuclear breakup and eA centrality [submission in < 2 weeks]

Episode 3:

Parton energy loss (PyQM) in eA [submission in < 2 weeks]

EMC effect and SRC

~40 years of EMC puzzle in nuclear physics

Recent experiments have revealed the EMC might be caused by SRC

EMC effect and SRC

~40 years of EMC puzzle in nuclear physics

Recent experiments have revealed the EMC might be caused by SRC

EMC ("Everyone's Model is Correct")

PHYSICS REPORTS (Review Section of Physics Letters) 160, Nos. 5 & 6 (1988) 235-427. North-Holland, Amsterdam

HARD NUCLEAR PROCESSES AND MICROSCOPIC NUCLEAR STRUCTURE

Leonid FRANKFURT and Mark STRIKMAN

Leningrad Nuclear Physics Institute, Gatchina, Leningrad District, 188350 USSR

Received April 1987

Contents:

1. Intr	oduction	237	3.14 How to measure the flavour dependence of quark	
2. QC	D and the structure of nuclei	241	distributions in fragmentation processes 2	85
2.1.	Successes and unresolved problems of the non-		3 15 Gluon distribution in nuclei 22	88
	relativistic theory of nuclei	242	3.16 Summary of open problems 29	90
2.2.	Implications of OCD for nuclear structure	245	4 Small-r physics in OCD and nuclear shadowing 29	90
2.3	OCD-motivated phenomenological models of nuclei	250	4.1 The violation of Biorken scaling in perturbative OCD	10
2.4.	Experimental restrictions on the exotic component in	200	at small x 20	91
	the wave function of the nucleus	253	4.2. Large longitudinal distances are relevant for nuclear	
2.5.	OCD and the deformation of the bound nucleon wave		shadowing 20	94
	function	254	4.3. The role of scaling violation in nuclear shadowing 29	96
3. Dee	p inelastic lepton-nucleus scattering: OCD-based re-		4.4. Nuclear shadowing at moderate Q^2	99
view	of experimental data	258	4.5. OCD aligned jet model of nuclear shadowing 36	00
3.1	Introduction	258	4.6. Shadowing of the valence quark distribution 30	03
3.2	OCD evolution equations	260	4.7. Nuclear shadowing and antishadowing: guidelines for	00
3.3	Scaling violation. Valence quarks	263	a realistic model	04
3.4	Sea quark and gluon distributions	264	4.8. Suggestions for future investigations 3	07
3.5	The ratio $\sigma_{\rm r}/\sigma_{\rm r}$	266	5. Models of the EMC effect 31	10
3.6	Transverse momentum distributions of partons in a		5.1. Why the EMC effect signals the presence of non-	
	nucleon	268	nucleon degrees of freedom in nuclei 31	10
3.7	Nuclear effects. Introduction	269	5.2. The pion model 3	12
3.8	Nuclear effects for intermediate x $(0.2 \le x \le 0.7)$	270	5.3. Physics of the region $x \le 0.2$ 31	17
3.9	A-dependence of $\sigma_{\rm c}/\sigma_{\rm r}$	277	5.4. From mini- to maxidelocalization of guarks in nuclei 32	20
3.10	Experimental status of the EMC effect for $0.05 \le$		5.5. Summary of models of the EMC effect 33	30
	$x \le 0.2$	278	6. Superfast quarks in nuclei 33	31
3.11	Nuclear shadowing	279	6.1. Deep inelastic lepton-nucleus scattering at $x > 1$ 33	32
3.12	Enhancement of sea quarks in nuclei: to be or not to		6.2. Drell-Yan pair production at $x_{4} > 1$ 34	40
	be	281	6.3. Probing the hard scattering wave functions of hadrons	
3.13	Probing the flavour composition of nuclei in Drell-		and nuclei in hard semiexclusive reactions of nuclei 34	42
	Yan pair production	284	6.4. Probing the high-momentum component of the wave	

This study - we explore the EMC effect in terms of nucleon off-shellness, which has the following features:

- 1. The EMC effect is universal and only determined by how much the nucleon is off the mass shell.
- 2. Light nuclei have an average smaller "off-shellness" while heavy nuclei have higher average "offshellness". Qualitatively consistent with data.
- 3. Off-shellness is closely related to the momentum of the bound nucleon, which is connected to the Short-Range Nucleon Correlations (SRC)
- 4. Deuteron is a perfect testing ground.

Frankfurt and Strikman had summarized EMC models (1988)

Based on Ciofi et al. parametrization for *d* wavefunction (same as in BeAGLE)

- $t' = M_N **2 (p_d p_p)^2$
- Raw distributions (left), and p_T (middle) and alpha (right) dependence.
- Zoom-in t' vs alpha reproduced [Strikman & Weiss] and the minimum t' $\sim 0.004 \text{ GeV}^2$

One-parameter parametrization

General procedure:

Useful References:

- 1. Ciofi et al. <u>https://arxiv.org/abs/0706.2937</u>, includes all virtuality calculations.
- 2. Many EMC measurements, <u>https://arxiv.org/abs/2110.08399</u>
- 3. Nature paper, https://www.nature.com/articles/s41586-019-0925-9.pdf
- 4. Data spread sheet on google, <u>https://docs.google.com/spreadsheets/d/10VPSfLvtQTHq5eg54fXi8-</u> ____O4WsMsAYC6TYTA5iItI/edit?usp=sharing

Parametrization

- Nucleon virtuality from Ciofi. et al. (07)
 t' = <V_{NR}>2M_N (Dimensional analysis
 → multiply by mass)
- Deuteron virtuality t' can be inferred from Toy MC. average is ~ 0.03 GeV²

A	$\left\langle v_{NR}^{(0)} \right\rangle$	$\left\langle v_{NR}^{(1)} \right\rangle$	$\langle v_{NR} \rangle$	
^{3}He	-7.15	-27.44	-34.59	
^{4}He	-26.82	-42.58	-69.40	
^{12}C	-33.17	-49.11	-82.28	
^{16}O	-31.40	-48.28	-79.68	
${}^{40}Ca$	-35.00	-49.54	-84.54	
^{56}Fe	-31.66	-50.76	-82.44	
^{208}Pb	-32.87	-59.33	-92.20	
(MeV)				

Table. IV

- EMC slope from various of data (Jlab, SLAC, etc.)
 Firstly, we should focus on t' < 0.2 region, constrained by data.
- *Quick comment: deut t' can be > 0.2. However, this parametrization goes too *fast*. Should think about another parametrization for region t' > 0.2

Best fit found (so far) is a power function, while linear extrapolation clearly is insufficient

8

BeAGLE implementation

✓ Goal:

- 1. Use parametrization to generate a "look-up" table on the flight, for each x_{bj} and deuteron configuration (t');
- 2. Obtain an event weight, which accounts for the EMC effect for every corresponding deuteron configuration; Easy to process. [No need to do complicated "after-burner" on the analysis level]
- 3. Users only need to apply this event weight, nothing else is needed. Easy to compare w/o weight and with different alpha, pT dependence.
- 4. (Hopefully) Easier for later detector simulations plugin.
- Status/Properties:
- 1. Q^2 independent, only $[x_{bj}, t']$ dependent.
- 2. Only apply to 0.3 < x < 0.7, everywhere else the weight = 1.0;
- 3. The EMC slope cannot be exceeded -2.5 ($F_{2,bound}/F_{2,free}$ cannot be less than zero at x=0.7)
- 4. BeAGLE **v1.01.05** (will be updated with master when done with tests), test codes live under "/gpfs02/eic/ztu/BeAGLE/BeAGLE_devK_TaggedEMC_2022-01-13/BeAGLE"
- 100M events 5x41 eD DIS events are produced and ready to be analyzed. (/gpfs02/eic/ztu/Analysis/BeAGLE/eD_Tagged_DIS/5x41_Q2_10/batch_2_output/*.root)

EMC factor

- When running BeAGLE, there is one switch to turn this on. → FERMI line, fourth argument = 2
- Set USERSET = 17
 - 1. User1 = ť
 - 2. User2 = $\Delta(t')$
 - 3. User3 = EMC weight in terms of $F_{2,bound}/F_{2,free}$
- Event-by-event weight. For any distribution, this weight can be applied, e.g., reduced cross section.

Phase space

eD 5x41 GeV²

- Lowest EIC energy setting can reach the EMC region with Q² > 10 GeV²
- Statistics should not be a problem, but it depends on how differential the measurements are.
- We should pick our binning from the start (lessons learned from last paper)

e.g.,

- Q2[]={10,20,40,100,above)
- x[]={0.08,0.12,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75}

(just an example)

Proton distributions when neutron is hit.

×10³ 10[°] eta theta Spectator peak 10⁴ Δ -5 n particles.theta*1000 particles.pz particles.eta

particles.eta {particles.KS==1&&particles.id==2212 && nucleon==2112}

- Very different acceptance is needed in this phase space in terms of spectator tagging
- Full simulations will be of great help

particles.pz {particles.KS==1&&particles.id==2212 && nucleon==2112

particles.theta*1000 {particles.KS==1&&particles.id==2212 && nucleon==2112}

Results (1)

- Inclusive tagged DIS measurement with neutron spectator – average deuteron configuration.
- 10 < Q² < 15 GeV², 0.01 < y < 0.95, 100M events in total. (Error bar is currently overestimated due to correlation)
- DIS reduced cross section was measured, and compare w. and without weight (bound vs free)
- The slope gives -0.1, consistent with our parametrization. [closure test]

Results (2)

Ratio = With/without weight

- Differential measurement on reduced cross section ratio as a function of p_T² of spectator;
- 10 < Q² < 15 GeV², 0.01< y < 0.95, 0.95<alpha<1.05, 0.6<x<0.7 [One bin]
- The sudden dip around 0.12 is because the parametrization runs out, and the slope becomes too steep. Currently I put the EMC factor back to 1.

Result (3)

0.6<x<0.7

With EMC weights applied

Difference in magnitude on reduced cross section due to alpha distribution. Cross section formula • was used from our PRC paper, i.e., up to the step before we remove the pole.

Result (3) cont.

0.6 < x < 0.7

- Ratio = 1.15<alpha<1.25 / 0.95<alpha<1.05 in terms of reduced cross section (same as previous slide)
- Solid = without weight (default BeAGLE)
- Open = w. weight, same as previous slide
- Taking another ratio (double ratio) would be the effect of EMC.

New parametrizations

Summary

- Simple parametrization on the EMC effect has been done. Power law function is being used. *Alternative parametrization to higher t' would be needed.*
- This has been implemented in BeAGLE as a new feature. Easy to use for analyzers as an event weight (v1.01.05)
- 3x(100M) 5x41 eD new BeAGLE has been generated and ready for more rigorous analyses.
- First look at the results very interesting. Now it's time to think more on what observables we would like to measure.

Deuteron EMC feature

 $eD \rightarrow e'+X+n' 5x41 \text{ GeV}^2$

BeAGLE v1.04.05 (test version)