Probing nonlinear gluon effects by forward di-hadron correlations

Xiaoxuan Chu, BNL RBRC Seminar, April 28th 2022

Gluon saturation

- Gluon density rapidly increases at small x: gluon splitting \rightarrow BFKL \rightarrow linear evolution
- Nonlinear gluon effect: gluon recombination \rightarrow BK \rightarrow non-linear evolution
- Gluon saturation (Q²<Q²_s): gluon recombination = gluon splitting
- Nuclear gluon distributions at saturation region?

Xiaoxuan Chu

Current knowledge of nPDFs

- EPPS16:
 - LHC data in p+Pb collisions \rightarrow low x but high Q^2
 - DIS, DY and PHENIX π^0 data: low/moderate Q^2
 - x and Q^2 evolution behavior of suppression \rightarrow cold nuclear matter (CNM) effect
- Nuclear gluon distributions have large uncertainty at small x, moderate Q^2 and low $Q^2 \rightarrow$ further inputs from RHIC data

Di-hadron measurement in d+Au

- **CGC** successfully predicted the strong **suppression of the hadron inclusive yields** in d+Au relative to p+p, by gluon saturation effects
- **Di-hadron** as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. McLerran from NPA 748 (2005) 627-640

• Following theoretical predictions on di-hadron:

Saturation signatures on p_T and y

C. Marquet in NPA 796, 41 (2007)

Saturation signatures on b and A

 $Q_s \propto T_A(b) \propto 1/b$: smaller *b*, larger $Q_s \rightarrow$ easier to reach saturation region

<u>Woods-Saxon potential: $T_A(b)$ </u>

 $Q_s \propto A^{1/3}$: Larger A, larger $Q_s \rightarrow$ easier to reach saturation region

Do we observe the nonlinear gluon dynamics signatures from recent STAR p+p, p+A, and d+A data?

- p+p, p+Al, and p+Au collisions: STAR, arXiv: 2111.10396
 - d+Au collisions: STAR preliminary results

STAR data in $x - Q^2$ phase space

STAR data can access linear-nonlinear transition region

$Di-\pi^0$ measurement at STAR

p_T and A dependence

- Suppression at low p_T not high p_T
- Fixed p_T (smallest p_T) bin $\rightarrow x Q^2$ phase space is fixed, suppression is dominantly affected by various A:
 - Suppression linearly depends on $A^{1/3}$
 - Slope from the fitting = -0.09 ± 0.01

E.A. dependence

 $\sqrt{s_{NN}} = 200 \text{ GeV}, \text{ NN} \rightarrow \pi^0 \pi^0 X$ **STAR** 2.6 < η < 4, $\Delta \phi \in [\frac{\pi}{2}, \frac{3\pi}{2}]$ p_{τ}^{trig} =1.5-2 GeV/c Relative area p_{τ}^{asso} =1-1.5 GeV/c 0.5 Area: integral of away-side peak after pedestal subtraction 40000 20000 0 E.A. (ΣE_{BBC})

- Suppression increases with E.A., highest E.A. data is consistent with predictions at b = 0
- Traditional definition of centrality doesn't work well for small systems: what is the variable best corelated with *b* in small systems?

Full p_T picture

• At fixed p_{T2} , suppression rarely depends p_{T1}

Simulated *x*

Simulated Q^2

Do we observe the nonlinear gluon dynamics signatures from recent STAR p+p, p+A, and d+A data?

- p+p, p+Al, and p+Au collisions: STAR, arXiv: 2111.10396
 - **d+Au collisions:** STAR preliminary results

PHENIX data

• Away-side correlation: suppression dependence on rapidity and centrality is studied by PHENIX

Other thoughts for PHENIX data

Low p _T	Pedestal ratio (central dAu/pp): 1.9	
High p_T	Pedestal ratio (central dAu/pp): 2.1	

- Pedestal: high pedestal in d+Au; ratio(d+Au/p+p) tends to increase with p_T
 PRD 83, 034029 (2011) → double parton interactions (DPS) in d+Au? → correlation is also affected by DPS?
- Motivation of performing the similar measurement at STAR → Impact of DPS in d+Au; complementary studies

Di- π^0 from SPS/DPS

M. Strikman and W. Vogelsang, PRD 83, 034029 (2011)

Single parton scattering (SPS) in pp: $a+b\rightarrow c+d+X$

Double parton scattering (DPS) in pp: $a+b\rightarrow c+X$ and $a'+b'\rightarrow c'+X$

If q_1, q_2 correlated: $f_{q_1q_2}^p(x_{q_1}, x_{q_2}) \neq f_{q_1}^p(x_{q_1})f_{q_2}^p(x_{q_2})$ If q_{1,q_2} uncorrelated: $f_{q_1q_2}^p(x_{q_1}, x_{q_2}) = f_{q_1}^p(x_{q_1})f_{q_2}^p(x_{q_2})$

Leading-twist (LT) mechanism

 $\sigma_{LT} \propto f_a^p(x_a) \otimes f_b^p(x_b) \otimes \sigma^{ab \to cdX} \otimes D_c^{\pi^0} \otimes D_d^{\pi^0}$

DPS dominates at forward rapidities

- DPS is enhanced and not negligible at high rapidities
- Green box and arrow represent the kinematics STAR data can reach

DPS in d+Au?

M. Strikman and W. Vogelsang, PRD 83, 034029 (2011)

Comparison of p+p, p+Au and d+Au \rightarrow study the individual source of DPS

- Compare pedestal: DPS provides an explanation of higher pedestal in d+Au
- Compare away-side correlation → window open to studies of double parton distributions in nucleons:
 - q₁,q₂ correlated: DPS enhances the correlation
 - q₁,q₂ uncorrelated: DPS will only enhance pedestal

p+p, p+Au and d+Au comparison

- π^0 PID: much higher background in d+Au than p+p (Au)
- Very high pedestal: d+Au > 5 times higher compared to p+p (Au)
- Away-side: enhancement in d+Au compared to p+Au

Combinatoric contributions in d+Au

- Area: contribution from off mass window is high in d+Au
 - not fair to directly compare d+Au and p+p without background subtraction, but we don't fully understand the background correlation
 - potential enhancement lead by DPS can not be determined so far...
- Width: roughly stable in three collision systems \rightarrow no broadening
- Pedestal: d+Au/p+p > 5; $d+Au/p+p \sim 1 \rightarrow no DPS$ in p+Au, but is there DPS in d+Au?

E.A. dependence in d+Au

- In the overlapping p_T range of two collaborations, no suppression or E.A. dependence in d+Au relative to p+p
- Suppression exits at very low p_T at PHENIX, where STAR cannot reach

How to describe suppression?

RBRC Seminar

" $J_{dAu} \rightarrow 0.1$ that "10 times suppression observed in central dAu" should be clarified

How to normalize?

Data: STAR preliminary, NPA 854, 168 (2011); Theory: A. Stasto et al., GBW model for CGC

- CGC predictions based on GBW model with Sudakov effects included agrees with data better
- Two ways of normalization used: correlation function normalized by N_{trig} not N_{pair}
 - PLB 716 (2012) 430-434: normalized by N_{trig} , but issues found with p+p normalization
 - PLB 784 (2018) 301-306: normalized by N_{pair} , issues with p+p normalization fixed

How to normalize?

T. Lappi and H. Mantysaari, NPA 908 (2013) 51-72

- For the first time, the pedestal is predicted
- Independent scattering of two partons from the probe: $f_{q_1q_2}^p(x_{q_1}, x_{q_2}) = f_{q_1}^p(x_{q_1}) f_{q_2}^p(x_{q_2})$

RBRC Seminar

• Two ways of normalizations : Left: $\frac{N_{pair}(\Delta \phi)}{N_{trig}}$ – pedestal; right: $\frac{N_{pair}(\Delta \phi)}{N_{pair} from pedestal}$

Xiaoxuan Chu

25

Normalize summary

Experimental papers	Normalized by	Systems	Details
STAR	N _{trig}	p+p, p+Al, p+Au, d+Au	Compare area ratio
PHENIX	N _{trig}	p+p, d+Au	Compare area ratio×R _{dAu}

Prediction papers	Normalized by	Systems	Details
1. NPA 748 (2005) 627-640	N _{pair}	p+p, d+Au	N_{pair} for entire $-\frac{1}{2}\pi < \Delta \phi < \frac{3}{2}\pi$ range
2. PLB 716 (2012) 430-434	N_{trig}	p+p, d+Au	same as experiment, issue with p+p
3. PLB 784 (2018) 301-306	N _{pair}	p+p, p+Au, d+Au	N_{pair} for back-to-back region: $\frac{1}{2}\pi < \Delta \phi < \frac{3}{2}\pi$
4. NPA 908 (2013) 51-72	N _{trig}	p+p, p+Au, d+Au	same as experiment
	N _{pair}	p+p, p+Au, d+Au	N _{pair} for pedestal
5. PRL 105, 162301 (2010)	N _{trig}	p+p, d+Au	same as experiment
6. PRD 99, 014002 (2019)	N _{trig}	p+p, p+Au, d+Au	same as experiment, used to compare with STAR data

Future measurement at EIC

- Away side suppression is a combination of Sudakov (no nuclear dependence) and saturation effects?
- Sudakov effect can be estimated from the suppression at non-saturated region
- Away-side peak mainly affected by initial state parton shower (IS)
- Near-side peak mainly affected by final state parton shower (FS) and fragmentation p_T

Conclusion for theory

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - Suppression can be a consequence of both initial- and final-state effects
 - Initial effect \rightarrow CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - Efforts needed to determine an observable correlated best with *b* for small systems
 - DPS in d+Au: both pedestal and correlation affected?

Conclusion for STAR

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - Suppression can be a consequence of both initial- and final-state effects
 - Initial effect \rightarrow CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - Efforts needed to determine an observable correlated best with *b* for small systems
 - DPS in d+Au: both pedestal and correlation affected?
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - For nonlinear gluon dynamics: high background correlation not fully understood; favors for cleaner p+Au collisions
 - For DPS physics: favors for di-charged hadron correlation in p+p, p+A, and d+A

Clarifications

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - Suppression can be a consequence of both initial- and final-state effects
 - Initial effect \rightarrow CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - Efforts needed to determine an observable correlated best with *b* for small systems
 - DPS in d+Au: both pedestal and correlation affected?
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - For nonlinear gluon dynamics: high background correlation not fully understood; favors for cleaner p+Au collisions
 - For DPS physics: favors for di-charged hadron correlation in p+p, p+A, and d+A
- Uniform normalization needed
- Background contribution cannot be ignored from the data, be careful with predictions based on the results in d+Au collisions

Outlook

- Detailed signatures with back-to-back di-hadron correlation measurement from theory:
 - Suppression can be a consequence of both initial- and final-state effects
 - Initial effect \rightarrow CGC: A, E.A./centrality, p_T , and rapidity dependence predicted
 - Efforts needed to determine an observable correlated best with *b* for small systems
 - DPS in d+Au: both pedestal and correlation affected?
- p+p, p+Al, and p+Au results from STAR: A, E.A./centrality, p_T , and rapidity dependence observed
- d+Au results from STAR: Challenging to conclude
 - For nonlinear gluon dynamics: high background correlation not fully understood; favors for cleaner p+Au collisions
 - For DPS physics: favors for di-charged hadron correlation in p+p, p+A, and d+A
- Uniform normalization needed
- Background contribution cannot be ignored from the data, be careful with predictions based on the results in d+Au collisions
- Di-charged hadron correlation with STAR Froward Upgrade and EIC:
 - Away-side peak: background correlation controllable → probe DPS physics?
 - Near-side peak can be studied: separation of IS, FS and fragmentation p_T ?

Back up

Flow-like correlation

χ^2 / ndf 10.96 / 14 **STAR** *Preliminary* 0.0004997 ± 0.0000155 a0 (↓ 0.0012 MinBias pAu -4.854e-06 ± 1.072e-05 a2 2.6<n<3.9 p__= 2-3 GeV $p_{-} = 1-2 \text{ GeV}$ 0.001 I∆nl>1 0.0008 0.0006 0.0004 3 0 2 4 -1 $\Delta \phi$ [rad]

Fit function: $Y(\Delta \phi) = a0 + 2^*a2 \cos(2\Delta \phi)$

- Flow signal from near side is negligible for the current measurement
- π⁰s at FMS have very high energy; hard to require those two π⁰s not come from the same jet
- Due to limited rapidity coverage of FMS, it's challenging to accurately estimate long range correlation. Even if there is flow,
 → makes suppression stronger
- Saturation stays after flow-like correlation subtraction in pPt at LHCb (Nuclear Physics A 00 (2018) 1–4)

PHENIX data

- PHENIX MPC (Muon Piston Cal) data: forward cluster-pi0 correlation, 3.0<eta<3.8, the highest pt bin is the lowest pt bin at STAR
- I_{dA} is the area ratio of the away side correlation in dAu over pp, the same observable as STAR
- In the highest pt bin: dAu = pp, no suppression is observed, no centrality dependence either