

Digitizer ASIC Options for LAPPD Applications

March 21, 2022 Isar Mostafanezhad, Ph.D. Founder and CEO at Nalu Scientific LLC

Work partially funded by US DOE SBIR Grants:

DE-SC0015231, DE-SC0017833, DE-SC0020457

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved.

https://indico.bnl.gov/event/15059/

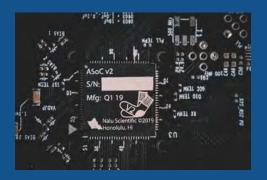

WAVEFORM DIGITIZER SoCs FOR PRECISE TIME OF FLIGHT ESTIMATION

1. Front-end Chips:

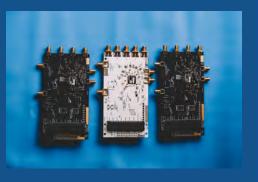
- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly: FW/SW tools

2. Integration:

- SiPM
- PMT
- LAPPD
- Detector arrays


3a. Main application:


- NP/HEP experiments
- Astro particle physics


3b. Other applications:

- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

NALU SCIENTIFIC - Approved for public release. Copyright © 2021 Nalu Scientific LLC. All rights reserved. LAPPD photo courtesy of Incom.

ABOUT NALU SCIENTIFIC

Fast Growing Startup in Honolulu, Hawai'i

Located at the Manoa Innovation Center near U. of Hawaii 18 staff members-diverse background Access to advanced design tools Rapid prototyping and testing lab

Technical Expertise

IC design: Analog + digital System-on-Chip (SoC)

<u>Hardware design:</u> Complex multi-layer PCBs

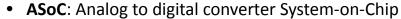
<u>Firmware design:</u> FPGAs, CPUs

<u>Software design:</u> GUI, analysis, documentation

Scientific Expertise - NP/HEP subject matter experts

Physicists (3x) - Recent hire: Kevin Flood Electronics for large scientific instruments

Exclusive Distributor Agreement for North America


Sales of ASICs, eval boards Enhanced OEM opportunities

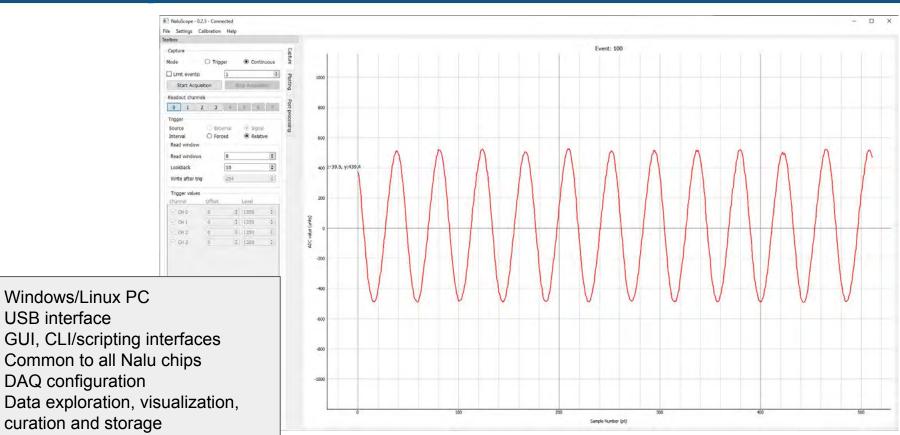
Current SoC-ASIC Projects

Project	Sampling Frequency (GHz)	Input BW (GHz)	Buffer Length (Samples)	Number of Channels	Timing Resolution (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	2k	64	80-120	Rev 1 avail
AARDVARC	8-14	2.5	32k	4	4	Rev 3 avail
AODS	1-2	1	8k	1-4	100-200	Rev 2 avail
UDC	10	1.8	2048	16	5-10	Rev 1 avail
STRAWZ	5	2	2k	64	10	TBD
HPSoC	8-10	2	2k	64	4	Dec'23

- HDSoC: SiPM specialized readout chip with bias and control
- AARDVARC: Variable rate readout chip for fast timing and low deadtime
- AODS: Low density digitizer with High Dynamic Range (HDR) option
- **STRAWZ:** Streaming Autonomous Waveform-digitizer with Zero-suppression
- **HPSoC:** High Pitch digitizer SoC: AC-LGADs specific readout

Work funded by DOE SBIRs. University of Hawaii as subcontractor.



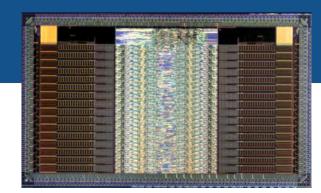


NaluScope Common Software and GUI

USB interface

Plug and play with eval cards

5


HDSoC VI DESIGN DETAILS

High density waveform digitizer with dead-timeless readout

- High Density: 64 channels
- Highly integrated, SiPM gain + bias
- Commercially available, low cost CMOS

Parameter	Spec		
Sampling Rate	1-2 GSa/s		
ABW	> 600MHz		
Depth	2k Sa		
Trigger Buffer	~3 us*		
Deadtime	0**		
Channels	64		
Supply/Range	2.5		
ADC bits	12		
Timing accuracy	80-120ps		
Technology	250 nm CMOS		
Power	TBD		

- On chip calibration
- Serial interface
- On chip feature extraction
- Virtually dead-timeless
- 32 ch proto chip fabricated
- Phase II SBIR in progress
- Chip under test
- Next steps: more testing, rev 2 fab

HDSoC v1 die shot

** Simulated Up to 240 KHz / ch with single serial link using on-chip self trigger and feature extraction. Up to 400 kHz / ch with additional serial links.

HDSoC - Current Status

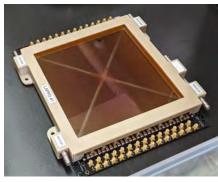
• Fabrication:

- 32 channel prototype fabricated
- o 144 pin package purely for bring-up
- o Smaller QFN-100 available for integration

• Testing (functional):

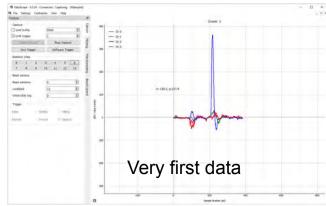
- FMC eval card under testing
- o FW, SW developed
- Chip turns on, responds to commands
- Timing generators works well
- o All channels can digitize and readout
- o TIAs work, need more tests

• Next testing steps:


- Bias and readout SiPMs
- Characterize TIAs
- Test all digital functions and serial link
- Optimize chip biases
- Push for performance on data rate and quality

Integration efforts - HIPeR

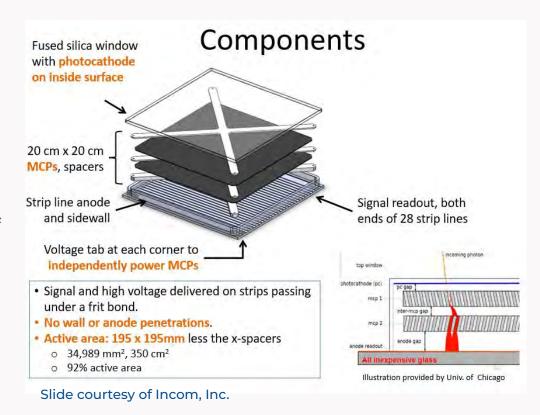


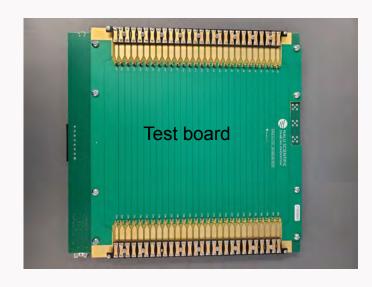


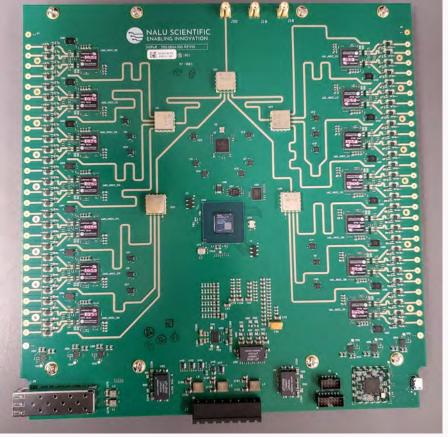
AARDVARC based readout

Incom's Gen 1 LAPPD

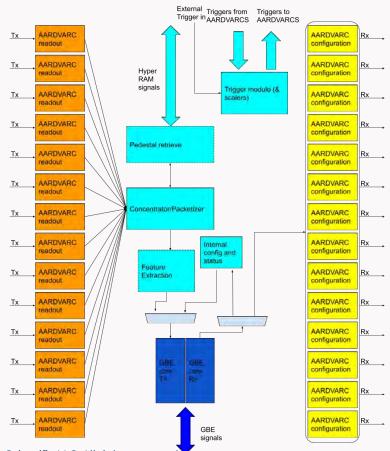
Integration and testing (UH)




Nalu Scientific Phase I SBIR in collaboration with Incom and University of Hawaii.


LAPPD Gen I

- Strip based readout:
 - MCP amplified p.e. are collected by metal strips
 - Strip identify "y" position of hit (sub-strip resolution possible via amplitude ratio of neighboring strips)
 - Arrival time difference on 2 sides of strip identify x position:
 - Requires very good timing resolution


Fully Populated board

FW architecture

- Modular structure:
 - Easy to expand/add features
- Individual readout modules
- Individual configuration modules
- Concentrator kept simple in Phase I:
 - Pure packetization
 - Data pass through
 - Can add calibration/Feature extraction
- Triggering module separate:
 - External triggering:
 - Can still use individual channel triggers to limit data rate
 - Self triggering (streaming architecture)

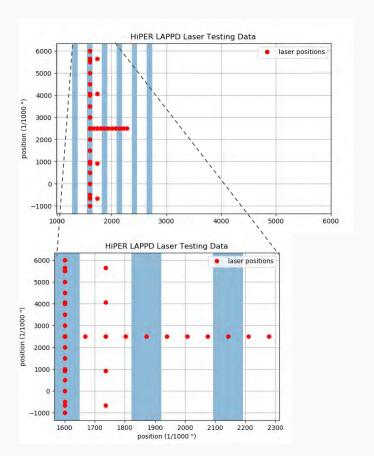
LAPPD setup

Dedicated photodetector test setup:

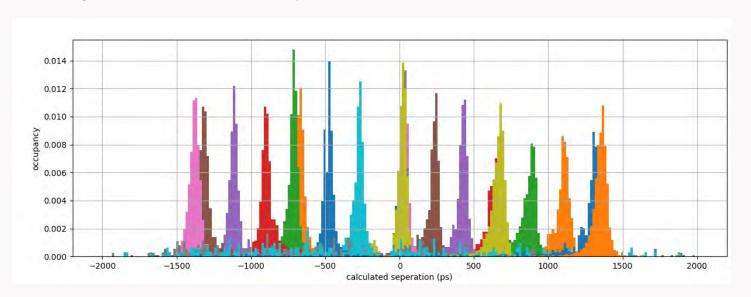
- Large total area (61 x 61 x 76 cm 3), suitable for a full LAPPD tile
- Vibration isolated optical breadboard.
- Modular patchbay system
- Gasketing to seal against light leaks.
- 3D printed mounts for quick integration of LAPPD + readout electronics

• Scannable laser system:

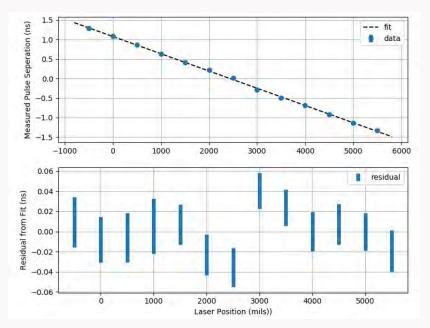
- o 30.5 x 30.5 cm^2 scanning area.
- Fast PILAS laser.
- Fixed neutral density filters + variable optical attenuator
- Dual laser illumination positions


• Thermal management:

- o Thermoelectric cooling.
- o Temperature monitoring.
- o Temperature triggered power down safety interlocks.

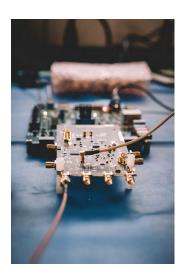

LAPPD scanning

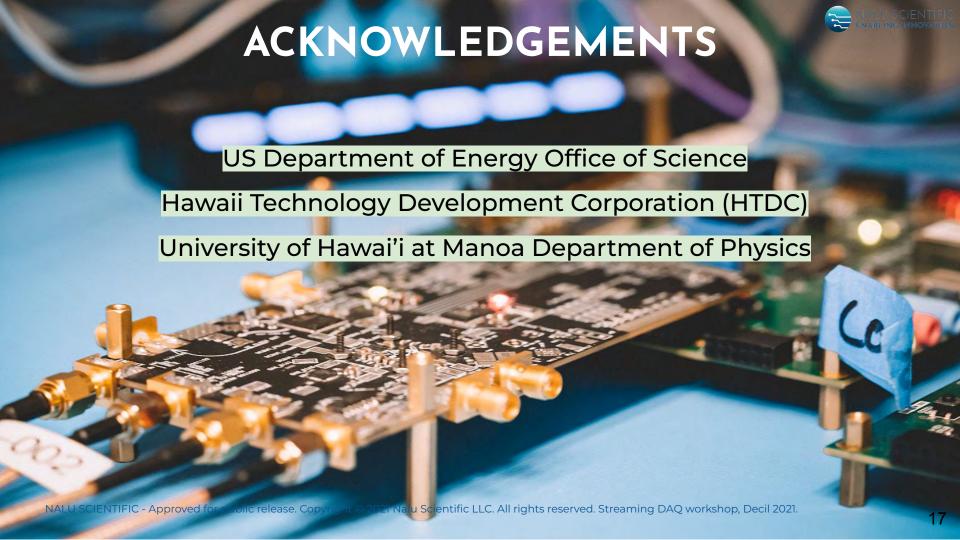
- Acquisition has been repeated at various position for the incident laser pulse
- Used for probing the timing and positioning capability of the system
- In-between positions to estimate the position the y axis


In strip position

- Scanning on a single strip
- Multiple acquisition in same position provide an histogram an estimate for x
- Histogram used to measure position and estimate error.

In strip position - results


- Mean from gaussian fit used for position expressed in time
- Standard deviation used for error bars
- Residuals from linear fit: typically 20 ps -> 2.3 mm
- More investigations into the outliers and effect of small pulses needed to confirm
- No chip timing cal yet



Summary

- NALU SCIENTIFIC ENABLING INNOVATION
 - **CAEN** Technologies Inc.

- Nalu Scientific Expertise:
 - FEEs for NP/HEP experiment readout
 - High integration (clock, memory, calibration)
 - Packaged chips and eval cards available
 - Additional testing under way including irradiation
 - Exclusive Distribution Agreement with CAEN
- Expertise:
 - NP/HEP electronics/FW development
 - Advanced ASIC/HW/FW/SW Design
 - Detector electronics design
- Funding:
 - SBIRs: covers costly chip development
 - Trade studies: initial assessment
 - <u>Custom design contracts</u>: Implementing new packaging and PCB designs
- Next steps OPEN FOR BUSINESS
 - Continue chip+PCB development
 - Continue engagement with experiments in order to tailor the designs to evolving experiment needs
 - New integration efforts under way, incl. NP ML/AI ASIC/FPGA SBIR proposal currently under review
 - Eval boards available for testing

