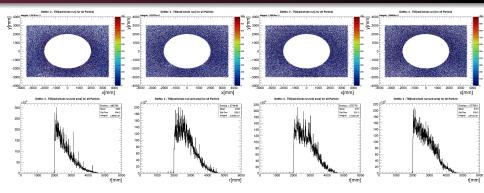


TID calculation for DS Coil water-cooled leads

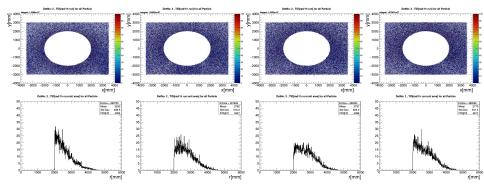
Ciprian Gal, Vassu Doomra, Zuhal Seyma Demiroglu


18 Mar, 2022

TID calculations for DS coils water-cooled leads

- Simulation ran with shielding config24 (100M beam generator events).
- The particles are passed through 1cm thick of G4_RUBBER_BUTYL and deposited energy are evaluated.
- TID is computed for each 5x5mm² block by dividing the energy deposition in the block by the mass and the results are integrated over the whole MOLLER run.
- z_{d50} =5200.5mm; z_{d54} =6400.5mm; z_{d57} =7300.5mm; z_{d78} =8432.04mm

TID calculations with G4_RUBBER_BUTYL for whole MOLLER run-time

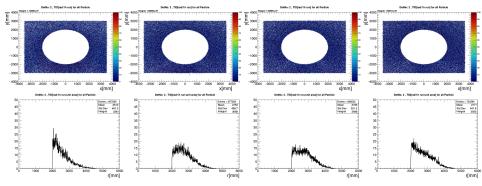

Top: The 2D position distributions of all the hits which are weighted by radiation dose for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column). Bottom: The average radiation dose as a function of radius for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column).

- The maximum radiation doses in d50/d54/d57/d78 are around 400MRad/140MRad/200MRad/140MRad, respectively.
- The average numbers are much important here and it corresponds to a dose of $\approx 200 kRad$.

18 Mar, 2022

TID calculations with G4_POLYETHYLENE for 1 hour run-time

 In order to estimate the potential radiation dose in the vacuum pumps, we used the POLYETHYLENE as the material and computed the TID per 1 hour.



Top: The 2D position distributions of all the hits which are weighted by radiation dose for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column). Bottom: The average radiation dose as a function of radius for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column).

- The average dose is ≈ 25Rad.
- Whole MOLLER run-time is 8256 hours, 25Rad $\rightarrow \approx 206 kRad$

TID calculations with G4_SILICON_DIOXIDE for 1 hour run-time

ullet The similar study is performed for the controller of vacuum pumps. We used the SiO_2 as the material and computed the TID per 1 hour.

Top: The 2D position distributions of all the hits which are weighted by radiation dose for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column). Bottom: The average radiation dose as a function of radius for the d50 (1st column), d54 (2nd column), d57 (3rd column), d78 (4th column).

- The average dose is ≈ 20Rad.

Backup

TID calculations for DS coils water-cooled leads

- Skimmed the remoll output files for d50/d54/d57/d78 by using skimTree.C. While doing the analysis, the skimmed root output is produced separately for the p_z states($p_z > 0/p_z < 0$) with hit.r > 2000mm.
 - det50: 100M beam generator events.
 - $p_z > 0$: 441122 Events; $p_z < 0$: 263887 Events
 - det54: 100M beam generator events.
 - $p_z > 0$: 409975 Events; $p_z < 0$: 279430 Events
 - det57: 100M beam generator events.
 - $p_z > 0$: 391800 Events; $p_z < 0$: 281666 Events
 - det78: 100M beam generator events.
 - $p_z > 0$: 376566 Events; $p_z < 0$: 267622 Events
 - Then, ran the tid.mac by using the external generator
 - file: Skimmed root file
 - copyRate 1
 - startEvent 0
 - detid: 50/54/57/78
 - zOffset:-(±10 the value of z-position as in mollerParallel.gdml)
 - run # skimmed events
- tidAna.C macro is used to analyse this ext. generator root file.
- $\\ \hline \bullet \quad 1 \\ \text{mm}/10 \\ \text{mm}/1 \\ \text{mm thick } G4_RUBBER_BUTYL \text{ (density=0.92 g/cm}^3\text{) planes are used in the tid.gdml}$
- lacktriangledown 1mm/10mm/1mm thick G4_SILICON_DIOXIDE (density=2.32 g/cm 3) planes are used in the tid.gdml