Astrophysical Signatures of Dissipative Dark Matter

Eric Kramer

Harvard University

In collaboration with: Lisa Randall

Does Dark Matter Exist?

Rotation Curves
Gravitational Lensing (Bullet Cluster)
Old Galaxies (z~10)

What is it? - ???

Yes!

A Dissipative Model

 $U(1)_{D}$, heavy fermion X, light fermion C Dissipation Radiative cooling (Bremsstrahlung & Compton) **Rutherford** scattering Conservation of angular momentum \rightarrow form a disk \rightarrow increased local dark matter density

How Do We Know the Local DM Density?

PDG:

 $\rho_{\rm DM}^{\rm local} = (0.39 \pm 0.03) \cdot (1.2 \pm 0.2) \cdot (1 \pm \delta_{\rm triax}) \frac{\rm GeV}{\rm cm^3} \; . \label{eq:rho}$

Global fit (e.g. Catena & Ullio 2009)
Local stellar kinematics (e.g. Holmberg & Flynn 2000; Bovy & Tremaine 2012)
For any bound on the local dark matter density, replace ρ_{DM} → ρ_{halo}

Local Stellar Kinematics

Table I Bounds on the Surface Density and Local Density of Total Matter and Visible Matter in the Galaxy			
Authors	Year	Bound $(M_{\odot} \text{ pc}^{-n})$	Category
Oort	1932	$\Sigma_{\rm tot}(100 \ {\rm pc}) = 31$	2
Oort	1960	$\Sigma_{\rm tot}(100~{\rm pc}) = 29 \pm 10\%$	2
Bahcall	1984a	$\Sigma_{D, ext{thin}}\leqslant 17 \qquad ho_{ ext{tot}}(0)\leqslant 0.24$	3
Bahcall	1984b	$\Sigma_{\rm tot} = 55-83$ $\rho_{\rm tot}(0) = 0.17-0.25$	3
Bienayme et al.	1987	$\rho_{\rm DM}(0) \leq 0.03$ for thick dark disk	3
Kuijken & Gilmore	1991	$\Sigma_{\rm tot}(1.1 \rm kpc) = 71 \pm 6$	1
Bahcall et al.	1992	$\Sigma_{\rm tot} = 70^{+24}_{-16}$	3
Flynn & Fuchs	1994	$\Sigma_{ m tot} = 52 \pm 13$	3 ^a
Pham	1997	$ ho_{ m tot}(0) = 0.11 \pm 0.01$	NA
Creze et al.	1998	$\rho_{\rm tot}(0) = 0.076 \pm 0.015$ (assumed constant density)	1 ^a
Holmberg & Flynn	2000	$ ho_{ m tot}(0) = 0.102 \pm 0.010 \ ho_{ m vis} = 0.095$	3 ^a
Korchagin et al.	2003	$\Sigma_{\rm tot}(350 \ {\rm pc}) = 42 \pm 6$	2
Siebert et al.	2003	$\Sigma_{\rm tot}(800 {\rm pc}) = 76^{+25}_{-12}$	1
Holmberg & Flynn	2004	$\Sigma_{\rm tot}(1.1 \rm kpc) = 74 \pm 6$	3
Bienaymé et al.	2006	$\Sigma_{\rm tot}(800~{\rm pc}) = 57-66$	1
Garbari et al.	2011	$ ho_{ m halo} = 0.003 - 0.033$	3
Moni Bidin et al.	2012b	$\Sigma_{\rm tot}(1.5 \rm kpc) = 55.6 \pm 4.7$	2
Bovy & Tremaine	2012	$ ho_{ m halo}=0.008\pm0.003$	2
Zhang et al.	2013	$\Sigma_{\rm tot}(1 \ \rm kpc) = 67 \pm 6$	
		$ ho_{ m halo}(0) = 0.0065 \pm 0.0023$	1
Bovy & Rix	2013	$\Sigma_{1100} = 68 \pm 4$	1
Bienaymé et al.	2014	$\Sigma_{\text{tot}}(1.1 \text{ kpc}) = 68.5 \pm 1$ $\Sigma_{\text{tot}}(350 \text{ pc}) = 44.2^{+2.3}_{-2.9}$	1

Note. Denotes bounds derived using HF technique.

Pinching

Invincible Model?

Not quite Holmberg & Flynn 2000 Self consistent approach $P \approx 0.010 + -0.001 M_{sol}/pc^2$ May exclude a dark disk

Holmberg & Flynn (2000)

Second moment of Boltzmann equation:

$$\frac{\partial}{\partial t}(\rho_i \overline{v}_z) + \frac{1}{R} \frac{\partial}{\partial R}(R\rho_i \overline{v_R v_z}) + \frac{\partial(\rho_i \overline{v_z^2})}{\partial z} = -\rho_i \frac{\partial \Phi}{\partial z}$$

Use this to derive vertical Jeans equation, solve for galactic potential (Poisson-Jeans solver)

Continuity:

$$\frac{\partial f}{\partial t} = -v_i \frac{\partial f}{\partial x_i} + \frac{\partial \Phi}{\partial x_i} \frac{\partial f}{\partial v_i}$$

$$\int_{-\infty}^{\infty} dw f_{z=0,i}\left(\sqrt{w^2 + 2\Phi(z)}\right) \equiv \nu(\Phi).$$

Use this to derive density for more general velocity distribution

Holmberg & Flynn Revised
Kramer & Randall 2016 (1604.01407)
Nonequilibrium effects:
 - Epicyclic oscillations
 → less time in the disk → lower bound (compare to vis and tot)

Non-Equilibrium Effects: A Short Video

Non-Equilibrium Kinematic Bound

100

Nonequilibrium Method, $Z_{\odot} = 26 \text{ pc}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 10. 68% and 95% bounds on DDDM parameter space using the non-equilibrium version of the HF method for A stars only.

Mass Extinctions

Randall & Reece 2014 (1403.0576) - $\Sigma_{\rm D} \sim 10 {\rm M}_{\rm sol}/{\rm pc}^2, {\rm h}_{\rm D} \sim 10 {\rm pc}$

Shaviv 2014, 2016b paleoclimate data: $\rho_{\rm D} \sim 0.08 \ {\rm M_{sol}}/{\rm pc}^2 = 3 \ {\rm GeV/cm}^3$

Gas Equilibrium

Magnetic fields must be included

Conclusions

Most constraints only apply to the halo Direct approach to constraining surface density is best approach Non-equilibrium effects lower the bound Parameters needed to explain mass extinctions and gas distribution are allowed

Future:

Gaia will give us a better picture of the galactic potential