Shining light on the DarkSide of the Standard Model: Expanding the search for dark matter with liquid argon detectors

Shawn Westerdale Princeton University Associate Research Scholar

Brookhaven National Lab Particle Physics Seminar

March 2022

Canfranc Underground Laboratory Canfranc-Estación, Spain

Overview:

Overview:

• What dark matter is and how we search for it • The DarkSide-50 and DEAP-3600 detectors -The friends technology we made along the way -WIMP search results with both detectors -Additional dark matter searches Future directions - Maximizing sensitivity of future detectors - New searches with planned detectors - New experiments

$\mathcal{L}_{SM} =$
$-rac{1}{2}\partial_ u g^a_\mu\partial_ u g^a_\mu - g_s f^{abc}\partial_\mu g^a_ u g^b_\mu g^c_ u -$
${1\over 4}g_s^2 f^{abc}f^{ade}g_\mu^b g_ u^c g_\mu^d g_ u^e +$
${1\over 2} i g_s^2 (ar q_{i}^\sigma \gamma^\mu q_j^\sigma) g_\mu^a + ar G^a \partial^2 G^a +$
$g_s f^{abc} \partial_\mu G^a G^b g^c_\mu - \partial_ u W^+_\mu \partial_ u W^\mu -$
$M^2 W^+_{\mu} W^{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} -$
$\frac{1}{2c_w^2}M^2Z_\mu^0Z_\mu^0 - \frac{1}{2}\partial_\mu A_\nu\partial_\mu A_\nu -$
$\frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} -$
$M^2 \phi^+ \phi^ \frac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 - \frac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 \partial_\mu \phi^0 \partial_\mu \phi^0 - \frac{1}{2} \partial_\mu \phi^0 \partial_\mu \phi^0 \partial_\mu \phi^0 \partial_\mu \phi^0 - \frac{1}{2} \partial_\mu \phi^0 $
$\frac{1}{2c_w^2}M\phi^0\phi^0 - \beta_h[\frac{2M}{g^2} + \frac{2M}{g}H +$
$\frac{1}{2}(H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-)] + \frac{2M^4}{g^2} \alpha_h -$
$igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^{\nu}-W^+_{\nu}W^{\mu})-$
$Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + Z^{0}_{\nu}(W^{+}_{\mu}) + W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu})$
$Z^{\circ}_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] -$
$\frac{igs_w[\partial_\nu A_\mu(W_\mu^+ W_\nu^ W_\nu^- W_\mu^+) - M_\nu^- W_\mu^-)}{4(W^+ \partial_\mu W^ W^- \partial_\mu W^+) + W^- \partial_\mu W^+) + W^- \partial_\mu W^+}$
$A_{\nu}(W_{\mu} \partial_{\nu} W_{\mu} - W_{\mu} \partial_{\nu} W_{\mu}) + A_{\nu}(W^{+} \partial_{\nu} W^{-} - W^{-} \partial_{\nu} W^{+})] -$
$\frac{1}{2}q^2W_+^+W^-W_+^+W^-+$
$\frac{1}{2}g^2W^{\mu}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu}+$
$g^2 c_w^2 (Z_\mu^0 \widetilde{W}_\mu^+ Z_\nu^0 W_\nu^ \widetilde{Z}_\mu^0 Z_\mu^0 W_\nu^+ W_\nu^-) +$
$g^2 s_w^2 (A_\mu W^+_\mu A_ u W^ u -$
$A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) +$
$g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\nu^ W_\nu^+ W_\mu^-) - 2A_\nu^- Z_\nu^0 W_\nu^+ W_\nu^-] = - [H_3^3 + H_\nu^+ 0_\nu^+ 0_\nu^-]$
$2A_{\mu}Z_{\mu}W_{\nu}W_{\nu}W_{\nu} = g\alpha[H^{*} + H\phi^{*}\phi^{*} + 2U\phi^{+}\phi^{-}] = \frac{1}{2}g^{2}\alpha[H^{4} + (\phi^{0})^{4} + (\phi^{0})^{4} + (\phi^{0})^{4}]$
$2\Pi \psi \ \psi \] - \frac{1}{8}g \ \alpha_{h}[\Pi \ + (\psi^{*})^{*} + \frac{1}{8}g \ \alpha_{h}[\Pi \ + (\psi^{*})^$
$+ \psi \psi \mu \mu \mu + (\psi \mu \psi) \psi \psi \psi$

 $2(\phi^0)^2 H^2 - g M W^+_{\mu} W^-_{\mu} H \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- \phi^-\partial_\mu\phi^0) - W^-_\mu(\phi^0\partial_\mu\phi^+ - \psi^0)$ $\phi^+\partial_\mu\phi^0)]+\frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^- \phi^- \partial_\mu H) - W^-_\mu (H \partial_\mu \dot{\phi}^+ - \phi^+ \partial_\mu H)] +$ $\frac{1}{2}g\frac{1}{c_{\mu}}(Z^0_{\mu}(H\partial_{\mu}\phi^0-\phi^0\partial_{\mu}H)$ $ig \frac{s_{w}^{2}}{c} M Z_{\mu}^{0} (W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) +$ $igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})$ $ig \frac{1-2c_w^2}{2c} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $iqs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] \frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s_w^2 1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} W_{\mu}^{-}\dot{\phi}^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z_{\mu}^{0}\dot{A}_{\mu}\phi^{+}\phi^{-}$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda \bar{\nu}^{\lambda}\gamma\bar{\partial}\nu^{\lambda} - \bar{u}_{i}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{i}^{\lambda} - \bar{d}_{i}^{\lambda}(\gamma\partial + m_{u}^{\lambda})u_{i}^{\lambda} - \bar{u}_{i}^{\lambda}(\gamma\partial + m_{u}$ m_d^{λ} $d_i^{\lambda} + igs_w A_{\mu} [-(\bar{e}^{\lambda} \gamma^{\mu} e^{\lambda}) +$ $\frac{2}{3}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^{\bar{\lambda}}\gamma^\mu(1+\gamma^5)\nu^{\bar{\lambda}}) + (\bar{e}^{\bar{\lambda}}\gamma^\mu(4s_w^2 (1 - \gamma^5)e^{\lambda}) + (\bar{u}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 (\gamma^5)u_i^{\lambda}) + (\bar{d}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2-\gamma^5)d_i^{\lambda})] +$ $\frac{ig}{2\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)e^{\lambda})+(\bar{u}^{\lambda}_i\gamma^{\mu}(1+\gamma^5)e^{\lambda})]$

 $\gamma^5 C_{\lambda\kappa} d_j^{\kappa}] + \frac{ig}{2\sqrt{2}} W_{\mu}^{-} [(\bar{e}^{\lambda} \gamma^{\mu} (1 +$ $(\gamma^5)\nu^{\lambda}) + (\bar{d}_i^{\kappa}C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)u_i^{\lambda})] +$ $\frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}\left[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\right]$ $\phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) +$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] +$ $\frac{ig}{2M_{\star}/2}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})+$ $m_u^{\lambda}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_i^{\kappa}] +$ $\frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})$ $m_u^\kappa(\bar{d}_j^\lambda C_{\lambda\kappa}^\dagger(1-\gamma^5)u_j^\kappa] - \frac{g m_u^\lambda}{2M} H(\bar{u}_j^\lambda u_j^\lambda) \frac{g m_d^\lambda}{2M} H(\bar{d}_j^\lambda d_j^\lambda) + \frac{ig m_u^\lambda}{2M} \phi^0(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \frac{ig}{2}\frac{m_d^2}{M}\phi^0(\bar{d}_i^\lambda\gamma^5 d_i^\lambda) + \bar{X}^+(\partial^2 - M^2)X^+ +$ $\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{c^{2}})X^{0}+$ $\bar{Y}\partial^2 Y + igc_w W^+_u (\partial_\mu \bar{X}^0 X^- \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} \partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{\perp}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H +$ $\bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] +$ $\frac{1}{2c_{m}}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+$ $i\bar{g}Ms_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $\frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}]$

Heavily tested by many experiments...

Shawn Westerdale

Princeton University

<form> Part day 2000 Precision less of the Standard Model tass Precision less of the Standard Model at U Precision less of the Standard Model tass Precision less of the Standard Model at U Precision less of the Standard Model tass Precision less of the Standard Model at U Precision less of the Standard Model tass Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U Precision less of the Standard Model at U</form>	Precision Tests of the Standard Model Tests of the Sta		dard Model	Electroweak Precision Tests of the Standard Model after the Discovery of the Higgs Boson			
Constrained on Markin Status Constrained on Markin Status Constrained on Markin Status A Pich Procision Tests of the Standard Model with I procision Tests of the Standard Model i exist Status B. Scaccia (for the Florewise Konstrained Markin Konstrained Konstrained Markin Konstrained Markin Konstrained K	Paul Langacker	W. Hollik		Jens Erler, Matthias Schott			
Precision Tests of the Standard Model Precision tests of the Standard Model: evidence for radiative corrections and higher order effet (avammed radiative) Vus and precises to radiative corrections and higher order effet (avammed radiative)	(Submitted on 24 Mar 1993)	(Submitted on 13 Feb 2019 (v1), last revised 22 Feb 2019 (this version, v2)) (Submitted on 4 Dec 1995 (v1), last revised 9 Feb 1996 (this version, v3))					
	Precision Tests of the Standard Mode		Precision te	sts of the Standard	d Model: evidence fo	or radiative corrections and h	igher order effects
(main masses) (main masses) B. Sclassis (for the FlawAleNE Kaon Working Group) (main masses) (main masses) B. Sclassis (for the FlawAleNE Kaon Working Group) (main masses) (main masses) (main masses) (main masses) Precision Tests of the Standard Model at EP Status of precision tests of the Standard Model from Z physics Precision Tests of the Standard Model from Z physics Name (main masses) (main masses) Precision Tests of the Standard Model from Z physics Precision Tests of the Standard Model from Z physics Reference (Marco University) (main masses) (main masses) (main masses) Precision Tests of the Standard Model from Z physics (main masses) Reference (Marco University) (main masses) (main	A. Pich		Paolo Gambino (N	ew York University)	Vus and precis	se Standard Model tests	
Precision tests of the Standard Model will be to be an autor of the Standard Model will be an au	(Submitted on 10 Nov 1997)		(Submitted on 23 May	1995)	B. Sciascia (for the Fla	viaNet Kaon Working Group)	
Florediance or Lake 2000 Precision Tests of the Standard Model at Lep (a. Marcelle, Y. Marchenko, P. Vanchenko, V. Vanchenko	Precision tests of the Standard Mode	el with leptonic and	d semileptonic kac	on decays	(Submitted on 26 Jan 2011)		
Calculation Precision tests of the Standard Model from Z physics Precision Tests of the Standard Model at LP Stans of the Standard Model from Z physics Nome Calculation Precision tests of the Standard Model from Z physics Precision Electroweak Tests of the Standard Model at D Calculation Precision tests of the Standard Model from Z physics Precision Electroweak Tests of the Standard Model Calculation Precision tests of the Standard Model from Z physics Precision tests of the Standard Model from Z physics Precision tests of the Standard Model from Z physics Precision tests of the Standard Model from Z physics Precision Electroweak Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 physics physics Precision Tests of the Standard Model from 2 physics Calculation Calculation Calculation Calculation Calculation Calculation Precision Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 physics Precision Tests of the Standard Model from 2 phys	FlaviaNet Working Group on Kaon Decays, M. Antonelli, V.	Cirigliano, P. Franzini, S. Gla	zov, R. Hill, G. Isidori, F. Mes	cia, M. Moulson, M. Palutan,	E. Passemar, M. Piccini, M. \	/eltri, O. Yushchenko, R.Wanke	
Precision Tests of the Standard Model at LED Status of precision tests of the Standard Model Frederic Teubert Precision Tests of the Standard Model B. Mein Guinemet on Store 1990 Guinemet on Store	(Submitted on 11 Jan 2008)				Precision tests o	f the Standard Model from	n Z physics
9. Mele G. Attractil (dummet on 30 Nor 1990) (dummet on 30 Nor 1990) Martin W. Grunewald (University College Dublin) Precision Electroweak Tests of the Standard Model Precision Electroweak Tests of the Standard Model (dummet on 20 Apr 200) Precision testing the Standard Model R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche Tests of the Standard Model in B - D/C/v, B - D/C/v, B - D/C/v, and B, - J/W C/v T. Aziz, A. Gurtu (dummet on 20 Apr 200) Tests of the Standard Model in B - D/C/v, B - D/C	Precision Tests of the Standard Model	at LEP Status of p	recision tests of the	e Standard Model	Frederic Teubert	Precision Tests of the S	tandard Model
(Submitted on 15 Dec 1990) (Submitted on 25 Dec 1990) Precision Electroweak Tests of the Standard Model (Submitted on 6 Aov 2005) P.B. Renton (Oxford University) (Submitted on 24 Jun 2002 (this version, v20)) Precision testing the Standard Model (Submitted on 20 Jun 2002 (this version, v20)) Precision testing the Standard Model R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche Tests of the Standard Model in B - D ² (v _e , B - D ²	B. Mele	G. Altarelli	. Altarelli		(Submitted on 20 Nov 1998)	riceision resis of the Standald Model	
Precision Electroweak Tests of the Standard Model Precision Electroweak Tests of the Standard Model (submitted on 8 Awy 2005) Piecision Electroweak Tests of the Standard Model Guido Altarelli (1), Martin W. Grunewald (2) ((1) CERN PH-TH, Geneva, Switzerland; (2) Department of Experimental Physics, University College DL (durinted on 20 Ary 2007) Precision testing the Standard Model Testing the Standard Model R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche Tests of the Standard Model in B - D/CVC, B - D'CVC and B - J/VCVC T. Aziz, A. Gurtu (submitted on 20 Ary 2007) Testing the Standard Model in B - D/CVC, B - D'CVC and B - J/VCVC (submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (v1), last revised 10 Oct 2002 (v1), last revised 20 Ary 2007) Testing the Standard Model F. J. Yndarini Forian Bornet, Toshihiko Ort, Michael Rauch, Walter Vinter Forian Bornet, Toshihiko Ort, Michael Rauch, Walter Vinter Testing the Standard Model F. J. Yndarini Forian Bornet, Toshihiko Ort, Michael Rauch, Walter Vinter Forian Bornet, Toshihiko Ort, Michael Rauch	(Submitted on 15 Dec 1993)	(Submitted on 5 Nov	1996)			Martin W. Grunewald (University Colle	ge Dublin)
P.B. Renton (Oxford University) Guido Altarelli (1), Martin W. Grunewald (2) (1) CERN PH-TH, Geneva, Switzerland; (2) Department of Experimental Physics, University College Du Cuamined on 20 Apr 2003 P.B. Renton (Oxford University) Guido Altarelli (1), Martin W. Grunewald (2) (1) CERN PH-TH, Geneva, Switzerland; (2) Department of Experimental Physics, University College Du Cuamined on 20 Apr 2003 Precision testing the Standard Model Testing the Standard Model by precision mesurement of the weak charges of quarks T. Aziz, A. Gurtu R. D. Young, R. D. Carlini, A. W. Thomas, J. Aoche Tests of the Standard Model in $B \rightarrow D^{\ell}v_{\ell}$, $B \rightarrow D^{\ell}v_{\ell}$ and $B_{\ell} \rightarrow J/\psi^{\ell}v_{\ell}$ (Submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (this version, v2)) Forian Bonnet, Toshihiko Ota, Michael Rauch, Walter Winter Tests of the Standard Model F. J. Yndurain Forian Bonnet, Toshihiko Ota, Michael Rauch, Walter Winter Guidon 14 Oct 2001 (v1), last revised 10 Oct 2001 (this version, v2)) Tests of the Standard Model F. J. Yndurain Forian Bonnet, Toshihiko Ota, Michael Rauch, Walter Winter Guidon 14 Oct 2001 (v1), last revised 10 Oct 2001 Forian Bonnet, Toshihiko Ota, Michael Rauch, Walter Winter Forian Bonnet, Toshihiko Ota, Mi	Precision Electroweak Tests of the	Standard Model	Precision Ele	ctroweak Tests of	the Standard Mode	(Submitted on 6 Nov 2005)	
Pib. rection (Coder of university) (Submitted on 20 Apr 2007) (Submitted on 24 Jun 2002 (r)), last revised 1 Aug 2002 (rbs version, v2)) Testing the Standard Model in B → D/v _e , B → D ² d ² v _e and B _c → J/ψ d ² v _e T. Aziz, A. Gurtu R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche Tests of the Standard Model in B → D/v _e , B → D ² d ² v _e and B _c → J/ψ d ² v _e T. Aziz, A. Gurtu Submitted on 20 Apr 2007 (r)), last revised 1 B Oct 2001 (r), last revised 2 D oct 2012 (r), last revised 1 D oct 2012 (r), last revised 2 D oct 2012 (r), last revised 1 D oct 2012 (r), last revised 2 D oct 2012 (r), last revised 1 D oct 2012 (r), last revised 2 D oct 2012 (r), last revised 1 D oct 2012 (r), last revised 2 D oct 2012 (r), last revised 1			Guido Altarelli (1), Ma	rtin W. Grunewald (2) ((1) CE	ERN PH-TH, Geneva, Switzerl	and; (2) Department of Experimental Physics	s, University College Dublin
Submitted on 24 Jun 2002 (n), last revised 1 Aug 2002 (ms version, v2) Testing the Standard Model R. D. Young, R. D. Carlini, A. W. Thomas, J. Roche (submitted on 20 Apr 2007 (v1), last revised 8 Jun 2007 (his version, v2)) Tests of the Standard Model in $B \to D^* e_{\nu}$, $B \to D^* e_{\nu}$ and $B_c \to J/\psi e_{\nu}$ There is construction and some precision Tests of the Standard Model F. J. Yndurain (submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (viis version, v2)) Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model F. J. Yndurain (submitted on 19 Jul 2002 (v1), last revised 2 Jul 2007 (v1), la	P.B. Renton (Oxford University)		(Submitted on 20 Apr 2004)			
Precision testing the Standard Model R. D. Your, R. D. Catin, A. W. Thomas, J. Roche Tests of the Standard Model in B - D C v_r, B - D * v_r and B - J U v C v_r T. Aziz, A. Gurtu (submitted on 2 A r 2007 (v1), last revised 8 Ju 2007 (tist version, v2)) Tests of the Standard Model in B - D C v_r, B - D * v_r and B - J U v C v_r Submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (viis) version, v2)) Interpretation revision tests in the Version rests of the Standard Model Basic Parameters and Some Precision Tests of the Standard Model Folian Bonnet, Toshihik U-ta, Michael Rauch, Walter Viime F. J. Yndurain Folian Bonnet, Toshihik U-ta, Michael Rauch, Walter Viime (submitted on 14 Oct 2001 (v1), last revised 20 C tot 202 (tis version, v2)) Folian Bonnet, Toshihik U-ta, Michael Rauch, Walter Viime F. J. Yndurain Folian Bonnet, Toshihik U-ta, Michael Rauch, Walter Viime (submitted on 15 Oct 2007 Folian Bonnet, Toshihik U-ta, Michael Rauch, Walter Viime Martin W. Grunewald Submitted on 13 Jun 1990 (submitted on 15 Oct 2007) An evaluation effection feet (kater Masso) Martin W. Grunewald Natoretik, V Cinglema, G. Istekin, M. Mokeler, R. Mewled, E. Passemar, M. Paktar, B. Scakela, M. Saza, R. Wakka, O.P. Vacheteko (tor the Plaviake Werking Group on Kano Decomposition tests of He Standard Model from world data on leptonic and semileptonic kano decamp S Martin W. Grunewald Submitted on 13 Jun 1990 (submitted on 13 Dava 1990 Kale Escribann, Eduard Masso Peter Schlichte, M. Kohden, R. Mewled, E. Passemar, M. Paktar, B. Scakela, M. Saza, R. Wakka, O.P. Vacheteko (tor the Plaviake Werking Group on Kano Decomp Heightereviewe	(Submitted on 24 Jun 2002 (V1), last revised 1 Aug 2002 (this version	Testing	the Standard Mod	del by precision	measurement of t	the weak charges of quarl	KS
T. Aziz, A. Gurtu (bubmitted on 2b Apr 2007 (b), last revised 8 Jun 2007 (this version, v2)) There PL acting a sector in terms of physics beyond the Standard Model (bubmitted on 14 Oct 2001 (v1), last revised 16 Oct 2002 (this version, v2)) Interpretation of signal on 14 Oct 2001 (b), last revised 16 Oct 2002 (this version, v2)) Basic Parameters and Some Precision Tests of the Standard Model Forian Bonnet, Toshihik U, Cla, Michael Rauch, Walter Winter (submitted on 19 Jul 2012 (v1), last revised 22 Oct 2012 (this version, v2)) Precision Tests of QED and Physics beyond the Standard Model Experimental Precision Tests for the Electroweak Standard Model Stanley J. Brodsky, Hung Jung Lu High Precision Tests of QED and Physics beyond the Standard Model Martin W. Grunewald (submitted on 13 Jun 1996) Ratel Escribano, Eduard Masso (submitted on 15 Oct 2007) Natorelly, V. Erigisano, Eduard Model from world data on leptonic and semileptonic kand date on leptonic kand date on leptonic and semileptonic k	Precision testing the Standard N	R. D. Carlini, A. W. Thomas	Carlini, A. W. Thomas, J. Roche		Tests of the Standard Model in $B o D\ell' u_\ell$, $B o D^*\ell' u_\ell$ and $B_c o J/\psi\ell' u_\ell$		
(submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (v1), version, v2)) Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model Basic Parameters and Some Precision Tests of the Standard Model Forian Bonnet, Toshihiko Ota, Michael Rauch, Walter Winter (submitted on 19 Jul 2012 (v1), tast revised 22 Oct 2012 (this version, v2)) Precision Tests of QED and Physics beyond the Standard Model Experimental Precision Tests for the Electroweak Standard Model Sanley J. Brodsky, Hung Jung Lu High Precision Tests of QED and Physics beyond the Standard Model Martin W. Grunewald (submitted on 15 Oct 2007) An evaluation of Flexience, Submit He Higgs sector in terms of physics degrad the PlaviaNet Working Group on Kaon decays The role of sigma(e+e> hadrons) in precision tests of the Standard Model Solar, F. Meacia, M. Moulou, F. Meacia, M. Moulou, F. Meacia, M. Moulou, F. Meacia, M. Moulou, B. Sciacada, M. Sozzi, R. Wanke, O. P. Yushchenko (for the PlaviaNet Working Group on Kaon decays F. Jegeriehner Submitted on 20 Dec 2003) F. Jegeriehner Peter Schichtel, Michael Spannowsky, Philip Walter (submitted on 20 Dec 2003) Peter Schichtel, Michael Spannowsky, Philip Walter F. Jegeriehner Shawn Westerdale	T. Aziz, A. Gurtu	(Submitted on 2	0 Apr 2007 (v1), last revised 8 Ju	n 2007 (this version, v2))	Thomas D. Cohen, Henry Lamm, Richard F. Lebed (Submitted on 1.Jul 2018 (v1). last revised 10.Jul 2018 (this version, v2))		
Basic Parameters and Some Precision Tests of the Standard Model Forian Bonnet, Toshihiko Ca, Michael Rauch, Walter Witter Castron Cests of QED and Physics beyond the Standard Model F. J. Yndurain Forian Bonnet, Toshihiko Ca, Michael Rauch, Walter Witter Castron Cests of QED and Physics beyond the Standard Model Experimental Precision Tests for the Electroweak Standard Model Stanley J. Brodsky, Hung Jung Lu High Precision Tests of QED and Physics beyond the Standard Model Martin W. Grunewald Castron Lo Castron Cests of Vus I and precise tests of I/Vus I and	(Submitted on 14 Oct 2001 (v1), last revised 16 Oct 2001 (this v	ersion, v2))	Interpretation of	precision tests in	the Higgs sector in	terms of physics beyond th	e Standard Mode
Experimental Precision Tests for the Electroweak Standard Model Submitted on 19 Jul 2012 (v1), last revised 22 Oct 2012 (this version, v2)) Precision Tests of QED and Physics beyond the Standard Model Stanley J. Brodsky, Hung Jung Lu (Submitted on 13 Jun 1995) Rafel Escribano, Eduard Masso (Submitted on 13 Jun 1995) Rafel Escribano, Eduard Masso (Submitted on 12 Jul 1996 (v1), last revised 25 Aug 1997 (this version, v2)) (Submitted on 15 Oct 2007) The role of sigma(e+e> hadrons) in precision tests of the Standard Model F. Jegertehner (Submitted on 30 Dec 2008) F. Jegertehner (Submitted on 30 Dec 2008) Shawn Westerdale Princeton University The role of Sigma (et etc> hadrons) in precision tests of the Standard Model F. Jegertehner (Submitted on 21 Jun 2019 (v1), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale Princeton University Total Construction (Submitted on 21 Jun 2019 (v1), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale	Basic Parameters and Some Precision Tests	of the Standard Mode	Florian Bonnet, Toshihiko C	ta, Michael Rauch, Walter W	linter		
Submitted on 4 Feb 2002) Precision Tests of Quantum Chromodynamics and the Standard Model Martin W. Grunewald Submitted on 13 Jun 1995) Kafe Escribano, Eduard Masso (Submitted on 15 Oct 2007) Network of Vus I and precise tests of Vus I and	F. J. Yndurain		(Submitted on 19 Jul 2012 (v1), la	st revised 22 Oct 2012 (this version	n, v2))		
Experimental Precision Tests for the Electroweak Standard Model Stanley J. Brodsky, Hung Jung Lu High Precision Tests of QED and Physics beyond the Standard Model Martin W. Grunewald (3ubmitted on 13 Jun 1995) Rafel Escribano, Eduard Masso (Submitted on 15 Oct 2007) (Submitted on 2 Jul 1996 (VI), last revised 25 Aug 1997 (fils version, v2)) An evaluation of [Vus] and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays M. Antonelli, V. Ciriglano, C. Isidor, F. Mescia, M. Moulson, H. Neufell, E. Passemar, M. Palutan, B. Sciascia, M. Sozzi, R. Wanke, O.P. Yushchenko (for the FlaviaNet Working Group on Kaon Dec The role of sigma(e+e> hadrons) in precision tests of the Standard Model F. Jegerlehner (Submitted on 30 Dec 2003) Shawn Westerdale Shawn Westerdale	(Submitted on 4 Feb 2002)		F	Precision Tests of Q	uantum Chromodyna	mics and the Standard Model	
Martin W. Grunewald (submitted on 13 Jun 1999) Rafel Escribano, Eduard Masso (submitted on 15 Oct 2007) An evaluation of [Vus] and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays M. Anto-elli, V. Cirigliano, G. Isidori, F. Mescia, M. Moulson, H. Neufeld, E. Passemar, M. Palutan, B. Sciascia, M. Sozzi, R. Wanke, O.P. Yushchenko (for the FlaviaNet Working Group on Kaon Dec The role of sigma(e+e> hadrons) in precision tests of the Standard Model Constraining strongly coupled new physics from cosmic rays with machine learning techniq F. Jegerlehner Peter Schichtel, Michael Spannowsky, Philip Waite Submitted on 21 Jun 2019 (vi), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale Princeton University Z	Experimental Precision Tests for t	he Electroweak S	tandard Model s	tanley J. Brodsky, Hung Jung Lu	High Precision Tes	ts of QED and Physics beyond	the Standard Model
(Submitted on 15 Oct 2007) An evaluation of [Vus] and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays M. Antonelli, V. Cirigliano, G. Isidor, F. Mescia, M. Moulson, H. Neufeld, E. Passemar, M. Palutan, B. Sciascia, M. Sozzi, R. Wanke, O.P. Yushchenko (for the FlaviaNet Working Group on Kaon Dec Usubmitted on 13 May 2010 (v1), last revised 18 Jul 2010 (this version, v2)) The role of sigma(e+e> hadrons) in precision tests of the Standard Model F. Jegerlehner (Submitted on 30 Dec 2003) Peter Schichtel, Michael Spannowsky, Philip Waite (Submitted on 21 Jun 2019 (v1), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale Princeton University 7	Martin W. Grunewald		(5	ubmitted on 13 Jun 1995)	Rafel Escribano, Eduard Mass	0	
An evaluation of [Vus] and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays M. Antonelli, V. Cirigliano, G. Isidori, F. Mescia, M. Moulson, H. Neufeld, E. Passemar, M. Palutan, B. Sciascia, M. Sozzi, R. Wanke, O.P. Yushchenko (for the FlaviaNet Working Group on Kaon Dec (Submitted on 30 Dec 2003) The role of sigma(e+e> hadrons) in precision tests of the Standard Model F. Jegerlehner (Submitted on 30 Dec 2003) Peter Schichtel, Michael Spannowsky, Philip Waite (Submitted on 21 Jun 2019 (v1), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale Princeton University 7	(Submitted on 15 Oct 2007)				(Submitted on 2 Jul 1996 (v1), last re	vised 25 Aug 1997 (this version, v2))	
The role of sigma(e+e> hadrons) in precision tests of the Standard Model F. Jegerlehner (Submitted on 30 Dec 2003) Shawn Westerdale R. Matrice and Standard Model Shawn Westerdale Standard Model Princeton University Standard Model Standard Standard Model Standard Model Standard Model Standard Model Standard Model Standard Model Standard Standard Standard Standard Model Standard Standard S			An evaluation o	f [Vus] and precise tests	of the Standard Model fro	om world data on leptonic and semile	otonic kaon decays
The role of sigma(e+e> hadrons) in precision tests of the Standard Model Constraining strongly coupled new physics from cosmic rays with machine learning techniq F. Jegerlehner Peter Schichtel, Michael Spannowsky, Philip Waite (submitted on 30 Dec 2003) Peter Schichtel, Michael Spannowsky, Philip Waite Shawn Westerdale Princeton University 7			(Submitted on 13 May 2010 (vi	, G. ISIdori, F. Mescia, M. Mouison, H. r), last revised 18 Jul 2010 (this version, v2))	Neureia, E. Passemar, M. Palutan, B. Scia	ascia, M. Sozzi, R. Wanke, O.P. Yushchenko (for the Flavian	at working Group on Kaon Decays)
F. Jegerlehner (submitted on 30 Dec 2003) Peter Schichtel, Michael Spannowsky, Philip Waite (submitted on 21 Jun 2019 (v1), last revised 6 Nov 2019 (this version, v2)) Shawn Westerdale Princeton University 7	The role of sigma(e+e> hadrons) in precis	sion tests of the Stan	dard Model Constra	ining strongly cour	oled new physics fro	m cosmic rays with machine I	earning technique
(Submitted on 30 Dec 2003) Shawn Westerdale Shawn Westerdale Sh	F. Jegerlehner		Potor Schick	tol Michaol Spannowsky Phili	n Waito		cannig teeninque
Shawn Westerdale Princeton University 7	(Submitted on 30 Dec 2003)		(Submitted on 2	21 Jun 2019 (v1), last revised 6 Nov 2	019 (this version, v2))		
	Shawn Westerdale		Princet	on University			7

~85% DARK MATTER

since then, evidence from

~15%

• cosmic microwave background measurements

quarks leptons

bosons

- gravitational lensing measurements
 galaxy cluster collision observations
 structure formation simulations

tell us that dark matter is not described by the standard model!

Where to start: Looking under the light posts

We want...

- **Depth:** Perform the most sensitive search we can
- **Breadth:** Search for as many candidates as possible

Where to start: Looking under the light posts

strength with SM nteraction

WIMP in thermal equilibrium with universe

WIMPs thermally freezing-out

WIMPs: Thermal relics

To get the dark matter density we see today, we need

- **(** σ v**)** ~ 10⁻²⁶ cm³/s
- Mass ~ 100 GeV/c²

WIMPs: Thermal relics

To get the dark matter density we see today, we need

(σv) ~ 10⁻²⁶ cm³/s
Mass ~ 100 GeV/c²
Weak interaction scale

WIMPs: Thermal relics

To get the dark matter density we see today, we need

- (σv) ~ 10⁻²⁶ cm³/s
 Mass ~ 100 GeV/c²
 Weak interaction scale

Many theories predict such particles Most couple to nuclei Interactions will be rare, and < 100 keV But they may be detectable

Where to start: Looking under the light posts

• Earth moves through WIMP wind

DarkSide-50

Laboratori Nazionali del Gran Sasso Abruzzo, Italy

DarkSide Collaboration. "The electronics, trigger and data acquisition system for the liquid argon time projection chamber of the DarkSide-50 search for dark matter". J. Instrum. 12, P12011 (2017).

DarkSide Collaboration. "The electronics and data acquisition system for the DarkSide-50 veto detectors". J. Instrum. 11, P12007 (2016).

DEAP-3600

SNOLAB Sudbury, Canada

DEAP Collaboration. "Design and construction of the DEAP-3600 dark matter detector". Astropart. Phys. 108, pp. 1–23 (2019).

Energy depositions produce 128 nm scintillation with two time constants, photons shifted to 420 nm by TPB

DEAP Collaboration, "The liquid-argon scintillation pulseshape in DEAP-3600". Eur. Phys. J. C 80, 303 (2020)

Princeton University

(DarkSide-50 only) S2: Ionized electrons drifted to gas pocket and accelerated through GAr to produce 2nd pulse

S2 proportion to number of extracted electrons, tells event position and number of scatters

Lison Bernet – Moriond 2019 http://lisonbernet.ultra-book.com/

To discover dark matter, we must: • Minimize backgrounds • Accurately model what remains

Lison Bernet – Moriond 2019 http://lisonbernet.ultra-book.com/

(for a 5σ discovery)

β-decays and γ-rays: Pulse shape discrimination

Dominant source: ³⁹Ar in LAr, produced by cosmic ray ⁴⁰Ar(n,2n)³⁹Ar interactions in atmosphere Currently developing software for cosmogenic activation calculations with student

β-decays and γ-rays: Further reduction with isotopically purified argon

Urania: Underground Ar extraction in Cortez, CO

³⁹Ar activity in underground Ar is at least 1400x lower than in atmospheric Ar!

DarkSide Collaboration. "Results from the first use of low radioactivity argon in a dark matter search". Phys. Rev. D 93, 081101(R) (2016).

Shawn Westerdale

Aria: Chemical and isotopic ⁴⁰Ar

β-decays and γ-rays: With 2870 stages, the Aria column can deplete ³⁹Ar by 10x, at rate 8.1 kg/day

McCabe-Thiele calculation, modified to account for the change in temperature and ³⁹Ar-⁴⁰Ar relative volatility with height

This plot shows the depletion of ³⁹Ar in liquid and gas phases at higher points in the column

DarkSide Collaboration

"Separating ³⁹Ar from ⁴⁰Ar by cryogenic distillation with Aria for dark matter searches". arXiv:2101.08686 (2021) [submitted to Eur. Phys. J. C]

β-decays and γ-rays: Assay distilled argon with DArT in ArDM to measure ³⁹Ar content

Aria: Chemical and isotopic ⁴⁰Ar

DArT in ArDM: Depleted Ar radio-assay-facility

DarkSide Collaboration. "Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon". J. Instrum. 15, P02024 (2020).

α-decays: Characterization of attenuated α signals enables more effective modeling

J. Xu, C. Stanford, **S. Westerdale**, F. Calaprice, A. Wright, Z. Shi. "First measurement of surface nuclear recoil background for argon dark matter searches". Phys. Rev. D 96, 061101(R) (2017)

Shawn Westerdale

α-decays: α scintillation in TPB provides a powerful veto for surface backgrounds

C. Stanford, **S. Westerdale**, J. Xu, and F. Calaprice. "Surface background suppression in liquid argon dark matter detectors using a newly discovered time component of tetraphenyl-butadiene scintillation". Phys. Rev. D 98, 062002 (2018).

TPB pulse shape in a 100 μ s window provides a surface α discriminant, robust to position mis-reconstruction

Shawn Westerdale

Alphas 295K Data O 77K Data - V&L Model - V&L Model Exponentials - - Exponentials

10

Cosmogenic neutrons: Cosmic rays

Cosmic rays produce nucleonic and mesonic showers, which may activate detector materials.

High energy nucleons and mesons also induce a prohibitively high trigger rate on surface.

High energy neutrons produced in shower (especially from μ^{\pm}) can produce nuclear recoils in the LAr.

Interactions produce atmospheric neutrinos

 μ flux at sea level: ~10⁻² cm⁻²s⁻¹

Cosmogenic neutrons: DEAP underground

Water-based muon veto tags muons by Cherenkov light muons and their electromagnetic showers produce

Shawn Westerdale

DarkSide-50

Laboratori Nazionali del Gran Sasso Abruzzo, Italy

DEAP-3600

SNOLAB Sudbury, Canada

2 km underground [6 km water equivalent]

equivalent

<m water

3.4

(١)

overburd

Ę

Radiogenic neutrons: A new (α, n) yield calculator

$$Y(T_n) = \sum_{\alpha} P_{\alpha} \sum_{m} \frac{N_A C_m}{A_m} \sum_{T'_{\alpha} \in \{T_{\alpha}, T_{\alpha} - \Delta T'_{\alpha}, \dots, 0\}} \frac{\sigma_m(T'_{\alpha}, T_n)}{S(T'_{\alpha})} \Delta T'_{\alpha}$$

Calculate (α ,n) yields using NeuCBOT

- ENSDF nuclear decay libraries
- SRIM stopping power calculations
- TALYS nuclear reaction simulations

Download at: https://github.com/shawest/neucbot

S. Westerdale and P.D. Meyers, "Radiogenic Neutron Yield Calculations for Low-Background Experiments". NIM A (Dec. 2017) Vol 875, pp. 57-64

 (α,n) reactions

Radiogenic neutrons: Mitigation and measurement

DarkSide-50

Veto neutrons:

- Detector submerged in boron-loaded liquid scintillator neutron veto
- Minimize mass between detector & veto

Shield neutrons:

• 50 cm of neutron-moderating acrylic block neutrons from reaching the LAr

DEAP-3600

• Position & energy cuts reduce residuals

Radiogenic neutrons: The DarkSide-50 veto

R&D to optimize design

Optimal cocktail: Scintillator: Pseudocumene (PC) Boron-loading agent: trimethyl borate (TMB) Wavelength shifter: PPO Optimal reflector: Lumirror E6SR

S. Westerdale, E. Shields, F. Calaprice, "A Prototype Neutron Veto for Dark Matter Detectors". Astropart. Phys., 79, 10 (2016) Shawn Westerdale Princeton University 49

Radiogenic neutrons: The DarkSide-50 veto

Nuclear recoil quenching measurements

S. Westerdale *et al.*, "Quenching Measurements and Modeling of a Boron-Loaded Organic Liquid Scintillator". J. Instrum. 12 (2017)

Radiogenic neutrons: Mitigation and measurement

DarkSide-50

Veto neutrons:

- Detector submerged in boron-loaded liquid scintillator neutron veto
- Minimize mass between detector & veto

Shield neutrons:

• 50 cm of neutron-moderating acrylic block neutrons from reaching the LAr

DEAP-3600

• Position & energy cuts reduce residuals

Radiogenic neutrons: DEAP-3600 shielding and measurements

From Monte Carlo simulations:

- 1 out of ~10⁴ neutrons will make it into LAr with enough energy to produce a visible signal
 Simulations predict 0.073^{+0.119}_{-0.048} neutrons in the WIMP region of interest in 231 live days

Shawn Westerdale

Radiogenic neutrons: DEAP-3600 predictions in 231 live days, *in situ* validation in data

Shawn Westerdale

Radiogenic neutrons: DEAP-3600 predictions in 231 live days, *in situ* validation in data

Calibration with AmBe neutron source data:

➤ Tagging efficiency = 22.5±0.5%

DEAP Collaboration.

"Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Phys. Rev. D 100, 022004 (2019)

Shawn Westerdale

Radiogenic neutrons: DEAP-3600 predictions in 231 live days, *in situ* validation in data

	Control Region	ROI
From assays and MC (NeuCBOT)	$13.6^{+9.4}_{-7.8}$	$0.073_{-0.052}^{+0.119}$
From assays and MC (SOURCES-4C)	$10.6^{+8.3}_{-7.1}$	$0.060\substack{+0.104\\-0.045}$
From capture analysis	$23.1^{+16.9}_{-14.3}$	$0.10\substack{+0.10 \\ -0.09}$

Agrees with *ex-situ* simulation-based prediction —

Radiogenic neutron-induced backgrounds are primarily mitigated with radial position cut

DEAP Collaboration. "Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Phys. Rev. D 100, 022004 (2019)

Neutrinos: Visible through mutliple channels

Neutrinos: Coherent Elastic v-Nucleus Scattering (CEvNS) eventually produces WIMP-like background

Shawn Westerdale

DarkSide Collaboration. "Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos". J. Cosmol. Astropart. Phys. 03, 043 (2021)

Neutrinos: Coherent Elastic v-Nucleus Scattering (CEvNS) eventually produces WIMP-like background

Solar ⁸B neutrinos CEvNS on ⁴⁰Ar can b WIMP energies:

10⁴ counts/(100 t·ye **Atmospheric neutri** CEvNS on ⁴⁰Ar can ex mimic WIMPs:

1.5 ROI counts/(100

Supernova burst new (not shown)

O(10²-10³) events in M_{sN}>11 M_{sun} within § pre for a 50 tonne LAr detecto

CEvNS from atmospheric neutrinos can present an irreducible background for future detectors!

DarkSide-50 and DEAP-3600 are not large
 enough to have an appreciable rate, but this
 will be a limitation for future detectors

The Neutrino Floor – the ultimate WIMP sensitivity achievable before systematic uncertainties in the CEvNS background prevent effective background-subtraction

 10^{-1}

 10^{-}

10

Shawn Westerdale

DarkSide Collaboration. "Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos". J. Cosmol. Astropart. Phys. 03, 043 (2021)

10

Neutrinos: The Floor

Lower the Floor Neutrinos: Raise the Roof

Ideas I'll discuss

- Cross-target comparisons
- Decreasing background rate uncertainty

Other ideas:

- Annular modulation
- Direction-sensitivity

These comparisons require a unified set of conventions across experiments:

D. Baxter **et al.** "Recommended conventions for reporting results from direct dark matter searches." EPJ C **81**: 907 (2021)

Is there anything we can do about neutrinos once we hit the floor?

Neutrinos: Differences in v bkgd \rightarrow joint analyses can achieve better sensitivity than one target alone

VVIMPs (1 TeV): 0.0078 events/tonne/yearCEvNS:0.020 events/tonne/yearv-e⁻ ES:0.13 events/tonne/year

WIMPs (1 TeV): 0.0017 events/tonne/yearCEvNS:0.0063 events/tonne/yearv-e- ES:~0 events/tonne/year

Key differences:

v's most closely mimic different WIMP masses with both targets.

LAr has higher signal-tobackground ratio, but LXe is dominated by electron recoils

Considering only CEvNS:

Shawn Westerdale

Ideas I'll discuss

- Cross-target comparisons
- Decreasing background rate uncertainty

Other ideas:

- Annular modulation
- Direction-sensitivity

Atmospheric v-flux varies with time and location, making it hard to constrain.

This can be improved by *in-situ* measurements of correlated muon flux and atmospheric conditions from NOAA

Is there anything we can do about neutrinos once we hit the floor?

Neutrinos: Neutrino absorption $v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + \beta^-$

Signal: Electron recoils summing to E_{y} -1.5 MeV, ~2/3 passing through 480 ns metastable state

This provides an independent side band measurement of the atmospheric neutrino flux, to constrain the uncertainty better than can be done with *ex situ* measurements

Shawn Westerdale

Neutrinos: Neutrino absorption $v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + \beta^-$

Signal: Electron recoils summing to E_v -1.5 MeV, ~2/3 passing through 480 ns metastable state

This provides an independent side band measurement of the atmospheric neutrino flux, to constrain the uncertainty better than can be done with *ex situ* measurements

Shawn Westerdale

Shawn Westerdale

The WIMP searches

DarkSide-50: 532 live-days, 31.3±0.5 kg

Background	Events surviving all cuts	
Surface Type 1	< 0.0007	
Surface Type 2	0.00092 ± 0.00004	
Radiogenic neutrons	< 0.005	
Cosmogenic neutrons	< 0.00035	
Electron recoil	0.08 ± 0.04	
Total	0.09 ± 0.04	

Total WIMP acceptance: 72.5±0.5%

DarkSide Collaboration. "DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon". Phys. Rev. D 98, 102006 (2018)

DEAP-3600: 231 live-days, 824±25 kg

	Source	$N^{ m CR}$	N^{ROI}
0,00	$^{\circ}$ ERs	2.44×10^9	0.03 ± 0.01
A /	Cherenkov	$< 3.3 \times 10^5$	< 0.14
	² Radiogenic	6 ± 4	$0.10\substack{+0.10 \\ -0.09}$
8	[≈] Cosmogenic	< 0.2	< 0.11
	ω AV surface	<3600	< 0.08
	^č Neck FG	28^{+13}_{-10}	$0.49^{+0.27}_{-0.26}$
	Total	N/A	$0.62^{+0.31}_{-0.28}$

Total WIMP acceptance: $35.4_{-0.1}^{+2.5}$ %

DEAP Collaboration. "Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Phys. Rev. D 100, 022004 (2019)

No WIMPs found yet

DarkSide Collaboration. "DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon". Phys. Rev. D 98, 102006 (2018) **DEAP Collaboration**. "Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Phys. Rev. D 100, 022004 (2019)
Where we know dark matter isn't, for standard interaction and halo models

DEAP Collaboration.

"Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB". Phys. Rev. D 100, 022004 (2019)

Ruling out more specific WIMP models will require comparisons of results across several different targets

Within a non-relativistic effective field theory, several DM-nucleon operators can be written

Operators describing DM-nucleon couplings detectable with ⁴⁰Ar:

$$\mathcal{O}_{1} = \mathbf{1}_{\chi}\mathbf{1}_{N}$$

$$\mathcal{O}_{3} = i\vec{S}_{N} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}_{\perp}\right)$$

$$\mathcal{O}_{5} = i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_{N}} \times \vec{v}_{\perp}\right)$$

$$\mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}_{\perp}$$

$$\mathcal{O}_{11} = i\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}}$$

Isoscalar: equal proton & neutron couplings

Isovector: opposite proton & neutron couplings

Xenonphobic: cancellation for Xe

Potential DM halo substructures, motivated by observed stellar substructures

DEAP Collaboration.

"Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector". Phys. Rev. D 102, 082001 (2020)

77

Re-interpreted DEAP limits considering WIMP-nucleon effective interactions with halo substructure

DEAP Collaboration. "Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector". Phys. Rev. D 102, 082001 (2020)

Significant model-dependencies in DM constraints must be resolved with cross-target comparisons

DEAP Collaboration. "Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector". Phys. Rev. D 102, 082001 (2020)

DS-50's constraints on light DM w/ nuclear couplings

DarkSide Collaboration. "Low-mass Dark Matter Search with the DarkSide-50 Experiment". Phys. Rev. Lett. 121, 081307 (2018)

Shawn Westerdale

Princeton University

DS-50 constraints on light DM w/ electronic couplings

DarkSide Collaboration. "Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment". Phys. Rev. Lett. 121, 111303 (2018).

Princeton University

Ultraheavy Dark Matter Search Results

DEAP Collaboration. "First Direct Detection Constraints on Planck-Scale Mass Dark Matter with Multiple-Scatter Signatures Using the DEAP-3600 Detector". Phys. Rev. Lett. 128, 011801 (2022)

Search for axion-like particles from 5.5 MeV solar $p(d,^{3}He)A$

PhD thesis of Carl Rethmeier (2021). Blind analysis + publication coming soon

Two ALP models: GUT is generic, Hadronic relates nuclear & electromagnetic couplings

ervative 90 % D Xclus l O D curve projection S 86

Expanding the search

Future experiments: High-mass DM detection

Pursing the atmospheric neutrino floor

Shawn Westerdale

Princeton University

Maximizing DS-20k's sensitivity

Low-background cryostat based on ProtoDUNE design **Goal:** Bkgd expectation << 1, excluding v's

To obtain goal:

Decrease radiogenic & cosmogenic bkgd uncertainties \rightarrow Data enabling calculations is limited

Design cosmogenic veto to eliminate muon-induced backgrounds

Additional sensitivity to:

Ultra-heavy DM: Masses up to 10²¹ GeV Lower cross sections Dark nuclei with SM-like form factors

Axions/Axion-like particles (ALPs): 5.5 MeV p(d,3He)A solar ALPs High-flux, O(keV) solar & cosmic ALPs

Baryonic dark matter via excess (n, γ)

Sterile v's with O(1–100 keV) masses from sun

Expanding the search

DarkSide-LowMass

Low energy threshold

⁴⁰Ar has a light nucleus → Stronger kinematic coupling to low-mass DM

Low backgrounds

Depleted ³⁹Ar with UAr and Aria Low temperature and small nucleus

- \rightarrow More readily purified of
 - Electronegative impurities
 - Radon

Low dielectric constant

 \rightarrow Efficient e⁻ extraction from LAr surface

Sensitivity limitations:

- Single e⁻ backgrounds
- β -decays and γ -rays
- Uncertainties in the LAr ionization yield at low energies

DarkSide-LowMass sensitivity

Princeton University

2

1

3 4 5 6

10

Sterile neutrino search with ICARUS

https://www.science.org/content/article/ resurrected-detector-will-hunt-some-strangest-particles-universe

Shawn Westerdale

Sterile neutrino search in a v_{μ} beam

Signals in v_{p} appearance channel

Detected through ${}^{40}\text{Ar}+v_e \rightarrow {}^{40}\text{K}^*+e^-$ etc. (CC chans)

 $E_v = E_e + E_{K^* \text{ de-excitation cascade}}$ (or others products)

Precise reconstruction requires accurately summing together many MeV-scale signals, and differentiating between them and backgrounds

MeV-scale reconstruction + background discrimination techniques from DM detection naturally lend themselves to this task!

 (n,γ) signals, cosmogenic, and dirt backgrounds are all important here

Signals in v_{μ} spectrum

Require understanding of cosmogenic backgrounds

Dark sector probes in a DUNE low-background, Xe-doped far detector

Module of Opportunity \rightarrow Chance to design a far detector for more physics

D. Caratelli **et al.** "Low-Energy Physics in Neutrino LArTPCs". arXiv:2203.00740 (2022)

A low-threshold, Xe-doped far detector can

Study stellar and supernova mechanisms by observing solar and core-collapse supernova neutrinos \rightarrow constrain dark sector theories

Search for bayonic DM by looking for excess (n,γ) signals

Search for $0\nu\beta\beta$, linked to sterile neutrinos

Indirectly search for DM with v-couplings and primordial black holes

Neutrino-nucleus event reconstruction, more precise event reconstruction in general

e.g. "blip" reconstruction

Significant synergy with event reconstruction work at BNL

Shawn Westerdale

vDEAL for sterile neutrinos and dark sector

By measuring CEvNS from reactor neutrinos, vDEAL will

Search for O(eV) scale sterile neutrinos using varying baselines Search for new gauge bosons in the dark sector by looking for distortions in the low-energy CEvNS signal Constrain the \overline{v}_{e} magnetic moment

Shawn Westerdale

What we need to achieve these goals

n/γ detector array for nuclear measurements

Low-energy n-induced nuclear recoil backgrounds MeV-scale (n,γ) and (α,γ) backgrounds Cosmogenic background & material activation Machine learning background discriminators Atmospheric v models Better reactor v flux models Stellar and supernova mechanisms

Low-threshold LArTPC R&D

Load w/ impurities → characterize & reduce spurious electron backgrounds Dope w/ Xe, allene → develop techniques & quantify effects for lowering threshold Calibrate low-energy recoils in pure & doped LAr

Thank you