
INTRODUCTION TO THE DETECTOR TECHNOLOGIES FOR THE FIC

- Klaus Dehmelt
- o The 2022 CFNS Summer School on the Physics of the Electron-Ion-Collider
- o July 15, 2022

DETECTOR TECHNOLOGIES IN HEP

- High Energy Physics (HEP) → Particle Physics/Nuclear Physics
- Accelerator experiments

K. Dehmelt

Non-accelerator experiments

Focus on accelerator experiments

ACCELERATOR EXPERIMENTS

- Particles accelerated and "collided"
 - Collider experiments
 - \star Particle species accelerated and stored \rightarrow storage ring, undergo several bunch collisions
 - Particle species accelerated and undergo single bunch collisions
 - ➤ Particle species are colliding in dedicated collision points
 - Experimental apparatus surrounding the collision point
 - Symmetric vs asymmetric collisions
 - Fixed target experiments
 - Particle species accelerated and extracted
 - ➤ Particle species interact "collide" with particle species at rest
 - Experimental apparatus covering boosted region → very asymmetric collisions

DESIGN AN EXPERIMENTAL APPARATUS

Identify the constraints

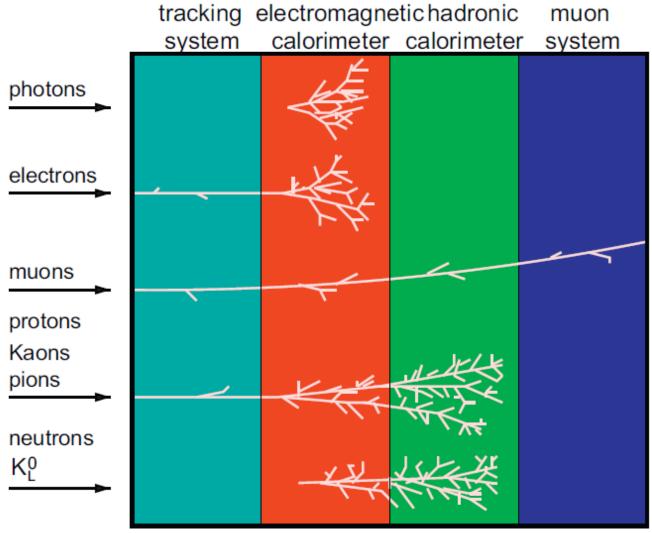
Physics program → goals?

How much does it cost? What is the timeframe?

How to conduct the experiment:
Collider? Fixed target?
Symmetric/asymmetric?

HEP Experimental
Apparatus

Choose the right technologies: negotiate requirements and constraints


* Stony Brook University The State University of New York

Traditional Experiments
 Onion Structure

- Trackers
 - ▼ Momentum measurement
 - Charge measurement
 - × Non-destructive
- Calorimeters
 - Detect neutral particles
 - Measure energy
 - Distinguish EM/Hadron interactions
 - **×** Destructive
- Others

innermost layer

→ outermost layer

- Ideally → measure and identify all final products of collision
 - Charged leptons
 - Photons
 - Hadrons/jets
 - o "Missing" particles

- Ideally \rightarrow measure and identify all final products of collision
 - Charged leptons

K. Dehmelt

- ▼ Electrons → charged particle and EM interaction with matter
- ▼ Muons → charged particle and small interaction with matter

Ideally → measure and identify all final products of collision

Photons

➤ Neutral particle <u>and</u> EM interaction with matter

• Ideally \rightarrow measure and identify all final products of collision

Hadrons/jets

- Charged particles and EM and Hadronic interaction with matter
- × Neutral particles <u>and</u> Hadronic interaction with matter
- Short lived hadrons → decay products

* Stony Brook University The State University of New York

Ideally

 measure and identify all final products of collision

Hadrons/jets

 \times Short lived hadrons \rightarrow decay products

* Stony Brook University | The State University of New York

Ideally

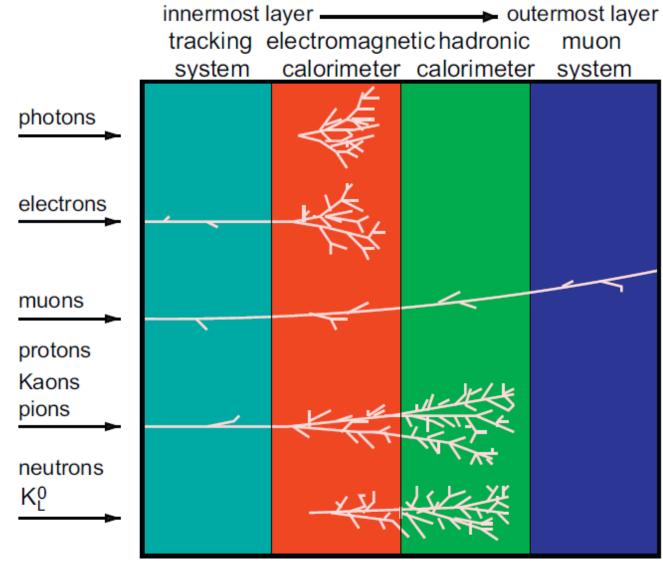
 measure and identify all final products of collision

Particle	m [MeV]	Quarks	Main decay	Lifetime	<i>c</i> τ [cm]
π^{\pm}	140	ud	$\mu\nu_{\mu}$	$2.6 \times 10^{-8} \mathrm{s}$	780
\mathbf{K}^{\pm}	494	us	$\mu\nu_{\mu}$, $\pi\pi^{0}$	1.2 × 10 ⁻⁸ s	370
$\mathbf{K_{\mathrm{S}}}^{0}$	498	ds	ππ	$0.9 \times 10^{-10} \mathrm{s}$	2.7
${f K_L}^0$	498	$d\bar{s}$	πππ, πΙν	5 × 10 ⁻⁸ s	1550
p	938	uud	stable	> 10 ²⁵ years	∞
n	940	udd	pev _e	890 s	2.7×10^{13}
Λ	1116	uds	pπ	$2.6 \times 10^{-10} \text{ s}$	7.9

• Ideally \rightarrow measure and identify all final products of collision

Particle	m [MeV]	Quarks	Main decay	Lifetime	<i>c</i> τ [cm]
π^{\pm}	140	ud	$\mu\nu_{\mu}$	$2.6 \times 10^{-8} \mathrm{s}$	780
\mathbf{K}^{\pm}	494	$u\overline{s}$	$\mu\nu_{\mu}$, $\pi\pi^{0}$	1.2 × 10 ⁻⁸ s	370
$\mathbf{K_{\mathrm{S}}}^{0}$	498	$d\overline{s}$	ππ	$0.9 \times 10^{-10} \mathrm{s}$	2.7
${f K_L}^0$	498	$d\bar{s}$	πππ, π/ν	5 × 10 ⁻⁸ s	1550
p	938	uud	stable	> 10 ²⁵ years	∞
n	940	udd	pev _e	890 s	2.7×10^{13}
Λ	1116	uds	ρπ	2.6 × 10 ⁻¹⁰ s	7.9

 π^0 : $\tau \sim 85$ attoseconds (10⁻¹⁸s)

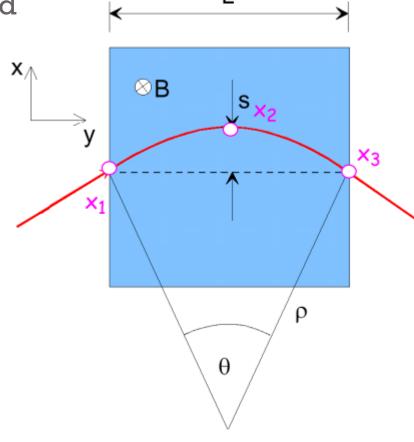


• Ideally -> measure and identify all final products of collision

- o "Missing" particles
 - Deduce from missing momentum/energy

7/15/2022

DETECTOR REQUIREMENTS

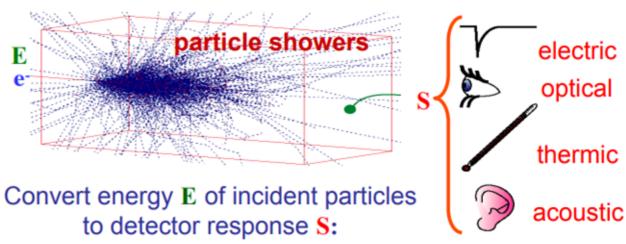

- Almost all effects used in HEP detectors are of EM nature
 - Converting absorbed energy into electrical signal
- Detection sensitivity and performance are function of
 - Fluctuation in detector
 - o Fluctuation of electronics
- Maximize detection sensitivity and resolution
 - Signal formation
 - Coupling to readout electronics
 - Fluctuation of electronics

- Ideally → measure and identify all final products of collision
 - o Charged particles → let them interact with magnetic field
 - ▼ Controlled deflection
 - ▼ Non-destructive measurement of charge and momentum

$$p_T = qB\rho$$

 $p_T[GeV] = 0.3B[T]\rho[m]$

$$p = \frac{p_T}{\tan \theta}$$


7/15/2022

- Ideally

 measure and identify all final products of collision
 - Measure energy
 - Stop particle in dense material
 - Measure signal proportional to energy deposit
 - Material different for EM and Hadronic interaction Calorimetry makes use of various detection mechanisms:
 - Scintillation
 - Cherenkov radiation
 - Ionization
 - Cryogenic phenomena

K. Dehmelt Stony Brook University | The State University of New York

PRIMER: EM CALORIMETRY

Dominant processes at high energies (E > few MeV):

Photons: Pair production

$$\sigma_{
m pair} pprox rac{7}{9} \left(4 \, lpha r_e^2 Z^2 \ln rac{183}{Z^{rac{1}{3}}}
ight)$$

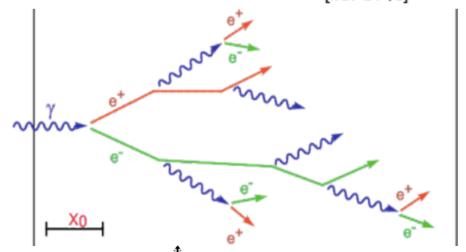
$$= rac{7}{9} rac{A}{N_A X_0} \qquad {
m [X_0: radiation \ length]} {
m [in \ cm \ or \ g/cm^2]}$$

Absorption coefficient:

$$\mu = n\sigma = \rho \, \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

 X_0 = radiation length in [g/cm²]

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$


Electrons: Bremsstrahlung

$$\sigma_{\text{pair}} \approx \frac{7}{9} \left(4 \, \alpha r_e^2 Z^2 \ln \frac{183}{Z^{\frac{1}{3}}} \right)$$

$$\frac{dE}{dx} = 4 \alpha N_A \, \frac{Z^2}{A} r_e^2 \cdot E \, \ln \frac{183}{Z^{\frac{1}{3}}} \, = \frac{E}{X_0}$$

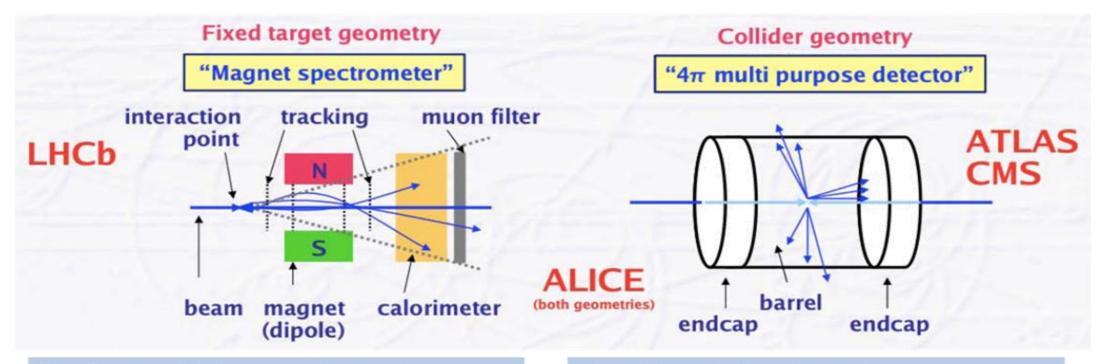
$$\rightarrow E = E_0 e^{-x/X_0}$$

After passage of one X₀ electron has only (1/e)th of its primary energy ...

[i.e. 37%]

PRIMER: HADRONIC CALORINETRY

- Importance of calorimetric measurement
 - Charged hadrons: complementary to track measurement
 - Neutral hadrons: the only way to measure their energy
- In nuclear collisions numbers of secondary particles are produced
 - Partially undergo secondary, tertiary nuclear reactions -> formation of hadronic cascade
 - Electromagnetically decaying particles (π, η) initiate EM showers
 - Part of the energy is absorbed as nuclear binding energy or target recoil (*Invisible energy*)
- Similar to EM showers, but much more complex
 - → need simulation tools (MC)
- Different scale: hadronic interaction length



- Ideally → measure and identify all final products of collision
 - Identify particle
 - Basically, velocity measurement
 - Time of Flight
 - Fixed distance fast readout
 - Transition radiation
 - Border crossing between media with different dielectric properties
 - Cherenkov radiation
 - Particle velocity greater than photon velocity in medium
 - o Ionization loss dE/dx
 - Specific energy loss per particle species

* Stony Brook University The State University of New York

GEOWETRIES

Look at collision products in a small open angle along beam axis Plane detectors perpendicular to beam

Particles to be detected over whole solid angle (4π) Detectors arranged around beam axis with "onion structure"

(INCOMPLETE) LIST OF HEP EXPERIMENTS

Bates Linear Accelerator (MIT) BLAST, OOPS, SAMPLE

Beijing IHEP

ARGO-YBJ, BES, Tibet ASgamma

Brookhaven

BRAHMS, Crystal Ball (E913/914), E787, E821/muon g-2, E850, E852, E863/EMU01, E864, E865, E869, E877, E881, E885, E890, E891, E895, E905, E906, E907, E909, E910, E913/914 (Crystal Ball), E917, E923, E926, E927, E949, E953, EIC, EMU01/E863, High Gain Harmonic Generation FEL, ICAE, IFEL, IMB, LEGS, MECO, Microundulator FEL, NuMass/E952, PHENIX, PHOBOS, pp2pp, Smith-Purcell, STAR, Zero Degree Calorimeter

CERN

ALEPH, ALICE, AMS, ANTARES, ASACUSA, ATHENA, Atlas (European), ATRAP, CDHS neutrino experiment/WA1, CERES/NA45, CHORUS, CMS, CosmoLEP, CPLEAR/PS195, Crystal Barrel/PS 197, Crystal Clear/RD18, DELPHI, EMU01, FELIX, HARP, ICANOE, ISOLDE, L3, LHC-B, MISTRAL, NTOF1, NTOF2, NTOF3, NA45.2/IONS/EL.PAR, NA47/SMC, NA48, NA48.1, NA48.2, NA49, NA50, NA51, NA52/Newmass, NA56/SPY, NA57, NA58/COMPASS, NA59, NA60, NOMAD, OBELIX/PS201, OPAL,

OPERA, PAMELA, PS185, PS205/HELIUMTRAP, PS210, PS212/DIRAC, PS214/HARP, RD8, RD11, RD12/TTC, RD13, RD27, RD39/SMSD, RD41/MOOSE, RD42, RD44/Geant 4, RD45, RD46, RD48/ROSE, RD49/RADTOL, TOSCA, TOTEM, WA85, WA92 (Beatrice), WA94, WA97, WA98, WA102

DESY

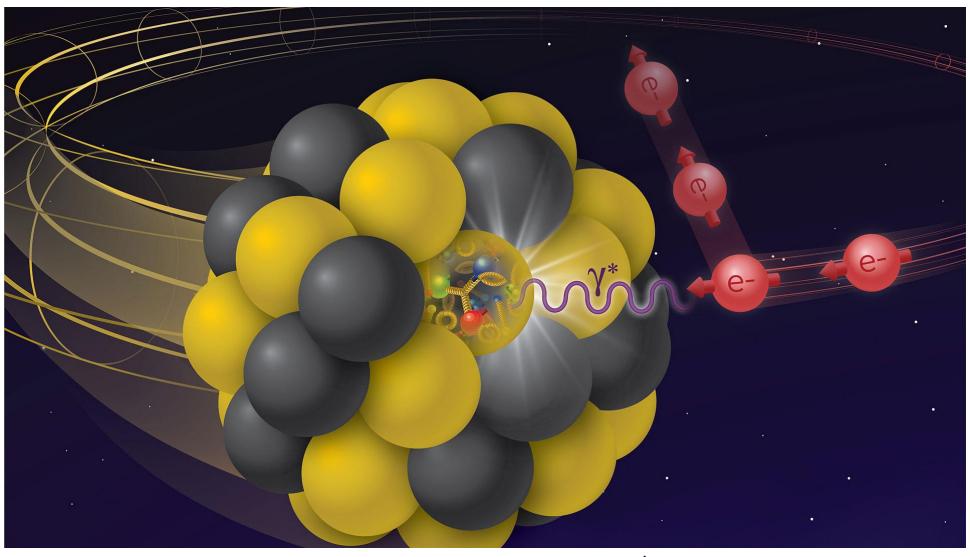
H1, HERA-B, Hermes, TESLA, ZEUS

Fermilab

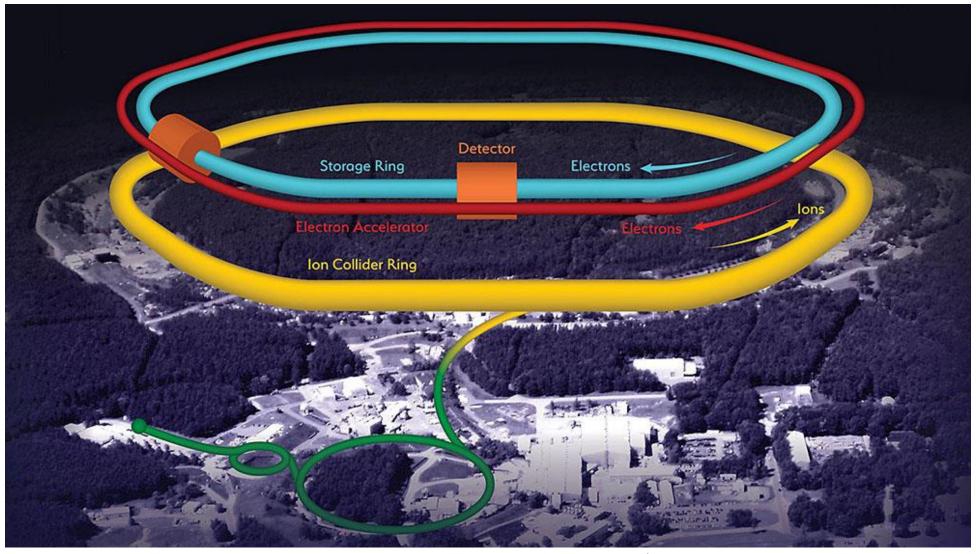
Antihydrogen/E862, APEX/E868, Auger Project, BooNE/E898, BTEV/C0, CDF/E830, CDMS/E981, CEX/E853, Charmonium/E835, CMS (US Server), COSMOS/E803, D0 (DZero)/E823, Donut/E872, E665, E771, E789, Fermi III Project, FOCUS/E831, HyperCP/E871, KTEV/E799/E832, MINOS/E875, NuMI, NUSEA/E866, NuTeV/E815, SDSS, SELEX/E781, Zero Degrees/C0

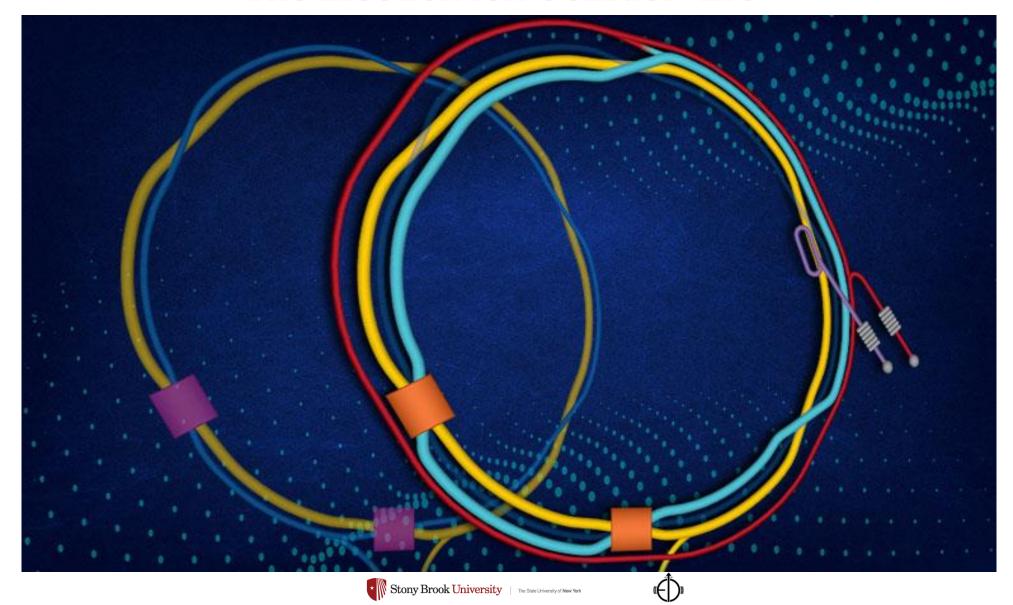
Gran Sasso

BOREXino , CRESST , CUORICINO , DAMA , EASTOP, GALLEX(finished) , GENIUS , GNO , Heidelberg Dark Matter Search (HDMS) , Heidelberg-Moscow Experiment , ICARUS , LUNA , LVD , MACRO , MONOLITH , NOE , OPERA , USA

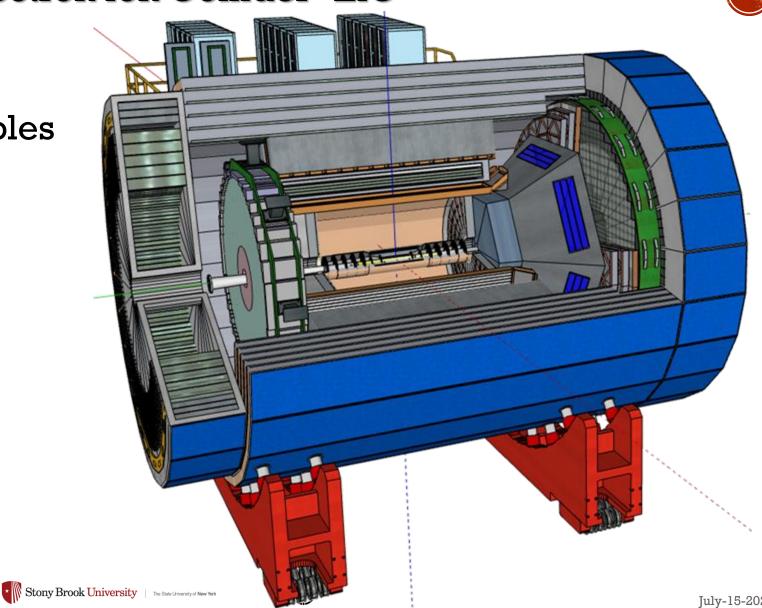

K. Dehmelt 7/15/2022

* Stony Brook University The State University of New York





The Electron Ion Collider -EIC-



The Electron Ion Collider -EIC-

- Needs Detector(s)
- Measure various observables
 - Momentum → tracking
 - Energy → calorimetry
 - Particle identity
 - Others

ELECTRON ION COLLIDER

Three detector concepts introduced and discussed at the

EIC Detector Proposal Advisory Panel Meeting (December 2021)

O ATHENA

OCORE

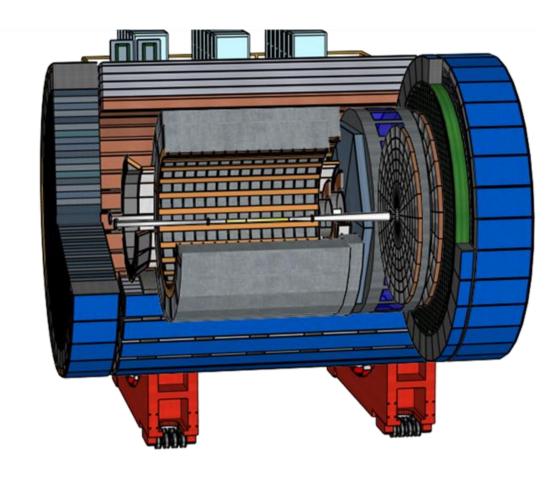
OECCE

ATHENA

24

Solenoid

Barrel Tracking


Endcap Tracking

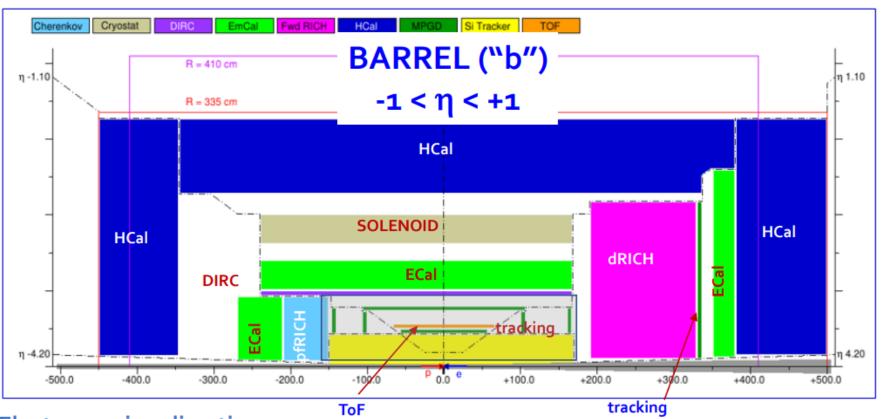
PID

EM Calorimetry

H Calorimetry

Support Structure & Platforms

* Stony Brook University | The State University of New York


ATHENA

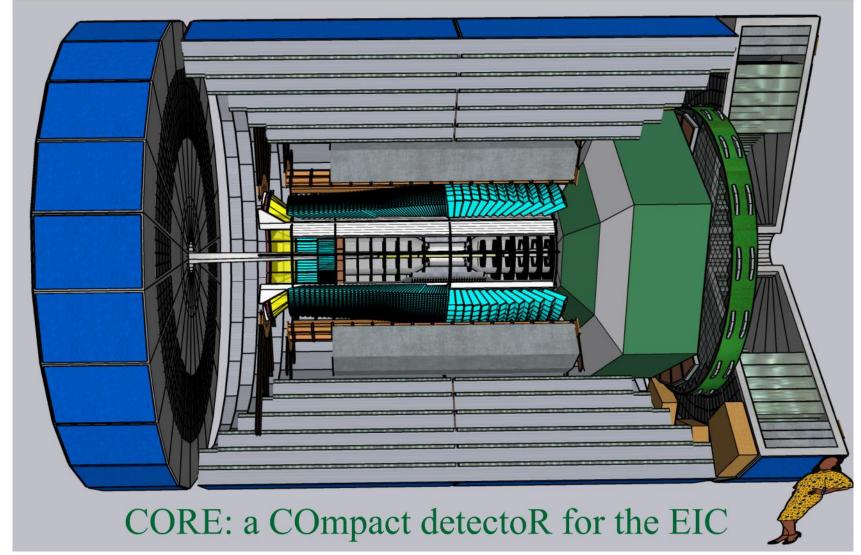
Backward

Endcap ("n")

Hadron beam (41-275 GeV)

Electron beam (5-18 GeV)

Forward Endcap ("p")


Electron-going direction -η

Hadron-going direction +η

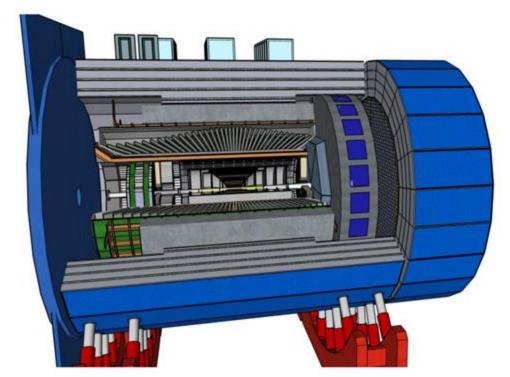
* Stony Brook University | The State University of New York

CORE

Center for Frontier in Nuclear Science

27

- Technologies and technology choices
 - EIC R&D
- Tracking
 - Silicon tracker, fwd MPGD tracker
- Particle Identification
 - Dual-radiator RICH, DIRC, LGAD TOF
- EM calorimetry
 - PbWO₄, W-shashlyk
- Hadronic calorimetry
 - fwd Hcal, KLM



ECCE

EIC Comprehensive Chromodynamics Experiment

ECCE

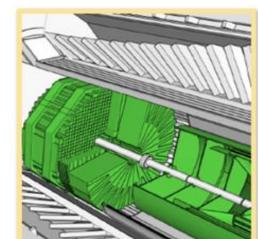
EIC physics measurements require a detector with unique capabilities

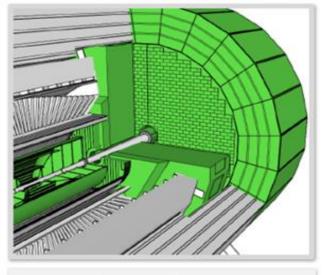
- \square Large rapidity at least -3.5 < η < 3.5 (YR) coverage; and far beyond in especially far-forward detector regions
- High precision low mass tracking
 - small (vertex) and large radius tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EMCal
- \square High performance PID to separate π , K, p at track level
 - o also need good e/π separation for scattered electron

Many ancillary detector integrated in the beam line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter, ...

Stony Brook University | The State University of New York

- High control of systematics
 - luminosity monitor, electron & hadron Polarimetry


30


The ECCE detector size is determined by the reuse of the BaBar magnet and sPHENIX HCAL, and further EIC detector needs:

- Needs +5 m on proton/ion side.
- Needs less space (-3.5 m) on electron side.
- The detector radius is 2.7 meter, with the RCS beam at 3.35 meter.

Backward Endcap

Tracking:

- ITS3 MAPS Si discs (x4)
- AC-LGAD

PID:

- mRICH
- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

Barrel

Tracking:

- ITS3 MAPS Si (vertex x3; sagitta x2)
- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)
- µRWell (after hpDIRC)

h-PID:

- AC-LGAD TOF
- **hpDIRC**

Electron ID:

SciGlass EM Cal (BEMC)

Hadron calorimetry:

- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

Forward Endcap

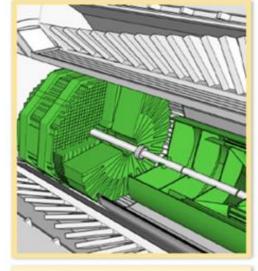
Tracking:

- ITS3 MAPS Si discs (x5)
- AC-LGAD

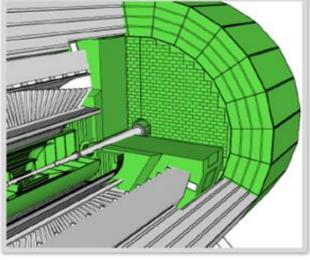
PID:

- dRICH
- AC-LGAD TOF

Calorimetry:


- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)

* Stony Brook University | The State University of New York



Backward Endcap

Tracking:

 ITS3 MAPS Si discs (x4) -C-LGAD

PID:

MRICH

- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

Barrel

Tracking:

- ITS3 MAPS Si (vertex x3; sagitta x2)
- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)

μπι Vell (after hpDIRC) h-PID:

AC-LGAD TOF

Electron ID:

SciGlass EM Cal (BEMC)

Hadron calorimetry:

- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

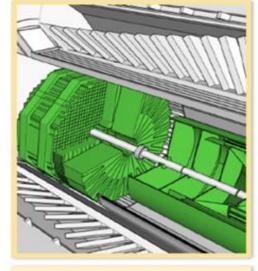
Forward Endcap

Tracking:

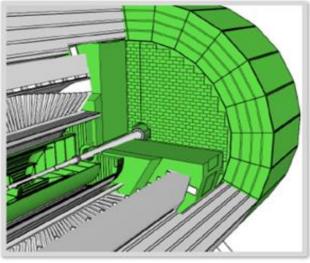
· ITS3 MAPS Si discs (x5)

AC-LGAD

PID: urlCH


AC-LGAD TOF

Calorimetry:


- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)

Backward Endcap

Tracking: PS Si discs (x4)

C-LGAD PID:

IIIRICH

- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

Barrel

Tracking: PS Si

(vertex x3; sagitta x2)

- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)

μπ Vell (after hpDIRC) h-PID:

AC-LGAD TOF

Electron ID:

SciGlass EM Cal (BEMC)

Hadron calorimetry:

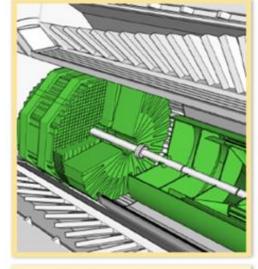
- Outer Fe/Sc Calorimeter (oHCAL)
- Instrumented frame (iHCAL)

Forward Endcap

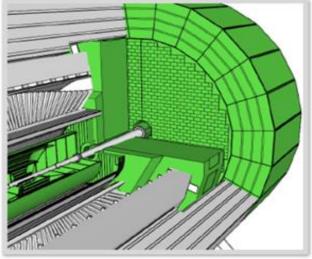
Tracking: PS Si discs (x5)

AC-LGAD PID:

urlCH AC-LGAD TOF


Calorimetry:

- Pb/ScFi shashlik (FEMC)
- Longitudinally separated hadronic calorimeter (LHFCAL)



Backward Endcap

Tracking: PS Si discs (x4)

C-LGAD PID:

IIIRICH

- AC-LGAD TOF
- PbWO₄ EM Calorimeter (EEMC)

Barrel

Tracking: PS Si

(vertex x3; sagitta x2)

- µRWell outer layer (x2)
- AC-LGAD (before hpDIRC)

μπι Vell (after hpDIRC) h-PID:

AC-LGAD TOF

Electron ID:

L(DEMC)

Hadron calorimetry:

- Outer a Co Calonineter (oHCAL)
- Instrumented frame (iHCAL)

Forward Endcap

Tracking: PS Si discs (x5)

AC-LGAD PID:

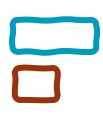
urlCH

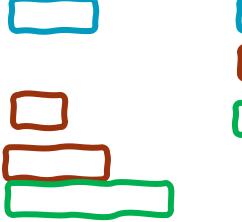
AC-LCAD TOF

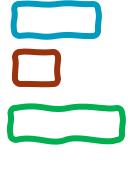
Calorimetry:

Ph/OrFi shushlik (FEMC)

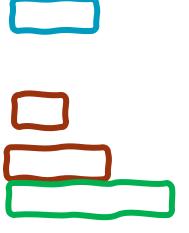
Longitudinally separated hadronic calorimeter (LHFCAL)

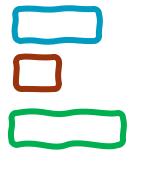






- PID → lecture
- Tracking → lecture
- Calorimetry → lecture


* Stony Brook University | The State University of New York



- PID → lecture
- Tracking → lecture
- Calorimetry → lecture

* Stony Brook University | The State University of New York

LAST SLIDE

- Particle detection mostly based on relatively "simple" physics principles
 - Well known and well simulated
- Particle detection techniques/technologies always evolving
 - Always in need for fresh/new/clever ... ideas → detector R&D is a rich and rewarding field
- Implementation of detectors in large(r) scale experiment always challenging → needs many people and good organization
- Building the detector is not yet the end \rightarrow need to understand the response and coordination of all components and the physics can come
 - BTW: Each detector produces signal that needs to be read out
 - o Not covered here → Readout electronics is a field by itself

