Roman Pot approach for tagger detectors

Jaroslav Adam

BNL

March 2, 2022

Far-backward meeting

Taggers in the proposal version

• Two detectors at a line connecting B2eR and Q3eR inner radii

Observed event rate per unit area

• Event rate R_A in mm⁻²s⁻¹ observed on surface area A in mm² is

$${\it R_A} = \left({1 - {e^{ - rac{{N_b}}{{N_i}}\lambda }}}
ight) imes rac{1}{{T_b}} imes rac{1}{{\it A}}$$

- N_i is number of simulated individual ep interactions (bremsstrahlung or quasi-real)
- N_h is number of observed hits on surface area A out of the N_i simulated interactions
- T_b is bunch spacing in seconds
- $\lambda = \sigma \times \mathcal{L}_b$ is mean number of interactions per bunch crossing
- σ is interaction cross section in mb (bremsstrahlung or quasi-real) used for N_i simulated events
- $\mathcal{L}_b = 10^{-27} \times L_i \times T_b$ is luminosity per bunch crossing in mb⁻¹
- L_i is instantaneous luminosity in cm⁻²s⁻¹ from CDR Table 3.3
- The bunch spacing $T_b = \frac{l}{\beta \times c \times n_b}$ where l = 3834 m is collider circumference, βc is speed of the beam in ms⁻¹ and n_b is number of bunches from CDR Table 3.3

Event rates on tagger 1, 18x275 GeV

Event rates on tagger 2, 18x275 GeV

Roman Pots for low- Q^2 taggers

- Each tagger consists of 3 tracking layers (labeled A, B and C), 15x15 cm², placed 30 cm after each other
- The layers are placed with 5 cm between its closest edge and beam axis
- Layers for tagger 1 are at -20 m from IP, tagger 2 is -36.5 m
- Track is accepted in the tagger by coincidence in all 3 layers
- The layers are implemented as counting planes to show feasibility of electron reconstruction
- Beam σ in x is 2.3 mm at -20 meters (tagger 1) and 1.6 mm at -36.5 meters (tagger 2)

Tagger geometry

Reconstruction in Roman Pots taggers

- Each tagger (its 3 layers) measures track position on its plane, x and y and track angles in the respective directions, θ_x and θ_y
- Machine learning algorithm was developed to relate measured quantities x, y, θ_x and θ_y with electron energy, polar angle and azimuthal angle, E_e , θ_e and ϕ_e
- The algorithm was trained using sample with uniform energy and angular distribution
- During reconstruction the algorithm provides electron E_e , θ_e and ϕ_e for a set of measured x, y, θ_x and θ_y as obtained for a given track in tagger
- The reconstruction was applied to quasi-real photoproduction and Pythia 6
- Performance will be shown next for reconstructed *E_e*, *θ_e* and *φ_e* from quasi-real events (is similar to Pythia 6) and for *Q*² for both generators
- Comparison will be made to the yield of reconstructed *Q*² for bremsstrahlung

Energy reconstruction in RP taggers, quasi-real photoproduction

Reconstructed energy is compared to generated true electron energy

Figure: Tagger 1

Figure: Tagger 2

Polar angle reconstruction in RP taggers, quasi-real photoproduction

• Reconstructed θ_e is compared to generated true electron θ_e

Figure: Tagger 1

Azimuthal angle in RP taggers, quasi-real photoproduction

• Reconstructed ϕ_e is compared to generated true electron ϕ_e

Figure: Tagger 1

Reconstructed $\phi_{_{eta}}$ (rad)

Azimuthal angle in RP taggers with lower limit on polar angle

• Limit of 1 mrad is imposed on reconstructed polar angle

Figure: Tagger 1

Figure: Tagger 2

Q^2 reconstruction in RP taggers for quasi-real photoproduction

• Reconstructed Q^2 is compared to generated true Q^2 from quasi-real photoproduction

Figure: Tagger 1, quasi-real

Figure: Tagger 2, quasi-real

Q^2 reconstruction in RP taggers for Pythia 6

• Reconstructed Q^2 is compared to generated true Q^2 from Pythia 6

Figure: Tagger 1, Pythia 6

Figure: Tagger 2, Pythia 6

Spectrum of reconstructed Q^2

- Reconstructed Q² is shown for bremsstrahlung, quasi-real photoproduction and Pythia 6
- Generated true Q² for bremsstrahlung in consistent with zero
- Distributions are normalized to integrated rate for each process
- Bremsstrahlung electrons reconstruct to the lowest values
- Opportunity to extract clean photoproduction over a limited interval in Q²

Figure: Tagger 1

Figure: Tagger 2

Summary

- Step in reconstruction from tagger tracks to electron *E_e*, *θ_e*, *φ_e* and *Q²* works up to limit by beam divergence
- Help from Geant truth was used to find electron tracks as hits from a primary track
- The hits were transformed to a frame where they are aligned along z and centered at xy = 0
- Measured quantities x, y, θ_x and θ_y were found by geometry relations
- Once the electron tracks are properly identified by the tracking layers, full electron reconstruction is feasible
- Region around $Q^2 = 0.01 \text{ GeV}^2$ is free of bremsstrahlung, despite its larger rate
- Machine learning implementation is here: github.com/adamjaro/Imon/blob/master/src/EThetaPhiReco.cxx github.com/adamjaro/Imon/blob/master/include/EThetaPhiReco.h