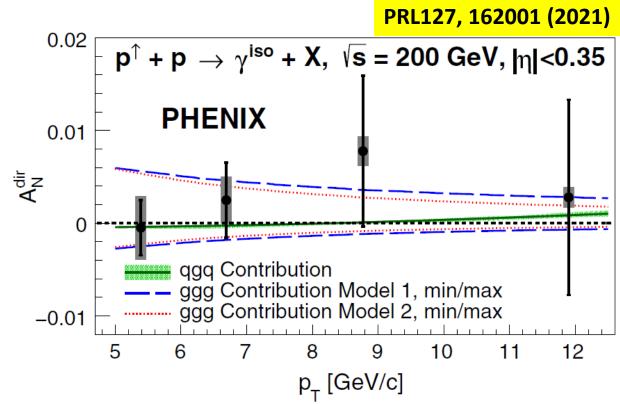
PHENIX data analysis and data preservation

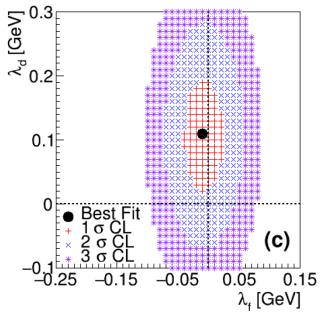
Y. Akiba (RIKEN/RBRC) for PHENIX Collaboration

PAC 2022/06/2

Recent highlights and publication status


PHENIX papers since June 2021

```
Very forward A_N of neutrons in p + p, p + Al, p + Au
PRD105,302004 (2022)
PRD105,302003
                  (2022)
                           Charged pion A_N at 200 GeV
                           Kinematic dependence of flow in p + Au, d + Au, <sup>3</sup>He+Au
PRD105,024901
                  (2022)
PRL127,162001
                  (2021)
                           A_N of direct photons in p+p at 200 GeV
                           Forward and Backward \psi(2S) in p+p,p+{
m Al},p+{
m Au}
arXiv:2202.03863
                           \pi^0 in , p + Al, p + Au, d + Au, <sup>3</sup>He+Au
arXiv:2111.05756
                           A_N of heavy flavor decay electrons
arXiv:2204.12899
arXiv:2203.17187
                           non-prompt direct photons in Au+Au 200 GeV
                           R_{AA} of b \rightarrow e and c \rightarrow e
arXiv:2203.17058
arXiv:2203.12354
                           low p_T direct photons in Au+Au at 39 and 62.4GeV
arXiv:2203.09894
                           flow in p + Au, d + Au, <sup>3</sup>He+Au
                           \phi in p + Al p + Au, <sup>3</sup>He+Au
arXiv:2203.06087
                           cross section and A_{LL} of direct photons in p + p at 510GeV
arXiv:2202.08158
arXiv:1805.04066
                           \mu\mu, e\mu, ee correlations in p+p 200 GeV
```


3 published + 2 accepted + 8 journal review 12 papers submitted in the last 1 year

Spin Physics highlights

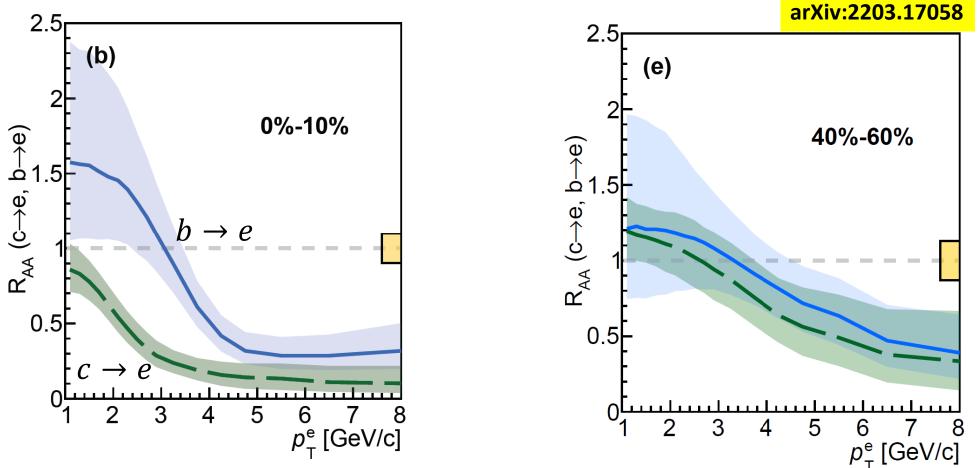
- Measurement of Direct photon A_N
- Constraint on gluon's dynamic motion in the proton
- News release at BNL and RIKEN

arXiv:2204.12899 (2022)

$$A_N(p^\uparrow + p \rightarrow HF(e^{+/-}) + X)$$

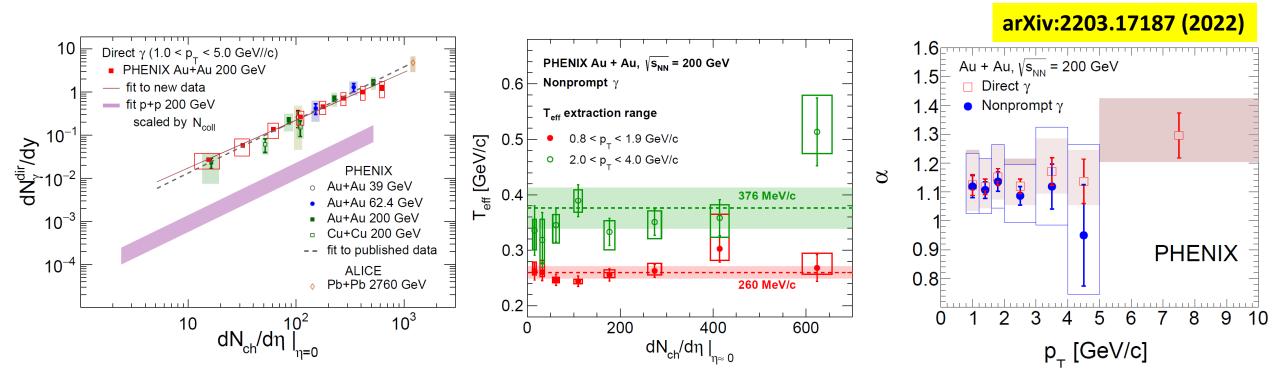
 $\sqrt{s} = 200 \text{ GeV}$
 $|\eta| < 0.35$

PHENIX

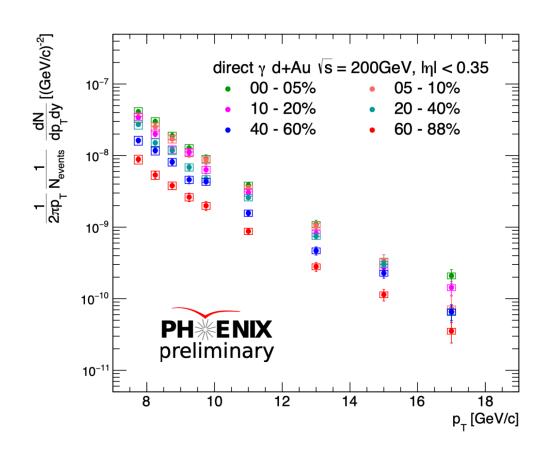

Theory: PRD78, 114013

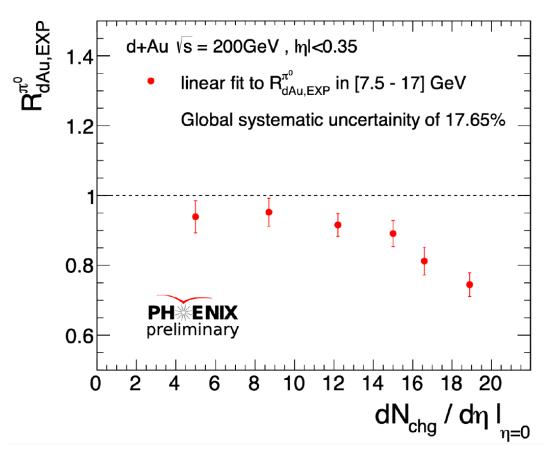
$$A_N^{D^0/\overline{D}^0} \rightarrow e^{+/-}(\lambda_f, \lambda_d)$$

- Measurement of A_N of heavy-flavor decay electrons
- Constraint on parameters of Tri-Gluon model
- Submitted to PRL


R_{AA} of $b \rightarrow e$ and $c \rightarrow e$

- R_{AA} of $b \rightarrow e$ and $c \rightarrow e$ at midrapidiy from 20B Au+Au data
- Clear difference of charm and bottom suppression is seen
- Next: 2014+2016 Au+Au data analysis




Non-prompt direct photons in Au+Au

- High statistics direct photon measurement in Au+Au in 2014 run
- Non-prompt component of direct photons is extracted
- Effective temperature depends on p_T range
- Photon yield $\simeq (dN/d\eta)^{\alpha}$ with $\alpha = 1.12 \pm 0.06 \pm 0.12$ (no p_T dependence)

π^0 and direct photon in d+Au

- π^0 and direct photon yield in d+Au is compared
- π^0 is suppressed relative to direct photon in most central d+Au
- \rightarrow Evidence for π^0 suppression in most central d+Au

PHENIX publications

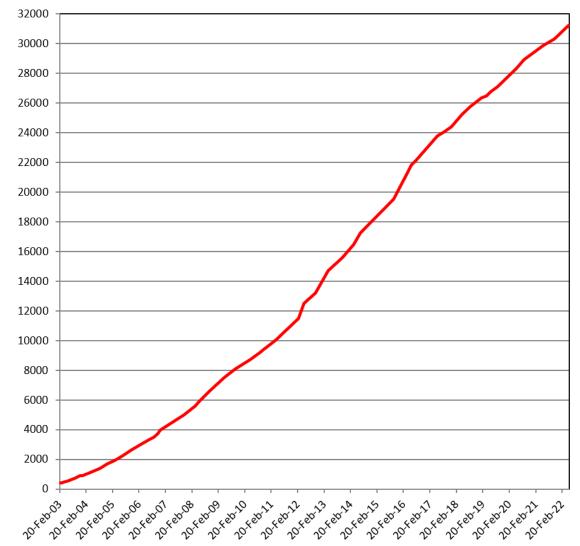
209 physics papers published

_	Phys. Rev. Lett.	75
_	Phys. Rev. C	84
_	Phys. Rev. D	44
_	Nature Physics	1
_	Phys. Letter B	4
_	Nucl. Phys. A	1

Total citation: ~31000

•	Topcite 1000+	2
	- 500-1000	8
	– 250-500	20
	– 100-250	57
	– 50-100	43

PHENIX White Paper: 3236 cites

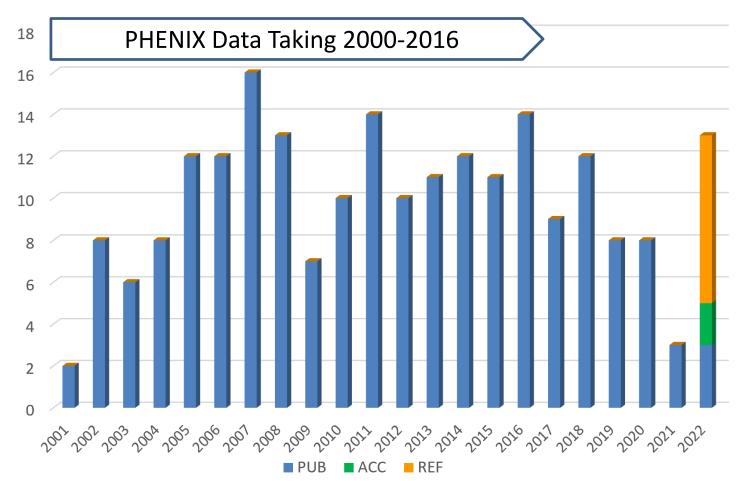

Jet quenching discovery: 1143 cites

Nature P paper: 203 citations

130 physics papers in topcite 50+

(155 if proceedings and detector papers are included)

Cumulative Citations of PHENIX papers



PHENIX publications

- 3 + 2 papers published/accepted and 8 submitted in 2022 so far
- Keep the scientific productivity with reduced collaboration

Published PHENIX papers in each year

Analysis status

Golden datasets of PHENIX

year	Beam, E(GeV)	Recorded data (pp equiv)	upgrade	Physics
2016	AuAu 200 dAu 200 dAu 62,39,20	2.3/nb (90/pb) 15B events 1G & 73/nb (29/pb) 0.6G 0.1G, 8M	VTX,FVTX MPC-EX	Heavy Flavor Gluon nPDF Small QGP
2015	pp 200 pAu 200 pAl 200	23/pb 80/nb (16/pb) 275/nb (7.4/pb)	VTX, FVTX	Heavy Flavor Transverse spin CNM, small QGP
2014	AuAu 200, 15 ³ HeAu 200	2.3/nb (90/pb) 15 B events 25/nb (15/pb)	VTX, FVTX	Heavy Flavor Small QGP
2013	pp 510	240/pb	W-trigger	Anti-quark spin Gluon spin
2012	pp 510 pp 200 CuAu 200 UU 193	50/pb 4/pb 5/nb (60/pb) 0.17/nb (10/pb)	W-trigger VTX, FVTX	Anti-quark spin Transverse spin Heavy flavor Geometry
2011	pp 510 AuAu 200 AuAu 19, 27	28/pb 0.8/nb (32/pb)	W-trigger VTX	Anti-quark spin Heavy flavor BES-I
2010	AuAu 200 AuAu 62,39,7	1.1/nb (44/pb)	HBD	Low mass ee BES-I

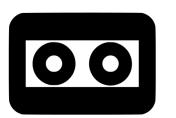
Data Production Status

RUN	beam	VTX/FVTX/Muon (heavy flavor)	Central Arm flow	Central Arm EM (γ, e)
16	Au+Au 200	VTX: DONE FVTX: DONE	DONE	DONE
16	d+Au BES	DONE	DONE	DONE
	p+p 200	DONE	DONE	DONE
15	p+Au 200	DONE	DONE	DONE
	p+Al 200	N/A	DONE	DONE
	Au+Au 200	DONE	DONE	DONE
14	3He+Au 200		DONE	DONE

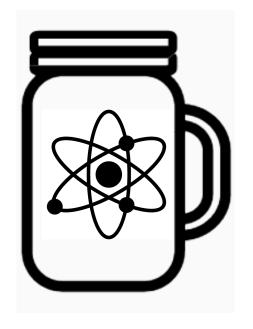
- 2016 FVTX/muon nDST production completed in December 2021
- → nDST production of PHENIX completed for all datasets

Status of key analysis

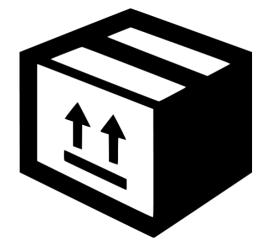
On-Going Key analysis			
Topic	Leading group	Time line	
R_{AA} of $b \rightarrow e$ and $c \rightarrow e$	RIKEN; Nara Women	Submit by QM2022	
v_2 of $b \to e$ and $c \to e$	RIKEN; Nara Women	Submit in 1 year	
J/ψ and $\psi(2S)$ in small	Florida State U; LANL	Submit by QM2022 🗸	
systems			
Flow of J/ψ	Vanderbilt	Preliminary in 1 year 🗸	
High p_T Direct photon in	Stony Brook, Debrecen	Submit by 1 year	
small systems			
Direct photons in RUN14	Stony Brook	Submit by QM2022	
Au+Au			
Low p_T direct photons in	Stony Brook	Preliminary by QM2022	
Cu+Au			
Low p_T direct photons in small	Stony Brook, St. Petersburg	Preliminary by QM2022	
systems			
Direct γ-hadron correlations in	Georgia State University	Submit in 1 year	
Au+Au(RUN14)			
Heavy Flavor electron A _N	U. Michigan	Submit in a half year 🗸	
Forward EM cluster A _{LL} at	Stony Brook	Preliminary in 1 year	
510GeV			


Key analysis needs additional funding

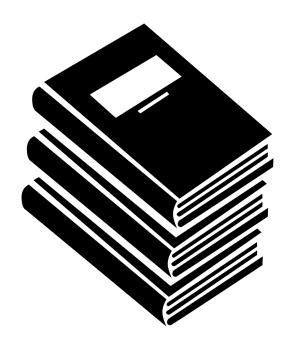
- $b \rightarrow e, c \rightarrow e \text{ with VTX (RUN14+16)}$
- $b \rightarrow \mu$, $c \rightarrow \mu$ with FVTX (RUN14+16)
- Intermediate mass dilepton (RUN14+16)
- Status of analysis is reported to DOE in January 2022
- Most of the key analysis is on schedule
- Request for funding for three key analyses that are not funded
 - PHENIX analysis review in 2019



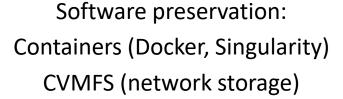
Data and Analysis Preservation


The DAP Strategy in PHENIX

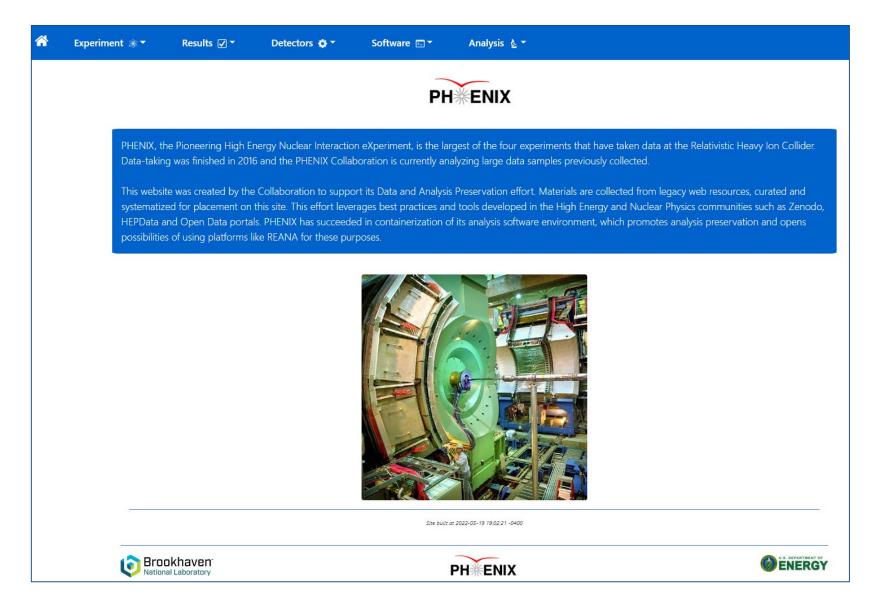
Bit preservation (BNL SDCC Storage)



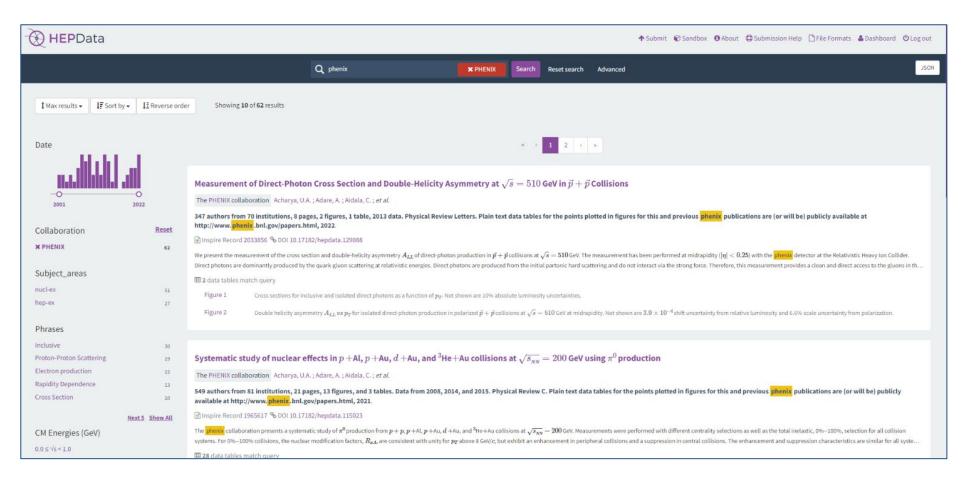
Analysis capture (analysis notes, writeups, scripts, flowcharts etc)


Web-based **Documentation** (new PHENIX website)

www.


Modern repositories for research materials

(Zenodo, HEPData)



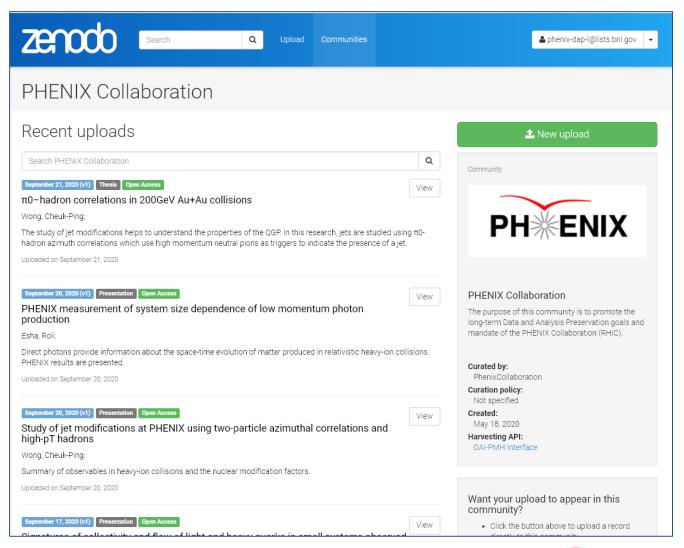
The new website – Docker/REANA content added

Progress with HEPData data preservation

HEPData submissions mandated for all new publications

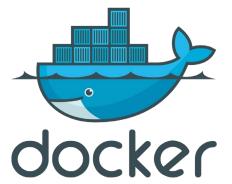
Revisiting older publication materials as time permits

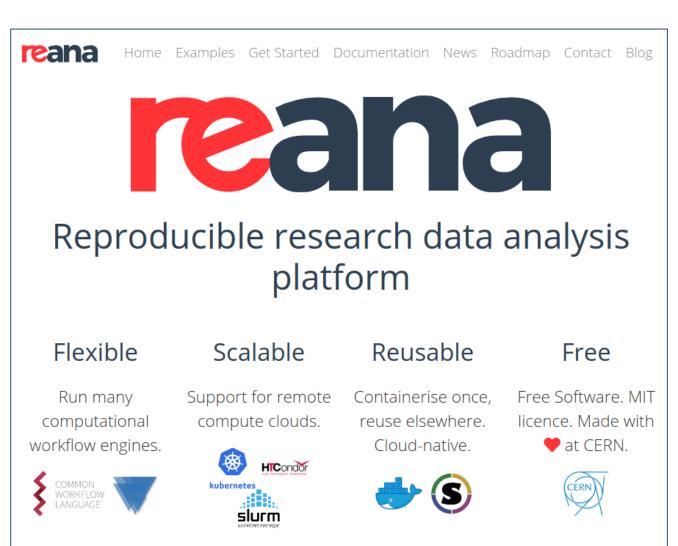
In the past 2 years, went from 23 to 62 published items


Team effort, using GitHub for material development

Zenodo@CERN - the PHENIX community

https://zenodo.org/communities/phenixcollaboration


 >500 PHENIX items, uploads ongoing



Progress with REANA

- Complete PHENIX software stack captured in Docker and CVMFS (file system) – a major milestone
- Storage at BNL scaled up to 2.6TB which is sufficient for many final-stage analyses
- Successfully captured the crucial part of a real PHENIX analysis (d+Au Direct Photon) in REANA

PHENIX School 2022

Thursday 02 June 2022

Day 1	08:00->12:00)	Chair: Roli Esha, Krista Smith
08:00	Opening welcome (15')	<u>Yasuyuki Akiba</u> (RIKEN)
08:15	Introduction: Physics (45')	William Zajc (Columbia)
09:00	Break (15')	
09:15	Introduction: Experiment (45')	<u>Takao Sakaguchi</u> (BNL)
10:00	Key PHENIX analyses (45')	Ron Belmont (UNC)
10:45	Break (15')	
11:00	PHENIX Software (30')	<u>Dillon Fitzgerald</u> (U Mich)
11:30	PISA (30')	Niveditha Ram (SBU)

- Since 2017, we organize a PHENIX school for new students and postdocs to teach RHIC physics and PHENIX data analysis.
- PHENIX School 2022 is from 6/2 to 6/3

Issues and Concerns

- After completion of data taking in 2016, the number of active members of PHENIX has decreased
 - Start of sPHENIX in 2023 could reinforce this trend
- Resources are needed for analysis and publication of key physics topics
 - Continuing support in BNL physics (both senior and postdoc)
 - Requesting DOE for additional resource for three key unfunded analysis
- More resources are needed for data preservation
 - Current level (0.5FTE NPPS expert FTE) is not sufficient
 - The collaboration is working with the lab on identifying additional help with data preservation

Summary

- PHENIX completed its data taking in RUN16
- Publication status
 - PHENIX continues to produce high impact results
 - We will complete publication of major results by 2023 (sPHENIX start)
- Towards completion of Data analysis and preservation
 - nDST production completed
 - DAP page to preserving the knowledge of PHENIX data analysis
 - REANA: successfully capture realistic analysis (d+Au direct photon)
 - PHENIX School

