SEARCH FOR A DARK Z BOSON WITH MACHINE LEARNING AT ATLAS

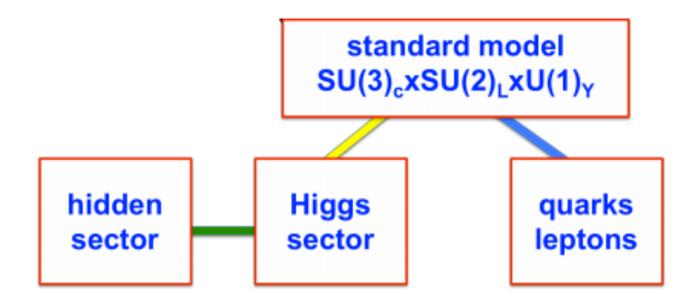
Savannah Thais, Daniela Parades, Keith Baker

Yale University

Dark Interactions Workshop 2016

Dark Sector at the LHC

- Many BSM theories introduce a dark sector through an additional U(1)_d gauge symmetry
- Can use different portals to search for this sector at LHC: vector, neutrino, photon, Higgs



Higgs Portal

- Higgs portal introduces:
- New gauge field with kinetic mixing ε with hypercharge gauge boson
- 2. In the case of broken $U(1)_d$ symmetry, a new Higgs with mass mixing κ with SM Higgs, leading to new Higgs doublet and mass mixing δ between SM Z and dark sector
- In the *E* >> *K* case, kinetic mixing dominates, mass of new particle is higher, interpreted as a dark Z (Z_d) that couples to the dark charge

Higgs Portal at ATLAS

- Can infer the existence of Z_d through:
 - 1. Deviations of SM predicted Drell-Yan rates
 - 2. Higgs decays through exotic intermediate states
- In particular, allows for new processes with 4l final states: $H \rightarrow ZZ_d \rightarrow 4l$ and $H \rightarrow Z_dZ_d \rightarrow 4l$
- Not ruled out by electroweak constraints on ε



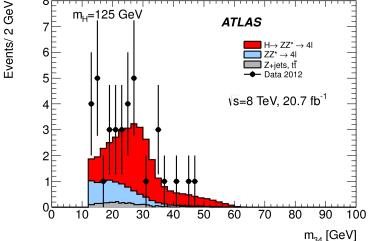
Analysis Strategy

- Apply event selection:
 - Run 1: Same event selection as $H \rightarrow ZZ^* \rightarrow 4l$ analysis
 - Run 2: Selection will be further optimized for ZZ_d analysis
- Look at m_{34} spectrum, apply LH fit to search for narrow peak about featureless SM background

$$L(\rho, \mu_h, \nu) = \prod_{i=1}^{Nbins} P(n_i^{obs} \mid n_i^{exp}) = \prod_{i=1}^{Nbins} P(n_i^{obs} \mid \mu_h \times (n_i^{Z^*} + \rho \times n_i^{Z_d}) + b_i(\nu)$$

In absence of excess, set limits

on
$$R_b = \frac{BR(H \to ZZ_d \to 4l)}{BR(H \to 4l)}$$



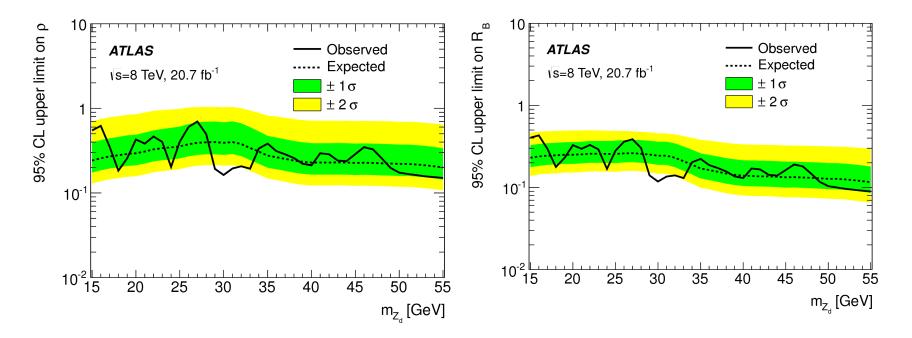
Run 1 Analysis

- Simulated signal with m_{Z_d} 15-55 GeV in 5 GeV steps (interpolated between steps) from ggF H using Hidden Abelian Higgs Model (Z_d is on shell)
- Relevant backgrounds $(H \rightarrow ZZ^* \rightarrow 4l, ZZ^* \rightarrow 4l, Z + jets, ttbar)$ simulated and normalized to data (or SM cross section)
- Dominant uncertainties from lepton ID, background normalizations

Channel	ZZ^*	$t\bar{t} + Z + jets$	Sum	Observed	$H \to 4\ell$
4μ	$3.1 \pm 0.02 \pm 0.4$	$0.6 \pm 0.04 \pm 0.2$	$3.7 \pm 0.04 \pm 0.6$	12	$8.3 \pm 0.04 \pm 0.6$
$4\mathrm{e}$	$1.3\pm0.02\pm0.5$	$0.8\pm0.07\pm0.4$	$2.1\pm0.07\pm0.9$	9	$6.9\pm0.07\pm0.9$
$2\mu 2 \mathrm{e}$	$1.4\pm0.01\pm0.3$	$1.2\pm0.10\pm0.4$	$2.6\pm0.10\pm0.6$	7	$4.4\pm0.10\pm0.6$
$2\mathrm{e}2\mu$	$2.1\pm0.02\pm0.3$	$0.6 \pm 0.04 \pm 0.2$	$2.7\pm0.10\pm0.5$	8	$5.3\pm0.04\pm0.5$
all	$7.8 \pm 0.04 \pm 1.2$	$3.2 \pm 0.1 \pm 1.0$	$11.1 \pm 0.1 \pm 1.8$	36	$24.9 \pm 0.1 \pm 1.8$

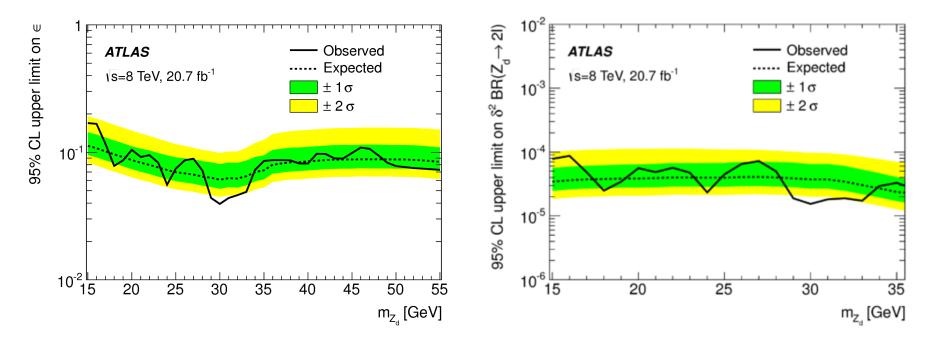
Run 1 Results

- No significant deviations from SM expectations 🙁
- Can extract limits on ρ from LH fits
- Using $R_{B} = \frac{\rho}{\rho + C}$ can extract limits on R_{B}



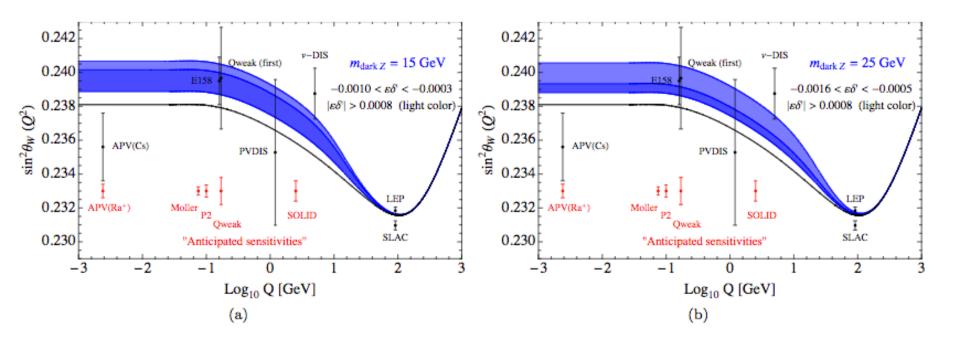
Run 1 Results

- By assuming SM cross section of $H \rightarrow ZZ^* \rightarrow 4l$, can extract limits on ε
- By approximating $BR(Z_d \rightarrow 2l)$ can extract limits on δ



Applications

- SM predictions for the running of weak mixing angle with Q² does not match data
- Z_d with mass in our search range could improve agreement



Run 2 Improvements

- Optimize the Higgs mass window for ZZ_d decays (in progress)
- Consider lifetime of Z_d (possible displaced vertices)
- Consider lower m_{Z_d} (in progress)
 - Aided by lowering lepton ID threshold
- Improve event selection and signal yield using machine learning

Machine Learning

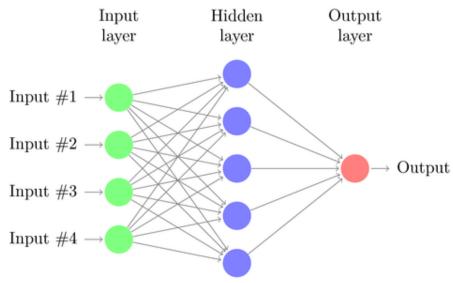
- Machine Learning allows algorithms to 'learn' parameters without being explicitly programed
- Can be used for classification, dataset generation, high level vector space transformations, unsupervised grouping, taking over the world...
- Already used in a few LHC analyses, triggers, reconstructions, and IDs
 - Usually relatively simple algorithms: LHs and BDTs

Deep Neural Networks

- Layered graph of multi-dimensional linear transformations
- Classification error is back-propagated using gradient descent based on cost function

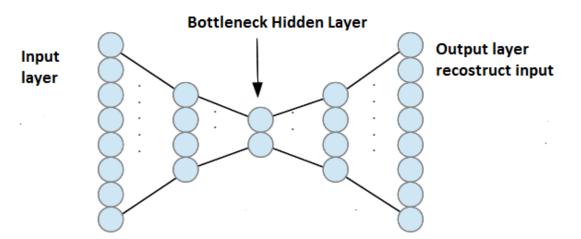
$$L(X,\theta) = \frac{1}{2n} \sum_{i=1}^{n} ||x_i - \rho_{\theta}(x_i)||^2 + \lambda ||W||^2$$

 Able to learn highly abstracted representations of data and extract high level patterns



Deep Neural Networks with Autoencoders

- NN performance is highly hyperparameter dependent
- One way to mitigate this is unsupervised pre-training
- Autoencoders create a "bottleneck of dimensionality"
- Goal is to accurately encode and decode information at each layer according to $\phi(x) = f(W_1x + b_1)$ and $\psi(x) = g(W_2\phi(x) + b_2)$
- Encoder weights are used as preliminary NN weights



Machine Learning for Z_d Search

- Two options for applying ML to this analysis:
 - 1. Use ML to optimize the $H \rightarrow ZZ^* \rightarrow 4l$ event selection
 - Goal to increase statistics in m_{34} distribution
 - 2. Use $H \rightarrow ZZ_d \rightarrow 4l$ trained algorithm *after/instead of* $H \rightarrow ZZ^* \rightarrow 4l$ event selection
 - Goal to resolve peak in m₃₄ distribution
 - Would help remove remaining non-resonant ZZ* background and $H \rightarrow ZZ^* \rightarrow 4l$ background outside of Z_d mass range
 - More difficult because processes have identical kinematics in $m_{Z^*} = m_{Z_d}$ range.
 - 3. Can combine both techniques
- Option 1 currently being studied with pre-trained DNNs, have demonstrated clear improved event selection efficiency (for Run 1 data)

Conclusions

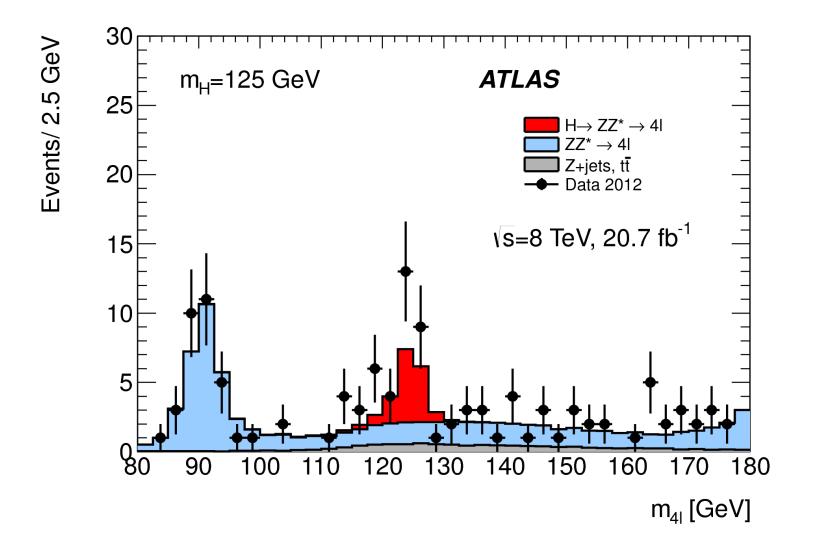
- Search for a dark sector vector boson in the intermediate mass range where kinetic mixing dominates is well motivated and accessible at the LHC
- Run 1 found no significant excess in Z* spectrum, set improved limits on R_B and mixing parameters
- Machine learning is a promising way to increase search sensitivity in Run 2
- Many thanks to Daniela, Keith, Luke de Olivera
- This work is supported by the National Science Foundation Graduate Research Fellowship

Backup

Higgs to 4I Standard Event Selection

	LEPTONS AND JETS REQUIREMENTS				
	Electrons				
Loos	e Likelihood quality electrons with hit in innermost layer, $E_T > 7$ GeV and $ \eta < 2.47$				
	Muons				
	Loose identification $ \eta < 2.7$				
	Calo-tagged muons with $p_T > 15$ GeV and $ \eta < 0.1$				
Combin	ed, stand-alone (with ID hits if available) and segment tagged muons with $p_T > 5$ GeV				
	JETS				
an	ti-k _r jets with $p_T > 30$ GeV, $ \eta < 4.5$ and passing pile-up jet rejection requirements				
	EVENT SELECTION				
QUADRUPLET	Require at least one quadruplet of leptons consisting of two pairs of same flavour				
Selection	opposite-charge leptons fulfilling the following requirements:				
	pT thresholds for three leading leptons in the quadruplet - 20, 15 and 10 GeV				
	Maximum of one calo-tagged or standalone muon per quadruplet				
	Select best quadruplet to be the one with the (sub)leading dilepton mass				
	(second) closest the Z mass				
	Leading dilepton mass requirement: 50 GeV $< m_{12} < 106$ GeV				
	Sub-leading dilepton mass requirement: $12 < m_{34} < 115$ GeV				
	Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell} < 5$ GeV				
	$\Delta R(\ell, \ell') > 0.10 (0.20)$ for all same(different)-flavour leptons in the quadruplet				
ISOLATION	Contribution from the other leptons of the quadruplet is subtracted				
	Muon track isolation ($\Delta R \le 0.30$): $\Sigma p_T/p_T < 0.15$				
	Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T / p_T < 0.30$				
	Electron track isolation ($\Delta R \le 0.20$) : $\Sigma E_T/E_T < 0.15$				
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T/E_T < 0.20$				
IMPACT	Apply impact parameter significance cut to all leptons of the quadruplet.				
PARAMETER	For electrons : $ d_0/\sigma_{d_0} < 5$				
SIGNIFICANCE	For muons : $ d_0/\sigma_{d_0} < 3$				
VERTEX	Require a common vertex for the leptons				
SELECTION	χ^2 /ndof < 6 for 4 μ and < 9 for others.				

M4I Distribution Run 1



Deriving Limit Setting Equations

$$R_B = \frac{\rho \times \mu_H \times n(H \to 4\ell)}{\rho \times \mu_H \times n(H \to 4\ell) + C \times \mu_H \times n(H \to 4\ell)}$$
$$= \frac{\rho}{\rho + C}, \tag{4}$$

where *C* is the ratio of the products of the acceptances and reconstruction efficiencies in $H \rightarrow ZZ_d \rightarrow 4\ell$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ events:

$$C = \frac{\mathcal{A}_{ZZ_d} \times \varepsilon_{ZZ_d}}{\mathcal{A}_{ZZ^*} \times \varepsilon_{ZZ^*}}.$$
 (5)

Setting R_B limits from LH parameters

From Eq. (2) and for $m_{Z_d} < (m_H - m_Z)$

$$\frac{\mathrm{BR}(H \to ZZ_d \to 4\ell)}{\mathrm{BR}(H \to ZZ^* \to 4\ell)} = \frac{R_B}{(1 - R_B)},$$

$$\approx \frac{\Gamma(H \to ZZ_d)}{\Gamma_{\mathrm{SM}}}$$

$$\times \frac{\mathrm{BR}(Z^* \to 2\ell) \times \mathrm{BR}(Z_d \to 2\ell)}{\mathrm{BR}(H \to ZZ^* \to 4\ell)},$$
(6)

where $\Gamma_{\rm SM}$ is the total width of the SM Higgs boson and $\Gamma(H \to ZZ_d) \ll \Gamma_{\rm SM}$. From Eqs. (4), (A.3) and (A.4) of Ref. [7], $\Gamma(H \to ZZ_d) \sim \delta^2$. It therefore follows from Eq. (6), with the further assumption $m_{Z_d}^2 \ll (m_H^2 - m_Z^2)$ that

$$\frac{R_B}{(1-R_B)} \simeq \delta^2 \times \text{BR}(Z_d \to 2\ell) \times \frac{\text{BR}(Z^* \to 2\ell)}{\text{BR}(H \to ZZ^* \to 4\ell)} \times \frac{f(m_{Z_d})}{\Gamma_{\text{SM}}},$$
$$f(m_{Z_d}) = \frac{1}{16\pi} \frac{(m_H^2 - m_Z^2)^3}{v^2 m_H^3},$$
(7)

Deriving limits on mass mixing from R_B

M₃₄ Spectrum from Run 2

