Quark and Gluon Helicity at Small x

Yossathorn (Josh) Tawabutr The Ohio State University

In collaboration with: Florian Cougoulic, Yuri Kovchegov, Andrey Tarasov

Based on: <u>2204.11898</u>

Proton Spin Puzzle

- ullet Jaffe-Manohar sum rule: $rac{1}{2} = S_q + S_G + L_q + L_G$
- Focus on helicity of quarks (S_g) and gluons (S_g)

$$S_{q}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dx \, \Delta \Sigma(x, Q^{2}) = \frac{1}{2} \int_{0}^{1} dx \, \sum_{f} \left[\Delta q_{f}(x, Q^{2}) + \Delta \bar{q}_{f}(x, Q^{2}) \right]$$

$$S_{G}(Q^{2}) = \int_{0}^{1} dx \, \Delta G(x, Q^{2})$$

Proton Spin Puzzle

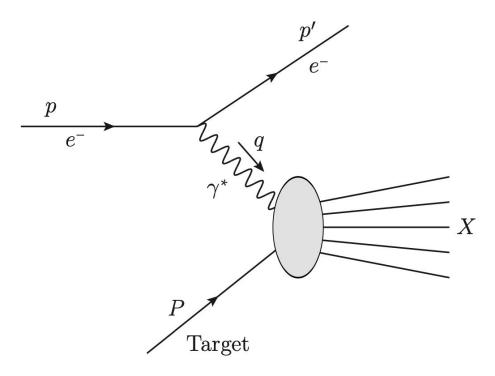
- Jaffe-Manohar sum rule: $\frac{1}{2} = S_q + S_G + L_q + L_G$
- Focus on **helicity** of quarks (S_g) and gluons (S_g)

$$S_q(Q^2) = \frac{1}{2} \int_0^1 dx \, \Delta \Sigma(x, Q^2) = \frac{1}{2} \int_0^1 dx \, \sum_f \left[\Delta q_f(x, Q^2) + \Delta \bar{q}_f(x, Q^2) \right]$$

$$S_G(Q^2) = \int_0^1 dx \, \Delta G(x, Q^2)$$

- $S_G(Q^2) = \int\limits_0^1 dx \, \Delta G(x,Q^2) \qquad \text{Experiments do not give helicity PDF all}$ the way down to Biorken $\mathbf{v} = \mathbf{0}$ the way down to Bjorken x = 0.
 - Determine small-x asymptotics through evolution, resumming a power of ln(1/x).

Deep-Inelastic Scattering (DIS)



- Main tool to look into the structure of protons, neutrons, etc: "target".
- Electron target scattering with high enough energy to break the target into pieces.
- Virtuality ~ transverse resolution:

$$Q^2 = -q^2 \sim \frac{1}{x_\perp^2}$$

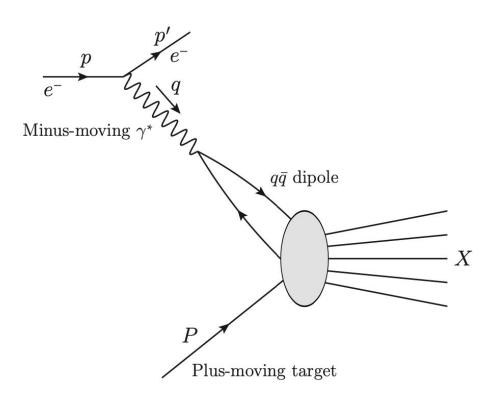
Small x: γ*+P interaction

Bjorken x:

"takes forever". $Q^2 \sim 1$ (M: target's mass)

$$x = \frac{Q^2}{2P \cdot q} \sim \frac{1}{Mx^-}$$

Deep-Inelastic Scattering (DIS)



- Main tool to look into the structure of protons, neutrons, etc: "target".
- Electron target scattering with high enough energy to break the target into pieces.
- Virtuality ~ transverse resolution:

$$Q^2 = -q^2 \sim \frac{1}{x_\perp^2}$$

Bjorken x:

$$x = \frac{Q^2}{2P \cdot q} \sim \frac{1}{Mx^-}$$

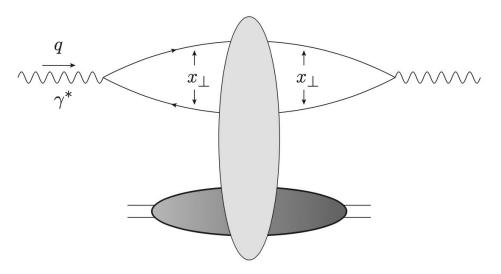
Small x: y*+P

interaction

"takes forever".

(M: target's mass)

Deep-Inelastic Scattering (DIS)



- Main tool to look into the structure of protons, neutrons, etc: "target".
- Electron target scattering with high enough energy to break the target into pieces.
- Virtuality ~ transverse resolution:

$$Q^2 = -q^2 \sim \frac{1}{x_\perp^2}$$

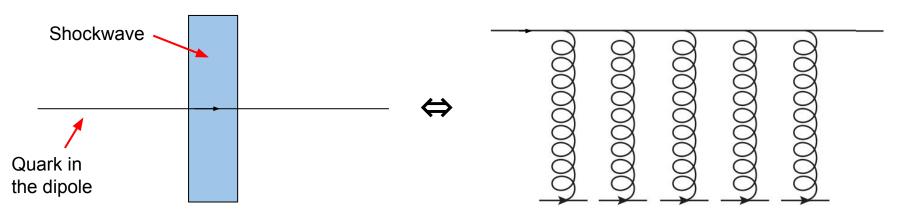
Small x: γ^*+P interaction

Bjorken x:

$$= \frac{Q^2}{2D} \sim \frac{1}{M}$$
 (M: target's mass)

Unpolarized Dipole Amplitude

- Parton unpolarized PDF, $\Sigma(x, Q^2)$ and $G(x, Q^2)$, relate to unpolarized dipole amplitude, $S_{10}(s) = \frac{1}{N_c} \left\langle \operatorname{tr} \left[V_{\underline{1}} V_{\underline{0}}^{\dagger} \right] \right\rangle(s)$, which obeys BFKL/BK/JIMWLK evolution.
- ullet Quark going through the shockwave at ${f x}_{\scriptscriptstyle 1}$: unpolarized Wilson line, V_1 .
- Multiple parton exchanges at **eikonal** level (leading order in x).



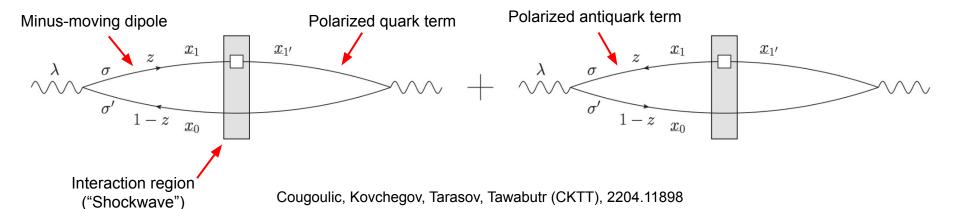
• Polarized parton PDF and structure function, $g_1(x, Q^2)$, relate to the helicity-dependent part of dipole-target scattering.

$$\hat{\sigma}_{\text{DIS}} \sim \frac{1}{x} \, \hat{\sigma}_{\text{unpol}}^{\text{eik}} + \left(\hat{\sigma}_{\text{unpol}}^{\text{sub-eik}} + \sigma S_L \cdot \hat{\sigma}_{\text{pol}}^{\text{sub-eik}} \right) + O(x)$$

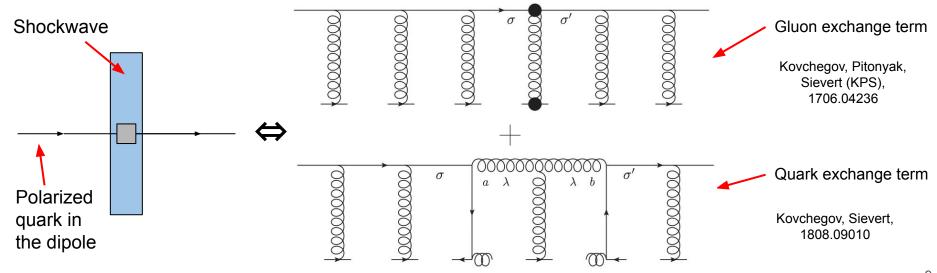
 σ : (anti)quark's helicity

 S_L : Target's helicity

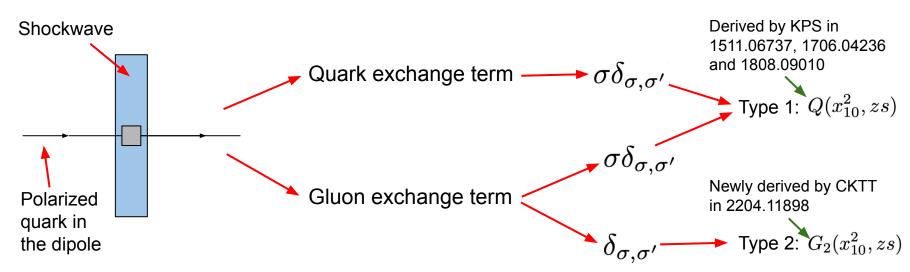
 $\hat{\sigma}$: Cross section



 Helicity-dependent quark line going through the shockwave corresponds to multiple eikonal parton exchanges, except for <u>one</u> helicity-dependent exchange, which is <u>sub-eikonal</u> (suppressed by an extra factor of x).



- Each helicity-dependent interaction comes with a factor of $\sigma\delta_{\sigma,\sigma'}$ or $\delta_{\sigma,\sigma'}$
- We group them into "polarized Wilson line" based on the spin factor.
- The trace of pol+unpol Wilson lines defines "polarized dipole amplitude."



Relations with Helicity PDFs and g₁ Structure Function

• Through an expansion in x, helicity PDFs, $\Delta\Sigma(x, Q^2)$ and $\Delta G(x, Q^2)$, relate to polarized dipole amplitudes, $Q(x_{10}^2, zs)$ (type 1) and $G_2(x_{10}^2, zs)$ (type 2) by

$$\Delta\Sigma(x,Q^{2}) = -\frac{N_{c} N_{f}}{2\pi^{3}} \int_{\Lambda^{2}/s}^{1} \frac{dz}{z} \int_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^{2}},\frac{1}{\Lambda^{2}}\right\}} \frac{dx_{10}^{2}}{x_{10}^{2}} \left[Q(x_{10}^{2},zs) + 2G_{2}(x_{10}^{2},zs)\right]$$

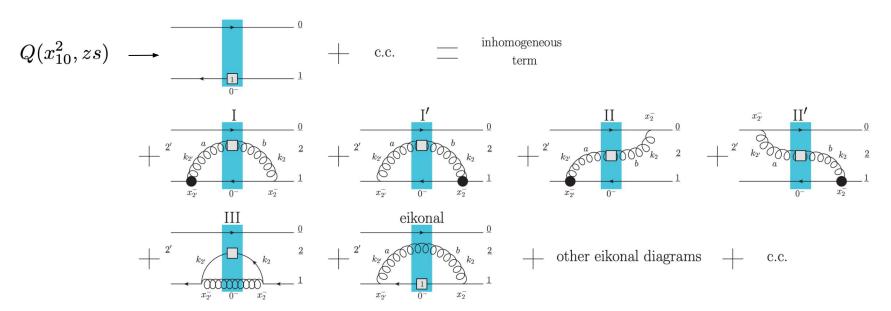
$$\Delta G(x,Q^{2}) = \frac{2N_{c}}{\alpha_{s}\pi^{2}} \left[\left(1 + x_{10}^{2} \frac{\partial}{\partial x_{10}^{2}}\right) G_{2}\left(x_{10}^{2},zs = \frac{Q^{2}}{x}\right)\right]_{x_{10}^{2} = \frac{1}{z^{2}}}$$

Similarly, g₁ structure function relates to both polarized dipole amplitudes by

$$g_1(x,Q^2) = -\sum_f rac{N_c\,Z_f^2}{4\pi^3} \int\limits_{\Lambda^2/s}^1 rac{dz}{z} \int\limits_{rac{1}{2Q}}^{\min\left\{rac{1}{zQ^2},rac{1}{\Lambda^2}
ight\}} rac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2\,G_2(x_{10}^2,zs)
ight]$$

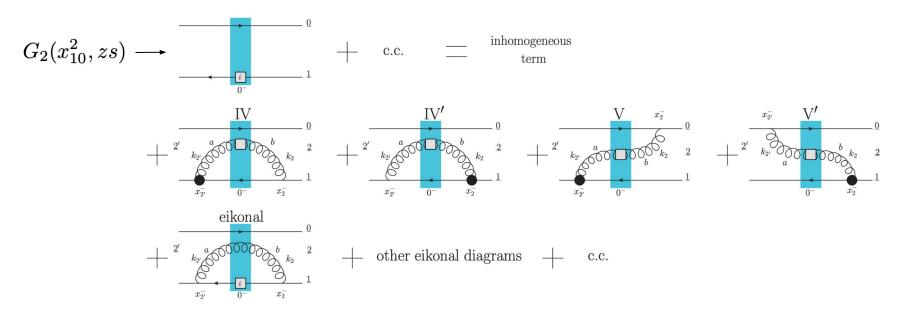
Evolution Equations

 We derive the evolution equations for quark and gluon dipoles of both types, using a technique we called light-cone operator treatment (LCOT).



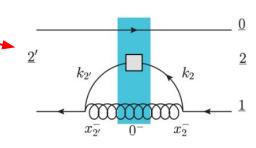
Evolution Equations

 We derive the evolution equations for quark and gluon dipoles of both types, using a technique we called light-cone operator treatment (LCOT).



Evolution Equations

- We derive the evolution equations for quark and gluon dipoles of both types, using a technique we called light-cone operator treatment (LCOT).
- For all types of dipoles, the equations do not close in general.
- Similar to BK, we obtain a closed system of equations in the large-N_c limit:
 - \circ $N_c \gg 1$
 - $\circ \quad \alpha_s N_c \ll 1$
 - o Discard sub-eikonal quark-exchange terms.



Large-N_c Limit

- Define $G(x_{10}^2, zs)$ as the counterpart of $Q(x_{10}^2, zs)$, with the quark exchange term neglected.
- The equation for $G_2(x_{10}^2, zs)$ remains the same because type-2 polarized Wilson line only has gluon exchange.
- Dipole amplitudes, G and G_2 , form a system of integral equations with the auxiliary **neighbor dipole amplitudes**, Γ and Γ_2 .

$$egin{pmatrix} G \ \Gamma \ G_2 \ \Gamma_2 \end{pmatrix} = egin{pmatrix} G \ \Gamma \ G_2 \ \Gamma_2 \end{pmatrix}_0 + \mathcal{K} \otimes egin{pmatrix} G \ \Gamma \ G_2 \ \Gamma_2 \end{pmatrix}$$

Large-N₂ Limit

$$G(x_{10}^2,zs) = G^{(0)}(x_{10}^2,zs) + \frac{\alpha_s\,N_c}{2\pi}\,\int\limits_{\frac{1}{z'^2}}^z\,\frac{dz'}{z'}\,\int\limits_{\frac{1}{z'^2}}^{x_{10}^2}\frac{dx_{21}^2}{x_{21}^2}\left[\Gamma(x_{10}^2,x_{21}^2,z's) + 3\,G(x_{21}^2,z's) + 2\,G_2(x_{21}^2,z's) + 2\,\Gamma_2(x_{10}^2,x_{21}^2,z's)\right]$$

Type-1 polarized dipole amplitude (without quark exchange term)

$$\Gamma(x_{10}^2,x_{21}^2,z's) = G^{(0)}(x_{10}^2,z's) + \frac{\alpha_s\,N_c}{2\pi}\,\int\limits_{\frac{1}{sx_{10}^2}}^{z'}\,\frac{dz''}{z''}\,\int\limits_{\frac{1}{z''s}}^{\min\left[\frac{x_{10}^2,x_{21}^2\frac{z''}{z''}}{z''}\right]}\frac{dx_{32}^2}{x_{32}^2}\left[\Gamma(x_{10}^2,x_{32}^2,z''s) + 3\,G(x_{32}^2,z''s) + 2\,G_2(x_{32}^2,z''s) + 2\,\Gamma_2(x_{10}^2,x_{32}^2,z''s)\right]$$

$$G_2(x_{10}^2,zs) = G_2^{(0)}(x_{10}^2,zs) + \frac{\alpha_s N_c}{\pi} \int\limits_{\frac{\Lambda^2}{s}}^z \frac{dz'}{z'} \int\limits_{\max\left[x_{10}^2,\frac{1}{z's}\right]}^{\min\left[\frac{z}{z'}x_{10}^2,\frac{1}{\Lambda^2}\right]} \frac{dx_{21}^2}{x_{21}^2} \left[G(x_{21}^2,z's) + 2G_2(x_{21}^2,z's)\right]$$

$$\text{Type-2 polarized dipole amplitude} \\ \Gamma_2(x_{10}^2, x_{21}^2, z's) = G_2^{(0)}(x_{10}^2, z's) + \frac{\alpha_s \, N_c}{\pi} \int\limits_{\frac{\Lambda^2}{s}}^{z'\frac{x_{21}^2}{x_{10}^2}} \int\limits_{\max\left[x_{10}^2, \frac{1}{z''s}\right]}^{\min\left[\frac{z'}{z''}x_{21}^2, \frac{1}{\Lambda^2}\right]} \frac{dx_{32}^2}{x_{32}^2} \left[G(x_{32}^2, z''s) + 2 \, G_2(x_{32}^2, z''s)\right]$$

Initial condition: deduced from experimental data

Large-N₂ Results

At high center-of-mass energy,

$$G(x_{10}^2, zs) \sim Q(x_{10}^2, zs) \sim G_2(x_{10}^2, zs) \sim (zsx_{10}^2)^{3.66} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

$$\begin{aligned} \text{With} \qquad & \Delta \Sigma(x,Q^2) = -\frac{N_c \, N_f}{2\pi^3} \int\limits_{\Lambda^2/s}^1 \frac{dz}{z} \int\limits_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2 \, G_2(x_{10}^2,zs)\right] \\ & \Delta G(x,Q^2) = \frac{2N_c}{\alpha_s \pi^2} \left[\left(1 + x_{10}^2 \frac{\partial}{\partial x_{10}^2}\right) \, G_2\left(x_{10}^2,zs = \frac{Q^2}{x}\right)\right]_{x_{10}^2 = \frac{1}{Q^2}} & \text{Previous version: } \\ & Quarks: 2.31 & \text{Gluons: } 1.88 \\ & g_1(x,Q^2) = -\sum_f \frac{N_c \, Z_f^2}{4\pi^3} \int\limits_{\Lambda^2/s}^1 \frac{dz}{z} \int\limits_{\frac{1}{zs}}^{\min\left\{\frac{1}{zQ^2},\frac{1}{\Lambda^2}\right\}} \frac{dx_{10}^2}{x_{10}^2} \left[Q(x_{10}^2,zs) + 2 \, G_2(x_{10}^2,zs)\right] \end{aligned}$$

This result agrees with previous work [Bartels, Ermolaev, Ryskin, 9603204] that uses a different technique, in both quark and gluon helicity PDFs at large N_c.

Conclusion

- Small-x helicity evolution has been revised to include additional contribution from a term of "type 2" in helicity PDF.
- The evolution equations resum $\alpha_s \ln^2(1/x)$. They do not close in general, but form closed systems of equations at large-N_c and large-N_c&N_f limits.
- We numerically solved the equations at large N_c, obtaining

$$\Delta\Sigma(x,Q^2) \sim \Delta G(x,Q^2) \sim g_1(x,Q^2) \sim \left(\frac{1}{x}\right)^{3.66\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

in agreement with the previous results by Bartels et al.

Future Work

- Obtain the numerical solution at large N_c&N_f, c.f. [Kovchegov, Tawabutr, 2005.07285].
- Examine the quality of fits to the helicity world data, given this small-x evolution, c.f. [Adamiak et al, 2102.06159].
- Derive the single-logarithmic (SLA) corrections, resumming $\alpha_s \ln(1/x)$, which was initially studied in [Kovchegov, Tarasov, Tawabutr, 2104.11765].
- Revise the helicity JIMWLK equation, c.f. [Cougoulic, Kovchegov, 1910.04268].
- Revise the small-x OAM evolution, c.f. [Kovchegov, 1901.07453].

Bonus Slides

Crosscheck with Polarized DGLAP

• We iterate the large-N_c equations to order α_s^3 , starting with initial condition:

$$G^{(0)}(x_{10}^2, zs) = 0, \quad G_2^{(0)}(x_{10}^2, z's) = 1$$

• At each order in α_s , the DLA terms **agree completely** with what one would get starting from the corresponding initial condition, $\Delta G^{(0)}(x,Q^2) = \text{const.}$ and evolving with a large-N_c polarized DGLAP evolution in the gluon sector:

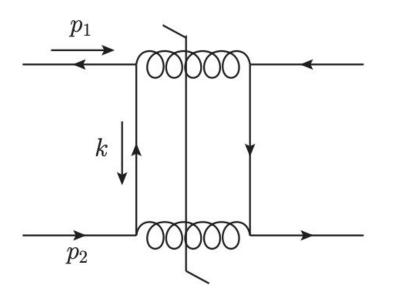
$$\frac{\partial \Delta G(x, Q^2)}{\partial \ln Q^2} = \int_{x}^{1} \frac{dz}{z} \, \Delta P_{GG}(z) \, \Delta G\left(\frac{x}{z}, Q^2\right)$$

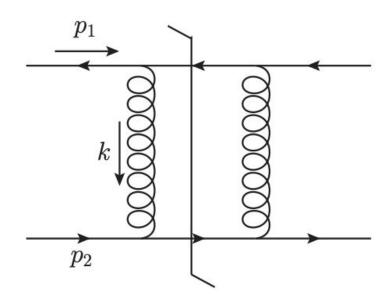
with the small-x gluon-gluon splitting function:

$$\Delta P_{GG}(z) = \frac{\alpha_s}{2\pi} 4N_c + \left(\frac{\alpha_s}{2\pi}\right)^2 4N_c^2 \ln^2 z + \left(\frac{\alpha_s}{2\pi}\right)^3 \frac{7}{3}N_c^3 \ln^4 z + \dots$$

With more iterations, this method allows for DGLAP crosscheck at all orders.

Born Level Amplitudes

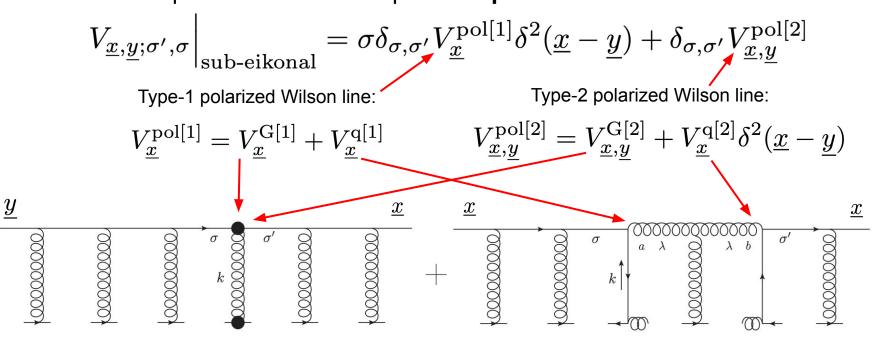




Quark exchange term

Gluon exchange term

Polarized quark line also corresponds to polarized Wilson line.



Kovchegov, Sievert, 1808.09010

Type-1 Polarized Wilson Line

$$Q(x_{10}^{2}, zs) = \frac{zs}{2N_{c}} \int d^{2} \left(\frac{\underline{x}_{0} + \underline{x}_{1}}{2}\right) \operatorname{Re} \left\langle \operatorname{T} \operatorname{tr} \left[V_{\underline{0}} V_{\underline{1}}^{\operatorname{pol}[1] \dagger}\right] + \operatorname{T} \operatorname{tr} \left[V_{\underline{1}}^{\operatorname{pol}[1]} V_{\underline{0}}^{\dagger}\right] \right\rangle$$

$$\left\langle \dots \right\rangle \equiv \frac{1}{2} \sum_{S_{L}} S_{L} \frac{1}{2P^{+}V^{-}} \left\langle P, S_{L} | \dots | P, S_{L} \right\rangle \qquad V_{\underline{x}}^{\operatorname{pol}[1]} = V_{\underline{x}}^{\operatorname{G}[1]} + V_{\underline{x}}^{\operatorname{q}[1]}$$

Target's longitudinal spin

$$V_{\underline{x}}^{\text{G}[1]} = \frac{i\,g\,P^+}{s} \int\limits_{-\infty}^{\infty} dx^- V_{\underline{x}}[\infty,x^-] \, F^{12}(x^-,\underline{x}) \, V_{\underline{x}}[x^-,-\infty] \qquad \qquad \text{Kovchegov, Sievert, 1808.09010; Chirilli, 1807.11435, 2101.12744; Altinoluk et al, 2012.03886} \\ V_{\underline{x}}^{\text{q}[1]} = \frac{g^2 P^+}{2\,s} \int\limits_{-\infty}^{\infty} dx_1^- \int\limits_{x_1^-}^{\infty} dx_2^- V_{\underline{x}}[\infty,x_2^-] \, t^b \, \psi_{\beta}(x_2^-,\underline{x}) \, U_{\underline{x}}^{ba}[x_2^-,x_1^-] \, \left[\gamma^+ \gamma^5\right]_{\alpha\beta} \, \bar{\psi}_{\alpha}(x_1^-,\underline{x}) \, t^a \, V_{\underline{x}}[x_1^-,-\infty] \qquad \qquad \qquad \text{Axial current}$$

Type-2 Polarized Wilson Line

$$G_2(x_{10}^2,zs) = \frac{\epsilon^{ij}(x_{10})_{\perp}^j}{x_{10}^2} \int d^2\left(\frac{\underline{x}_0 + \underline{x}_1}{2}\right) \frac{zs}{2N_c} \left\langle \operatorname{tr}\left[V_{\underline{0}}^\dagger V_{\underline{1}}^{i\,\mathrm{G}[2]} + \left(V_{\underline{1}}^{i\,\mathrm{G}[2]}\right)^\dagger V_{\underline{0}}\right] \right\rangle$$

$$\left\langle \dots \right\rangle \equiv \frac{1}{2} \sum_{S_L} S_L \frac{1}{2P^+V^-} \left\langle P, S_L | \dots | P, S_L \right\rangle$$
Can be written in term of $V_{\underline{x},\underline{y}}^{\mathrm{G}[2]}$ which is the gluon exchange term in type 2 polarized Wilson line.

Target's longitudinal spin

Can be written in term of
$$V_{\underline{x},\underline{y}}^{\mathrm{G[2]}}$$
, which is the gluon exchange term in type-2 polarized Wilson line

$$V_{\underline{z}}^{i\,\mathrm{G}[2]} = rac{P^+}{2s}\int\limits_{-\infty}^{\infty}dz^-\,V_{\underline{z}}[\infty,z^-]\,\left[D^i(z^-,\underline{z})-ar{D}^i(z^-,\underline{z})
ight]\,V_{\underline{z}}[z^-,-\infty]$$

Altinoluk et al. 2012.03886; Kovchegov, Santiago, 2108.03667; Cougoulic, Kovchegov, Tarasov, Tawabutr. 2204.11898

$$V_{\underline{x},\underline{y}}^{\mathrm{G[2]}} = -\frac{i\,P^{+}}{s}\,\int\limits_{-\infty}^{\infty}\,dz^{-}d^{2}z\,\,V_{\underline{x}}[\infty,z^{-}]\,\delta^{2}(\underline{x}-\underline{z})\,\overleftarrow{D}^{i}(z^{-},\underline{z})\,D^{i}(z^{-},\underline{z})\,V_{\underline{y}}[z^{-},-\infty]\,\delta^{2}(\underline{y}-\underline{z})$$

DLA pre-factor

Rewrite the large-N_c evolution equations in terms of

$$s_{10} = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{10}^2 \Lambda^2} , \quad s_{21} = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{21}^2 \Lambda^2} , \quad \eta = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{zs}{\Lambda^2} , \quad \eta' = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{z's}{\Lambda^2}$$

For example, the G₂-equation becomes

$$G_{2}(x_{10}^{2},zs) = G_{2}^{(0)}(x_{10}^{2},zs) + \frac{\alpha_{s} N_{c}}{\pi} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int_{\max[x_{10}^{2},\frac{1}{z's}]}^{\min[\frac{z}{z'}x_{10}^{2},\frac{1}{\Lambda^{2}}]} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[G(x_{21}^{2},z's) + 2G_{2}(x_{21}^{2},z's) \right]$$

$$G_{2}(s_{10},\eta) = G_{2}^{(0)}(s_{10},\eta) + 2 \int_{0}^{s_{10}} ds_{21} \int_{s_{21}}^{\eta - s_{10} + s_{21}} d\eta' \left[G(s_{21},\eta') + 2G_{2}(s_{21},\eta') \right]$$

Discretize the equations using left-hand Riemann sum, with step size δ.

Define
$$G_{ij} = G\left(i\delta, j\delta\right)$$
 and $G_{2,ij} = G_2\left(i\delta, j\delta\right)$.

• For example, the G₂-equation becomes

$$G_{2}(s_{10}, \eta) = G_{2}^{(0)}(s_{10}, \eta) + 2 \int_{0}^{s_{10}} ds_{21} \int_{s_{21}}^{\eta - s_{10} + s_{21}} d\eta' \left[G(s_{21}, \eta') + 2 G_{2}(s_{21}, \eta') \right]$$

$$G_{2,ij} = G_{2,ij}^{(0)} + 2 \delta^{2} \sum_{i'=0}^{i-1} \sum_{j'=i'}^{j-i+i'} \left[G_{i'j'} + 2 G_{2,i'j'} \right]$$

$$\begin{split} G_{ij} &= G_{ij}^{(0)} + \delta^2 \sum_{j'=i}^{j-1} \sum_{i'=i}^{j'} \left[\Gamma_{ii'j'} + 3 \, G_{i'j'} + 2 \, G_{2,i'j'} + 2 \, \Gamma_{2,ii'j'} \right], \\ \Gamma_{ikj} &= G_{ij}^{(0)} + \delta^2 \sum_{j'=i}^{j-1} \sum_{i'=\max[i,\,k+j'-j]}^{j'} \left[\Gamma_{ii'j'} + 3 \, G_{i'j'} + 2 \, G_{2,i'j'} + 2 \, \Gamma_{2,ii'j'} \right], \\ G_{2,ij} &= G_{2,ij}^{(0)} + 2 \, \delta^2 \sum_{i'=0}^{i-1} \sum_{j'=i'}^{j-i+i'} \left[G_{i'j'} + 2 \, G_{2,i'j'} \right], \end{split}$$

$$\Gamma_{2,ikj} = G_{2,ij}^{(0)} + 2 \delta^2 \sum_{i'=0}^{i-1} \sum_{j'=i'}^{j-k+i'} \left[G_{i'j'} + 2 G_{2,i'j'} \right].$$

Write each equation in a recursive form to save computation time.

$$\begin{split} G_{ij} &= \begin{cases} G_{ij}^{(0)} - G_{i(j-1)}^{(0)} + G_{i(j-1)} + \delta^2 \sum\limits_{i'=i}^{j-1} \left[\Gamma_{ii'(j-1)} + 3 \, G_{i'(j-1)} + 2 \, G_{2,i'(j-1)} + 2 \, \Gamma_{2,ii'(j-1)} \right] &, \quad i < j \\ G_{ij}^{(0)} &, \quad i = j \end{cases} \\ \Gamma_{ikj} &= \begin{cases} G_{ij}^{(0)} - G_{i(j-1)}^{(0)} + \Gamma_{i(k-1)(j-1)} + \delta^2 \sum\limits_{i'=k-1}^{j-1} \left[\Gamma_{ii'(j-1)} + 3 \, G_{i'(j-1)} + 2 \, G_{2,i'(j-1)} + 2 \, \Gamma_{2,ii'(j-1)} \right] &, \quad i < k \\ G_{ij} &, \quad i = k \end{cases} \\ G_{2,ij} &= \begin{cases} G_{2,ij}^{(0)} - G_{2,i(j-1)}^{(0)} + G_{2,i(j-1)} + 2 \, \delta^2 \sum\limits_{i'=0}^{i-1} \left[G_{i'(i'+j-i)} + 2 \, G_{2,i'(i'+j-i)} \right] &, \quad i < j \\ G_{2,ij}^{(0)} &, \quad i = j \end{cases} \\ \Gamma_{2,ikj} &= \begin{cases} G_{2,ij}^{(0)} - G_{2,i(j-1)}^{(0)} + \Gamma_{2,i(k-1)(j-1)} &, \quad i < k \\ G_{2,ij} &, \quad i = k \end{cases} \\ &, \quad i = k \end{cases} \end{split}$$

Numerical Computation: Method

$$G^{(0)}(x_{10}^2,zs) = \frac{\alpha_s^2 C_F}{2N_c} \pi \left[C_F \ln \frac{zs}{\Lambda^2} - 2 \ln(zsx_{10}^2) \right] \text{approxim } G^{(0)}_{ij} = \frac{\alpha_s^2 C_F}{2N_c} \pi \sqrt{\frac{2\pi}{\alpha_s N_c}} \left[(C_F - 2) j + 2 i \right] \delta$$

$$G_2^{(0)}(x_{10}^2,zs) = \frac{\alpha_s^2 C_F}{N_c} \pi \ln \frac{1}{x_{10}\Lambda}$$

$$\longrightarrow G_{2,ij}^{(0)} = \frac{\alpha_s^2 C_F}{2N_c} \pi \sqrt{\frac{2\pi}{\alpha_s N_c}} i\delta$$

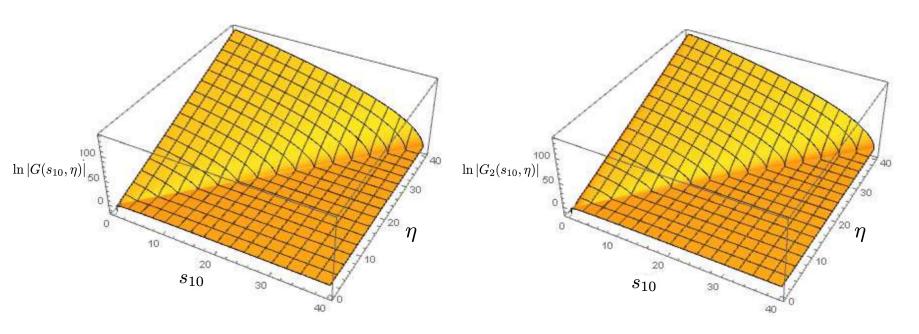
- Approximately, we take G and G_2 to be the initial condition at $i = j \iff x \sim 1$.
- For each trial, besides the step size, δ , we also specify the maximum rapidity, η_{max} , up to which we run the numerical computation.
- Starting from j=1, compute all the amplitudes at this value of j using the results from lower j's. Repeat for increasing j until $j=j_{\max}=\frac{\eta_{\max}}{\delta}$.
- For each j, we only need the results at $0 \le i < j$.

Infrared cutoff:
$$x_{10}^2 \ll \frac{1}{\Lambda^2}$$
 $x \ll 1$

Numerical Computation: Results

For example, at $\delta=0.05$ and $\eta_{\mathrm{max}}=40$ we have

$$\eta = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{zs}{\Lambda^2}$$
$$s_{10} = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{10}^2 \Lambda^2}$$



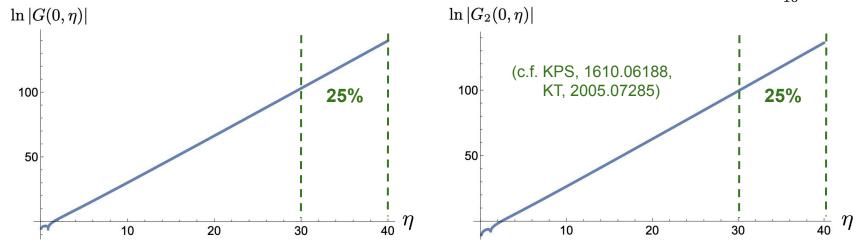
Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898

Numerical Computation: Results

 $\eta = \sqrt{\frac{\alpha_s N_c}{2\pi} \ln \frac{zs}{\Lambda^2}}$

For example, at $\delta=0.05$ and $\eta_{\rm max}=40$ we have

$$s_{10} = \sqrt{\frac{\alpha_s N_c}{2\pi}} \ln \frac{1}{x_{10}^2 \Lambda^2}$$



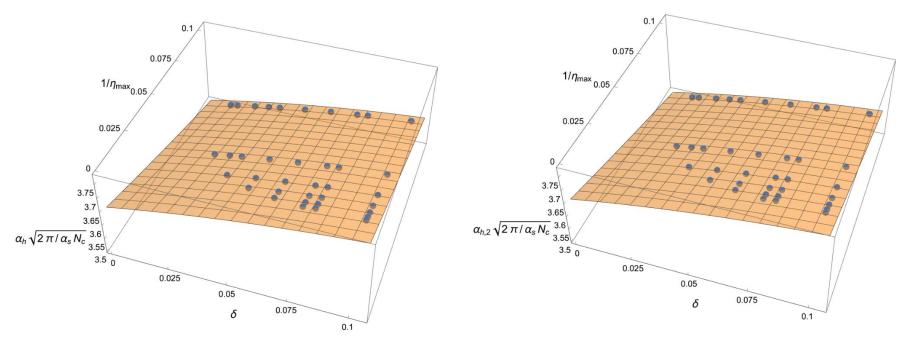
Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898

$$G(s_{10} = 0, \eta) \sim e^{\alpha_h \eta \sqrt{\frac{2\pi}{\alpha_s N_c}}}$$

$$G_2(s_{10}=0,\eta) \sim e^{\alpha_{h,2}\eta\sqrt{\frac{2\pi}{\alpha_s N_c}}}$$

Continuum Limit

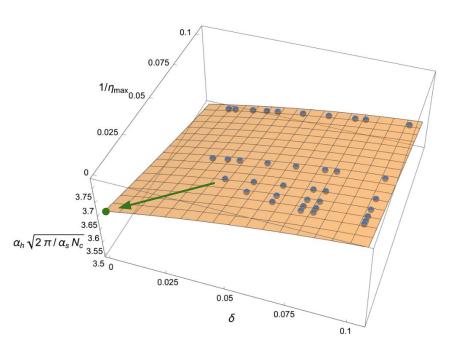
We generally obtain different values of α_h and $\alpha_{h.2}$ with different δ and $\eta_{max}.$



Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898

Continuum Limit

• We generally obtain different values of α_h and $\alpha_{h,2}$ with different δ and η_{max} .



- We fit the resulting α_h and $\alpha_{h,2}$ against δ and $1/\eta_{max}$ using polynomial regression.
- Quadratic model with interaction term fits the best based on AIC.
- The constant term gives the estimate for α_h and α_{h,2} at δ = 1/η_{max} = 0, i.e. continuum limit.

(c.f. Kovchegov, Pitonyak, Sievert, 1610.06188)

Cougoulic, Kovchegov, Tarasov, Tawabutr, 2204.11898

Final Large-N Results

At continuum limit, $\delta = 1/\eta_{max} \rightarrow 0$, the results are

$$\alpha_h = (3.661 \pm 0.006) \sqrt{\frac{\alpha_s N_c}{2\pi}}, \quad \alpha_{h,2} = (3.660 \pm 0.009) \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

- The uncertainty comes from
 - Linear regression to determine the slopes of $ln|G(0,\eta)|$ and $ln|G_2(0,\eta)|$ for each δ and η_{max} . Polynomial regression to determine α_h or $\alpha_{h,2}$ at continuum limit.
- With

$$\Delta\Sigma(x,Q^2) = -\frac{N_c\,N_f}{2\pi^3}\,\int\limits_{\Lambda^2/s}^1\,\frac{dz}{z}\,\int\limits_{\frac{1}{z_s}}^{\min\left\{\frac{1}{z\,Q^2},\frac{1}{\Lambda^2}\right\}}\!\frac{dx_{10}^2}{x_{10}^2}\,\left[Q(x_{10}^2,zs) + 2\,G_2(x_{10}^2,zs)\right]}{\left(2g(x_{10}^2,zs) + 2\,G_2(x_{10}^2,zs)\right]}$$

$$\Delta G(x,Q^2) = \frac{2N_c}{\alpha_s\pi^2}\,\left[\left(1 + x_{10}^2\,\frac{\partial}{\partial x_{10}^2}\right)\,G_2\left(x_{10}^2,zs = \frac{Q^2}{x}\right)\right]_{x_{10}^2 = \frac{1}{Q^2}}$$
Previous version: Quarks: 2.31 Gluons: 1.88

We conclude that

$$\Delta\Sigma(x,Q^2) \sim \Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)$$

 $\Delta\Sigma(x,Q^2)\sim\Delta G(x,Q^2)\sim\left(\frac{1}{x}\right)^{3.66\sqrt{\frac{\alpha_s\,N_c}{2\pi}}} \tag{Kovchegov, Pitonyak, Sievert, 1610.06188, 1703.05809, 1706.04236; Chirilli, 1807.11435, 2101.12744;}$